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Abstract:  The survey investigates the existing 2D to 3D conversion 
algorithms developed in the past 30 years by various computer 
vision research communities across the world. According to the 
depth cues on which the algorithms reply, the algorithms are 
classified into the following 12 categories: binocular disparity, 
motion, defocus, focus, silhouette, atmosphere scattering, shading, 
linear perspective, patterned texture, symmetric patterns, occlusion 
(curvature, simple transform) and statistical patterns. The survey 
describes and analyzes algorithms that use a single depth cue and 
several promising approaches using multiple cues, establishing an 
overview and evaluating its relative position in the field of 
conversion algorithms.  

________________________________________________________________________ 
. 
Conclusion: The results of some 2D to 3D conversion algorithms are 3D 

coordinates of a small set of points in the images. This group of 
algorithms is less suitable for the 3D television application. 

The depth cues based on multiple images yield in general more 
accurate results, while the depth cues based on single still image 
are more versatile. 

A single solution to convert the entire class of 2D images to 3D 
models does not exist. Combing depth cues enhances the accuracy 
of the results. It has been observed that machine learning is a new 
and promising research direction in 2D to 3D conversion. And it is 
also helpful to explore the alternatives than to confine ourselves 
only in the conventional methods based on depth maps.  
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1 Introduction 

Three-dimensional television (3D-TV) is nowadays often seen as the next major 
milestone in the ultimate visual experience of media. Although the concept of 
stereoscopy has existed for a long time, the breakthrough from conventional 2D 
broadcasting to real-time 3D broadcasting is still pending. However, in recent years, there 
has been rapid progress in the fields image capture, coding and display [1], which brings 
the realm of 3D closer to reality than ever before.  

The world of 3D incorporates the third dimension of depth, which can be perceived by 
the human vision in the form of binocular disparity. Human eyes are located at slightly 
different positions, and these perceive different views of the real world. The brain is then 
able to reconstruct the depth information from these different views. A 3D display takes 
advantage of this phenomenon, creating two slightly different images of every scene and 
then presenting them to the individual eyes. With an appropriate disparity and calibration 
of parameters, a correct 3D perception can be realized.  

An important step in any 3D system is the 3D content generation. Several special 
cameras have been designed to generate 3D model directly. For example, a stereoscopic 
dual-camera makes use of a co-planar configuration of two separate, monoscopic 
cameras, each capturing one eye’s view, and depth information is computed using 
binocular disparity. A depth-range camera is another example. It is a conventional video 
camera enhanced with an add-on laser element, which captures a normal two-dimensional 
RGB image and a corresponding depth map. A depth map is a 2D function that gives the 
depth (with respect to the viewpoint) of an object point as a function of the image 
coordinates. Usually, it is represented as a gray level image with the intensity of each 
pixel registering its depth. The laser element emits a light wall towards the real world 
scene, which hits the objects in the scene and reflected back. This is subsequently 
registered and used for the construction of a depth map.  

1 Figure source: http://www.extra.research.philips.com/euprojects/attest/ 
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current and past media data is in 2D format and should be possible to be viewed with a 
stereoscopic effect. This is where the 2D to 3D conversion method comes to rescue. This 
method recovers the depth information by analyzing and processing the 2D image 
structures. Figure 1 shows the typical product of 2D to 3D conversion algorithm – the 
corresponding depth map of a conventional 2D image. A diversity of 2D to 3D 
conversion algorithms has been developed by the computer vision community. Each 
algorithm has its own strengths and weaknesses. Most conversion algorithms make use of 
certain depth cues to generate depth maps. An example of depth cues is the defocus or the 
motion that could be present in the images.  

This survey describes and analyzes algorithms that use a single depth cue and several 
promising approaches using multiple cues, establishing an overview and evaluating its 
relative position in the field of conversion algorithms. This may therefore contribute to 
the development of novel depth cues and help to build better algorithms using combined 
depth cues.  

The structure of the survey is as follows. In Chapter 2, one or multiple representative 
algorithms for every individual depth cue are selected and their working principles are 
briefly reviewed. Chapter 3 gives a comparison of these algorithms in several aspects. 
Taking this evaluation into consideration, one relatively promising algorithm using 
certain investigated depth cues is chosen and described in more detail in Chapter 4. At the 
end, Chapter 5 presents the conclusion of the survey. 
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2 2D to 3D Conversion Algorithms 

Depending on the number of input images, we can categorize the existing conversion 
algorithms into two groups: algorithms based on two or more images and algorithms 
based on a single still image. In the first case, the two or more input images could be 
taken either by multiple fixed cameras located at different viewing angles or by a single 
camera with moving objects in the scenes. We call the depth cues used by the first group 
the multi-ocular depth cues. The second group of depth cues operates on a single still 
image, and they are referred to as the monocular depth cues. The Table 1 summarizes the 
depth cues used in 2D to 3D conversion algorithms and their representative works. A 
review of algorithms using specific depth cue is given below.  

Table 1: Depth Cues and Their Representative Algorithms 

The Number of 
Input Images 

Depth Cues Representative Works  

Binocular disparity Correlation-based, feature-based correspondence; triangulation 
[2][3] 

Motion Optical flow [2]; Factorization [10]; Kalman filter [11] 
Defocus Local image decomposition using the Hermite polynomial basis 

[4]; Inverse filtering [12]; S-Transform [13] 
Focus A set of images of different focus level and sharpness estimation 

[5] 

Two or More 
Images 
(binocular or 
multi-ocular) 

Silhouette Voxel-based and deformable mesh model [6] 

Defocus Second Gaussian derivative [7] 
Linear perspective Vanishing line detection and gradient plane assignment [8] 
Atmosphere Scattering Light scattering model [15] 
Shading Energy minimization [17]  
Patterned texture 
(Incorporates relative size) 

Frontal texel [19] 

Symmetric patterns Combination of photometric and geometric constraints [21] 
Occlusion

   - Curvature Smoothing curvature and isophote [22] 
   - Single Transform Shortest path [23] 

One single 
image 
(monocular) 

Statistical patterns Color-based heuristics [8], Statistical estimators [25] 

2.1 Binocular disparity 

With two images of the same scene captured from slightly different view points, the 
binocular disparity can be utilized to recover the depth of an object. This is the main 
mechanism for depth perception. First, a set of corresponding points in the image pair are 
found. Then, by means of the triangulation method, the depth information can be 
retrieved with a high degree of accuracy (see Figure 2) when all the parameters of the 
stereo system are known. When only intrinsic camera parameters are available, the depth 
can be recovered correctly up to a scale factor. In the case when no camera parameters 
are known, the resulting depth is correct up to a projective transformation [2].  
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Assume lp and rp are the projections of the 3D point P on the left image and right image; 

lO and rO are the origin of camera coordinate systems of the left and right cameras. Based 

on the relationship between similar triangles ( , ,l rP p p ) and ( rl OOP ,, ) shown in Figure 2, 

the depth value Z of the point P can be obtained: 

T
Z f

d
= (2.1)

where lr xxd −= , which measures the difference in retinal position between 

corresponding image points. The disparity value of a point is often interpreted as the 
inversed distances to the observed objects. Therefore, finding the disparity map is 
essential for the construction of the depth map. 

The most time-consuming aspect of depth estimation algorithms based on binocular 
disparity is the stereo correspondence problem. Stereo correspondence, also known as 
stereo matching, is one of the most active research areas in computer vision. Given an 
image point on the left image, how can one find the matching image point in the right 
image?  Due to the inherent ambiguities of the image pairs such as occlusion, general 
stereo matching problem is hard to solve. Several constraints have been introduced to 
make the problem solvable. Epipolar geometry and camera calibration are the two most 
frequently used constraints. With these two constraints, image pairs can be rectified. 
Another widely accepted assumption is the photometric constraint, which states that the 
intensities of the corresponding pixels are similar to each other. The ordering constraint 
states that the order of points in the image pair is usually the same. The uniqueness 
constraint claims that each feature can have one match at most, and the smoothness 
constraint (also known as the continuity constraint) says that disparity changes smoothly 
almost everywhere. Some of these constraints are hard, like for example, the epipolar 
geometry, while others such as the smoothness constraints are soft. The taxonomy [3] of 
Scharstein and Szeliski together with their website “Middlebury stereo vision page’ [9] 
have investigated the performance of approximately 40 stereo correspondence algorithms 
running on a pair of rectified images. Different algorithms impose various sets of 
constraints. 
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The current stereo correspondence algorithms are based on the correlation of local 
windows, on the matching of a sparse set of image features, or on global optimization. 
When comparing the correlation between windows in the two images, the corresponding 
element is given by the window where the correlation is maximized. A traditional 
similarity measure is the sum-of squared-differences (SSD). The local algorithms 
generate a dense disparity map. Feature-based methods are conceptually very similar to 
correlation-based methods, but they only search for correspondences of a sparse set of 
image features. The similarity measure must be adapted to the type of feature used. 
Nowadays global optimization methods are becoming popular because of their good 
performance. They make explicit use of the smoothness constraints and try to find a 
disparity assignment that minimizes a global energy function. The global energy is 
typically a combination of the matching cost and the smoothness term, where the latter 
usually measures the differences between the disparities of neighboring pixels. It is the 
different minimization step used in these algorithms which differentiates them from each 
other, e.g. dynamic programming or graph cuts.    

2.2 Motion  

The relative motion between the viewing camera and the observed scene provides an 
important cue to depth perception: near objects move faster across the retina than far 
objects do. The extraction of 3D structures and the camera motion from image sequences 
is termed as structure from motion. The motion may be seen as a form of “disparity over 
time”, represented by the concept of motion field. The motion field is the 2D velocity 
vectors of the image points, induced by the relative motion between the viewing camera 
and the observed scene. The basic assumptions for structure-from-motion are that the 
objects do not deform and their movements are linear. Suppose that there is only one 
rigid relative motion, denoted byV , between the camera and scenes. Let [ , , ]TP X Y Z=  be 
a 3D point in the conventional camera reference frame. The relative 
motionV between P and the camera can be described as [2]: 

V T Pω= − − × (2.2)

where T andω are the translational velocity vector and the angular velocity of the camera 
respectively. The connection between the depth of 3D points and its 2D motion field is 
incorporated in the basic equations of the motion field, which combines equation (2.2) 
and the knowledge of perspective projection: 

2
yz x x

x y z

xT x T f xy
v f y

Z f f

ωωω ω−
= − + + − (2.3)

2
z y y x

y x z

T x T f xy y
v f y

Z f f

ω ωω ω
−

= + − − + (2.4)
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Where xv and yv  are the components of motion field in x and y direction respectively; Z is 

the depth of the corresponding 3D point; and the subscripts x , y and z indicate the 
component of the x-axis, y-axis and z-axis directions. In order to solve this basic equation 
for depth values, various constraints and simplifications have been developed to lower 
the degree of freedom of the equation, which leads to the different algorithms for depth 
estimation, each suitable for solving problem in a specific domain. Some of them 
compute the motion field explicitly before recovering the depth information; others 
estimate the 3D structure directly with motion field integrated in the estimation process. 
An example of the latter is the factorization algorithm [10], where the registered 
measurement matrix, containing entries of the normalized image point coordinates over 
several video frames, is converted into a product of a shape matrix and motion matrix. 
The shape matrix registers the coordinates of the 3D object, and the motion matrix 
describes the rotation of a set of 3D points with respect to the camera. An introduction to 
explicit motion estimation methods is given below. 

Dominant algorithms of motion field estimation are either optical flow based or feature 
based. Optical flow, also known as apparent motion of the image brightness pattern, is 
considered to be an approximation of the motion field. Optical flow subjects to the 
constraint that apparent brightness of moving objects remains constant, described by the 
image brightness constancy equation:  

( ) 0T
tE v E∇ + = (2.5)

where it is assumed that the image brightness is a function of image coordinates and the 
time. E∇ is the spatial gradients and tE denotes the partial differentiation with respect to 

time. After computing the spatial and temporal derivatives of image brightness for a 
small N N× patch, we can solve (2.5) to obtain the motion field for that patch. This 
method is notorious for its noise sensitivity, which requires extra treatments such as 
tracking the motion across a long image sequence or imposing more constraints. In 
general, current optical flow methods yield dense but less accurate depth maps. 

Another group of motion estimation algorithms is based on tracking separate features in 
the image sequence, generating sparse depth maps. Kalman filter [11] is for example a 
frequently used technique. It is a recursive algorithm that estimates the position and 
uncertainty of moving feature points in the subsequent frame.  

It is worth to note that the sufficiently small average spatial disparity of corresponding 
points in consecutive frames is beneficial to the stability and robustness for the 3D 
reconstruction from the time integration of long sequences of frames. On the other hand, 
when the average disparity between frames is large, the depth reconstruction can be done 
in a way as that of binocular disparity (stereo). The motion field becomes equal to the 
stereo disparity map only if the spatial and temporal variances between frames are 
sufficiently small. 



Information and Communication Theory Group 

Faculty of Electrical Engineering, Mathematics and Computer Science 7 

2.3 Defocus using more than two images 

Depth-from-defocus methods generate a depth map from the degree of blurring present in 
the images. In a thin lens system, objects that are in-focus are clearly pictured whilst 
objects at other distances are defocused, i.e. blurred. Figure 3 shows a thin lens model of 
an out-of-focus real world point P projected onto the image plane. Its corresponding 
projection is a circular blur patch with constant brightness, centered at ''P with a blur 
radius ofσ . The blur is caused by the convolution of the ideal projected image and the 
camera point spread function (PSF) )),(,,( yxyxg σ  where ( , )x y are the coordinates of the 

image point ''P . It is usually assumed that σσ =),( yx , whereσ is a constant for a given 
window, to simplify the system and Gaussian function is used to simulate the PSF: 

2 2

2

2

1
( , )

x y

g x y e σ
σ πσ

+−
= . In order to estimate the depthu , we need the following two 

equations. The fundamental equation of thin lenses describes the relation 
betweenu , v and f as: 

1 1 1

u v f
+ = (2.6)

Pentland [12] has derived a relationship between the distance u  (Figure 3) and the 
blurσ in equation (2.7): 

fs
if u v

s f kf
u

fs
if u v

s f kf

σ

σ

⎧ >⎪ − −⎪= ⎨
⎪ <
⎪ − +⎩

(2.7)

where u is the depth, v is the distance between the lens and the position of the perfect 
focus, s is the distance between the lens and the image plane, f is the focal length of the 
lens, and k is a constant determined by the lens system. Of these, s , f and k are camera 

parameters, which can be determined by camera calibration. Please note that the second 
case u v<  is possible to happen, for example, when 2f u f< < , based on the 
fundamental equation of thin lenses (2.6), we can obtain 2v f> , which yields thus u v< . 
With equation (2.7), the problem of computing depth u is converted into a task of 
estimating camera parameters and the blur parameterσ . When camera parameters can be 

obtained from camera calibration, the depthu can be computed from equation (2.7) once 
the blur parameterσ  is known. The depth-from-focus algorithms focus thus on the blur 
radius estimation techniques. 
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Equation (2.7) indicates also when blur radiusσ and other camera parameters except the 
focal length f are known, the depth u cannot be exactly determined. With 2 unknowns – 
u and f , equation (2.7) is under-constrained. In this case, the output signal can be a 
projection of an out-of-focus step edge, an in-focus smooth transition (e.g. a smooth 
texture) or infinite situations in between these two extremes [7]. This causes ambiguity 
when estimating the blur parameter. To tackle the problem, most of the depth- from-
defocus algorithms reply on two or more images of the same scene taken from the same 
position with different camera focal settings to determine the blue radius. Once the blur 
radius is estimated and camera parameters are obtained from camera calibration, the 
depth can be computed by Equation (2.7). 

The blur radius estimation techniques are based on, for example, inverse filtering [12], 
where the blur is estimated by solving a linear regression problem, or on S-Transform 
[13], which involves spatial domain convolution/de-convolution transform. Another 
example is the approach proposed by Ziou, Wang and Vaillancourt. It relies on a local 
image decomposition technique using the Hermite polynomial basis [4]. It is based on the 
fact that the depth can be computed once the camera parameters are available and the blur 
difference between two images, taken with different focal lengths, is known. The blur 
difference is retrieved by solving a set of equations, derived from the observation that the 
coefficients of the Hermite polynomial estimated from the more blurred image is a 
function of the partial derivation of the less blurred image and the blur difference.  

2 Figure source: reference [7] 
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2.4 Focus 

The depth-from-focus approach is closely related to the family of algorithms using depth 
from defocus. The main difference is that the depth-from-focus requires a series of 
images of the scene with different focus levels by varying and registering the distance 
between the camera and the scene, while depth-from-defocus only needs 2 or more 
images with fixed object and camera positions and use different camera focal settings. 
Figure 4 illustrates the principle of the depth-from-focus approach [5]. An object with an 
arbitrary surface is placed at the translational stage, which moves towards the camera 
(optics) starting from the reference plane. The focused plane is defined by the optics. It is 
located at the position where all points on it are focused on the camera sensor plane. Let 
‘s’ be a surface point on the object. When moving the stage towards the focused plane, 
the images of ‘s’ become more and more focused and will obtain its maximum sharpness 
when ‘s’ reaches the focused plane. After this, moving ‘s’ furthermore makes its image 
defocused again. During this process, the displacements of the translational stage are 
registered. If we assume that the displacement is fousedd when ‘s’ is maximally focused and 

the distance between the ‘focused plane’ and the reference plane is fd , then the depth 

value of ‘s’ relative to the stage will be determined as s f focusedd d d= − . Applying this 

same procedure for all surface elements and interpolating the focus measures, a dense 
depth map can be constructed. 

2.5 Silhouette 

A silhouette of an object in an image refers to the contour separating the object from the 
background. Shape-from-silhouette methods require multiple views of the scene taken by 
cameras from different viewpoints. Such a process together with correct texturing 

3 Figure source: reference [5] 
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generates a full 3D model of the objects in the scene, allowing viewers to observe a live 
scene from an arbitrary viewpoint.  

Shape-from-silhouette requires accurate camera calibration. For each image, the 
silhouette of the target objects is segmented using background subtraction. The retrieved 
silhouettes are back projected to a common 3D space (see Figure 5) with projection 
centers equal to the camera locations. Back-projecting a silhouette produces a cone-like 
volume. The intersection of all the cones forms the visual hull of the target 3D object, 
which is often processed in the voxel representation. This 3D reconstruction procedure is 
referred to as shape-from-silhouette.  

Matsuyama [6] proposed an approach using parallel computing via a PC cluster system. 
Instead of computing the intersection of 3D cones directly, the 3D voxel space is 
partitioned into a group of parallel planes. Each PC is assigned a task to compute the 
cross section of the 3D object volume on one specific plane. By stacking up such cross 
sections, the voxel representation of the 3D object shape is reconstructed. In this way, the 
3D volume intersection problem is decomposed into 2D intersection computation sub-
problems which are concurrently carried out by all PCs. This leads to a promising speed 
gain. Furthermore, in order to capture the 3D object accurately, Matsuyama introduced a 
deformable mesh model, converting the 3D voxel volume into a surface mesh composed 
of triangular patches. According to a set of constraints, the surface mesh is deformed to 
fit the object surface. An example of the constraints is the 3D motion flow constraint, 
which requests that the mesh be adapted dynamically in conformity with object actions.  

A shape-from-silhouette algorithm is often followed by a texturing algorithm. The visual 
hull is a geometry that encloses the captured object, but it does not capture the concave 
portion of the object that is not visible on the silhouette. Moreover, the number of views 
is often limited to make the processing time reasonable. This leads to a coarse geometry 
of the visual hull. Texturing assigns colors to the voxels on the surface of the visual hull 
and is therefore an indispensable step in creating realistic renderings.  

4 Figure source: reference [6] 
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2.6 Defocus using a single image 

In section 2.3, depth-from-defocus algorithms based on two or more images are 
introduced. The reason for using more images is to eliminate the ambiguity in blur radius 
estimation when the focal setting of the camera is unknown. The images, with which this 
group of algorithms works, are required to be taken from a fixed camera position and 
object position but using different focal settings. However, only a small number of 2D 
video materials satisfy this condition. For example, the focus settings are changed when it 
is necessary to redirect the audience’s attention from foreground to background or vice 
verse. To make defocus as a depth cue suitable for conventional video contents, where we 
do not have control of the focal settings of the camera, Wong and Ernst [7] have 
proposed a blur estimation technique using a single image based on the second derivative 
of a Gaussian filter [14]. When filtering an edge of blur radiusσ with a second derivative 
of a Gaussian filter of certain variance s , the response has a positive and a negative peak. 
Denote the distance between the peaks as d , which can be measured directly from the 
filtered image. The blur radius is computed according to the formula 2 2 2

2( )d sσ = − (see 

Figure 6). With the estimated blur radius and the camera parameters obtained from 
camera calibration, a depth map can be generated that is based on equation (2.7). When 
the camera parameters are unknown, we can still estimate the relative depth level of each 
pixel based on its estimated blur radius by mapping a large blur value into a higher depth 
level and a smaller blur value to a lower depth level.  

2.7 Linear perspective 

Linear perspective refers to the fact that parallel lines, such as railroad tracks, appear to 
converge with distance, eventually reaching a vanishing point at the horizon. The more 
the lines converge, the farther away they appear to be. A recent representative work is the 
gradient plane assignment approach proposed by Battiato, Curti et al.. [8]. Their method 
performs well for single images containing sufficient objects of a rigid and geometric 
appearance. First, edge detection is employed to locate the predominant lines in the 
image. Then, the intersection points of these lines are determined. The intersection with 

5 Figure source: reference [7] 
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the most intersection points in the neighborhood is considered to be the vanishing point. 
The major lines close to the vanishing point are marked as the vanishing lines. Between 
each pair of neighboring vanishing lines, a set of gradient planes is assigned, each 
corresponding to a single depth level. The pixels closer to the vanishing points are 
assigned a larger depth value and the density of the gradient planes is also higher. Figure 
7 illustrates the process and the resulting depth map where a darker grey level indicates a 
large depth value. 

2.8 Atmosphere scattering 

The earth is enveloped by a vast amount of air known as atmosphere. The propagation of 
light through the atmosphere is affected in the sense that its direction and power is altered 
through a diffusion of radiation by small particles in the atmosphere. This leads to the 
phenomenon called atmosphere scattering, also known as haze, which causes various 
visual effects: distant objects appear less distinct and more bluish than objects nearby; a 
flash light beam is diffused in a foggy environment.  

Although atmosphere scattering is a classical topic of physics often referred as one of the 
major cues in human depth perception in psychology, little literature can be found in the 
field of computer vision on the matter directly converting the atmosphere scattering to 
depth information directly. Cozman and Krotkov [15] presented the first analysis of this 
conversion in 1997. It was based on Lord Rayleigh’s 1871 physical scattering model. 
Their algorithm is suitable for estimating the depth of outdoor images containing a 
portion of sky. After simplifying the complex physics model, the following relationship is 
derived between the radiance of an image and the distance between the object and the 
viewer:  

0 (1 )z zC C e S eβ β− −= + −% (2.8)

6 Figure source: reference [8] 



Information and Communication Theory Group 

Faculty of Electrical Engineering, Mathematics and Computer Science 13 

where C% is the measured intensity of an object, 0C is the intensity of the object in the 

absence of scattering,β  is the extinction coefficients, z is the depth of the object, and S is 
the sky intensity which is the intensity of an area in which objects are indistinguishable. 
Equation (2.8) contains two parts combined by addition. The first part describes the fact 
that the light power is attenuated when a light beam is projected onto an object through a 
scattering medium. The second part reflects the opposite phenomenon: an actual gain in 
intensity due to scattering. When a light ray is reflected from a scattering medium to the 
viewer, scattering events take place at each point of the light ray, and divert the light from 
its original path. As light reaches the viewer from all points of the light ray, the viewer 
actually perceives a new source of light.  

In most of the cases,β  and 0C are unknown, S can be measured from any images that 

contain a sky region. For indoor scenes, the estimation of S needs experimental water 
vapor generation setting up, which cannot be realized automatically. This is one of the 
limitations of this algorithm. The algorithm results in a ratio of depth difference between 
different objects, from which a sparse depth map can be derived.  

2.9 Shading 

The gradual variation of surface shading in the image encodes the shape information of 
the objects in the image. Shape-from-shading (SFS) refers to the technique used to 
reconstruct 3D shapes from intensity images using the relationship between surface 
geometry and image brightness. SFS is a well-known ill-posed problem just like 
structure-from-motion, in the sense that the resolution may not exist, the solution is not 
unique or it does not depend continuously on the data [2]. In general, SFS algorithms 
make use of one of the following four reflectance models: pure Lambertian, pure 
specular, hybrid and more complex surfaces [16], of which Lambertian surface is the 
most frequently applied model because of its simplicity. A uniformly illuminated 
Lambertian surface appears equally bright from all viewpoints. Besides the Lambertian 
model, the light source is also assumed to be known and orthographic projection is 
usually used. Assume [ , ]Tp x y= is the image of the 3D point [ , , ]P X Y Z= , where the Z-
axis of the camera is the optical axis, and the depth Z of point P can be described as a 
function of its image coordinates ( , )Z Z x y= . Then the surface slopes p and q can be 
computed by taking the x and y partial derivatives of the vector[ , , ( , )]x y Z x y , that 

is, [1,0, ]TZ
xp ∂
∂= and [0,1, ]TZ

yq ∂
∂= . The relationship between the estimated reflectance 

map ( , )R p q and the surface slopes offers the starting point to many SFS algorithms: 

2 2
( , ) [ , ,1]

1

TR p q i p q
p q

ρ
= − −

+ +
(2.9)

where ρ is the surface albedo, a parameter of the surface’s material, and i denotes the 
direction and the amount of incident light. After estimating the value of ρ and i , solving 
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(2.9) will yield the desired depth map ( , )Z Z x y= and surface slopes. However, the direct 
inversion of (2.9) appears to be a difficult ill-posed task because it is a nonlinear partial 
differential equation with uncertain boundary conditions. Extra constraints, such as the 
smoothness constraint, are therefore necessary. Within the framework of variational 
calculus, the problem is converted into a well-formulated global minimization task by 
looking for the minimum of energy functionε , where 

2 2 2 2 2( ( , ) ( , )) ( ))x y x yE x y R p q p p q q dxdyε λ
Ω

= − + + + +∫∫ (2.10)

where ( , )E x y denotes the image brightness of pixel ( , )x y and jp represents p j∂ ∂ . Note 

that the first term in the integral (2.10) reflects the brightness constraint and the second 
term controls the smoothness of the surface.  

A variety of methods have been developed for solving this minimization problem. A 
straightforward example is the Euler-Lagrange equations [2]. A recent study carried out 
by Kang [17] is based on finite elements. The image is divided into small triangular 
patches. The reflectance map ( , )R p q is then approximated by a linear function. The depth 
map is obtained by converting the energy minimization model into a simpler problem of 
the form of solving a linear equation iteratively until a specified error threshold is 
reached. 

2.10 Patterned texture 

Patterned texture offers a good 3D impression because of the two key ingredients: the 
distortion of individual texels and the rate of change of texel distortion across the texture 
region. The latter is also known as texture gradient. The shape reconstruction exploits 
distortions such as perspective distortion, which makes texels far from the camera appear 
smaller, and/or foreshortening distortion, which makes texels that are not parallel to the 
image plane shorter.  

In general, the output of shape-from-texture algorithms is a dense map of surface 
normals. This is feasible for recovering the 3D shape under the assumption of a smooth 
textured surface. As a rule, the shape of a surface at any point is completely specified by 
surface’s orientation and curvatures. Since curvature estimation turns out to be 

7 Figure source: reference [19] 
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complicated, the shape-from-texture algorithms focus on the determination of textured 
surface’s orientations in terms of surface normals. It is also worth noting that a lot of real-
life images contain differently textured texture regions or textured areas surrounded by 
non-textured ones. These different textured regions need to be segmented before most 
shape-from-texture algorithms can be applied. Figure 8 shows a typical shape 
reconstruction process from textures. This group of methods, which require texture 
segmentation, belongs to the feature-based approach. In more recent years, there has been 
a shift toward Shape-from-Texture methods that utilize spectral information and avoids 
prior feature detection. These methods compare the spectral representation of windowed 
image patches to recover orientation. Commonly used spectral representations are the 
Fourier transform, wavelet decomposition and the Gabor transform. 

Shape-from-texture is again an under-constrained problem. Most algorithms are designed 
to tackle specific group of textures [18]. The frequently used assumption is a combination 
of the following simplifying characters of textures: homogeneity, meaning that the texels 
are uniformly distributed; isotropy, indicating that the texels have a constant inertia about 
each axis; and stationary, denoting that the texels differ from each other only by a 
translation on the surface and no rotation is involved.  

The conventional shape-from-texture algorithms appear to be fairly restrictive due to all 
these simplifying assumptions. Some researchers have been working on more versatile 
alternatives. Loh and Hartley [19] recently proposed a method suitable for perspective 
views, which is claimed to be the first algorithm not subjected to the above-mentioned 
three constraints. Their algorithm is based on establishing the frontal texel as the 
reference point (see Figure 9). It is the single texel viewed frontally in an image. The 
frontal texel is unique. Any incorrect hypothesis of the frontal texel leads to inconsistent 
estimates of the surface orientation, which cannot be realized by a reconstructed surface. 
Therefore, a search through all possible frontal texels with the surface consistency 
constraint yields a unique fontal texel estimate. Next to the frontal texel, other texels in a 
texture are considered to undergo an affine transformation with respect to the frontal 
texel. By estimating the affine transformation of each texel, the surface orientation at the 
texel location can be recovered.  

In fact, as a single depth cue texture incorporates another important dept cue - relative 
size. A human’s perception of depth is based on his or her experience and familiarity with 
the similar objects. As the boat comes closer, the retinal image becomes larger and larger. 
We interpret this as the boat getting closer (see Figure 10). Although it is not completely 



Information and Communication Theory Group 

Faculty of Electrical Engineering, Mathematics and Computer Science 16 

good metaphor, we might think of the boat as a texel, and the rate of change in the size of 
the boat as the texture gradient.  

2.11 Bilateral symmetric pattern 

Symmetric patterns often appear in natural or man-made scenes. Faces, animals or 
various man-made objects are all examples of this. The idea behind 3D reconstruction 
based on symmetric patterns is that a single non-frontal image of a bilaterally symmetric 
object can be viewed as two images of this object from different view angles. Francois et 
al. introduced in [20] a method to extract the corresponding stereo pair from a single 
perspective non-frontal view of a symmetric scene. Then traditional 2-view stereo theory 
based on binocular disparity is applied to retrieve the depth information. Some algorithms 
also take the different illumination directions of these two images into consideration, 
such as the approach proposed by Shimshoni, Moses and Lindenbaumlpr [21]. The 
following section expands on the principle of their algorithm. 

Two local constraints are applied: symmetry-induced geometric constraints (stereo) and 
photometric constraints (shading). The connection between these two constraints is the 
postulation that the surface normal of each point found by using geometric constraints 
should be equal to the one based on photometric constraints. Combing these two 
constraints, the key role in the algorithm – the continuous correspondence function, 
which computes the coordinates of the corresponding symmetric point given those of the 
original point, can be induced. 3D reconstruction is achieved by propagating such 
correspondence functions to all symmetric points in the image. 

The geometric constraints reflect the inherent geometry in symmetric patterns. The world 
coordinate system is chosen so that the symmetry plane, the plane which separates the 
object into two identical parts, is the y z× plane, and all lines which connect pairs of  

8 Figure source: “Sensation and Perception Tutorials”, http://psych.hanover.edu/Krantz/art/rel_size.html  
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symmetric points are parallel to the x axis (see Figure 11). Assume that the object points 
( , , )r Tp x y z= and ( , , )l Tp x y z= − are a pair of symmetric points on a bilaterally 

symmetric object; ( , )lp x y=% % % and ( ( , ), )rp C x y y=% % % % are their 2D projections on the images, 
where ( , )C x y% % is the correspondence function of the point ( , )x y% % . Once ( , )C x y% % is obtained, 
the correspondence functions of its neighboring points can be deduced by applying the 
Taylor expansion of ( , )C x y% % : 

( , ) ( , ) C C
x yC x h y g C x y h g∂ ∂
∂+ + = + +% % % % (2.11)

Under the assumption of the orthographic projection, the relation between the 3D points 
and their image counterparts can be formulated by:  

p sRp t= +% (2.12)

where s represents a scale factor, R is a rotation matrix with parameterθ , which denotes 
the viewing direction of the camera, and t is the translation matrix. By 
assuming 1s = and 0t = , expanding (2.12) yields the result (2.13) with an acceptable 
ambiguity of the reconstructed object up to an affine transformation. Equation (2.13) 
serves as the geometric constraints.  

1
2cos

1
2sin

( )

( )

r l

r

r l

x x x

y y

z x x

θ

θ

= −

=

= +

% %

%

% %

(2.13)

The photometric constraints focus on the shading information in the image. As in shape-
from-shading approaches, a typical illumination model is assumed: a Lambertian surface 
and a distant light source. Let ˆ ( , , )T

x y zn n n n= be the normal at the surface point of the 

object, ˆ ( , , )T
x y zl l l l= be the illumination direction, and ρ be the product of surface albedo 

and the intensity of the light source. The normals of the two symmetric points can be 
denoted as ˆ ( , , )r T

x y zn n n n= and ˆ ( , , )l T
x y zn n n n= − . The photometric constraints are: 
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The correspondence function can be computed based on (2.13) and(2.14). Starting from 
location 0p , making a circular tour, which returns to 0p , the correspondence function 
computed at the end point 0p should be equal to that at the starting point 0p . The 
parameter values, which minimize the change in the correspondence function in such a 
circular tour, are then used for the 3D reconstruction process.  

2.12 Occlusions 

The principle of depth-from-occlusion algorithms has its roots in the phenomenon that an 
object which overlaps or partly obscures our view of another object is considered to be 
closer. Occlusion is also known as interposition and offers rich information in relative 
depth ordering of the objects. Curvature [22] and single transform [23] are two depth 
cues which might be grouped under the header of occlusion due to their inherent 
characteristics related to occlusion.  

Curvature 

Curvature is a depth cue based on the geometry and topology of the objects in an image. 
The majority of objects in 2D images have a sphere topology in the sense that they 
contain no holes, such as closed grounds, humans, telephones etc. It is observed that the 
curvature of object outline is proportional to the depth derivative and can thus be used to 
retrieve the depth information. Figure 13 shows the process of depth-from-curvature 
algorithm. The curvature of points on a curve can be computed from the segmentation of 
the image. A circle has a constant curvature and thus a constant depth derivative along its 
boundary, which indicates that it has a uniform depth value. A non-circle curve such as a 
square does not have a constant curvature. A smoothening procedure is needed in order to 
obtain a uniform curvature/depth profile. After the smoothing process, each object with 
an outline of uniform curvature is assigned one depth value. 

An efficient way to apply the depth-from-curvature approach is to appeal to isophotes, 
which are used to represent the outlines of objects in an image. An isophote is a closed 
curve of constant luminance and always perpendicular to the image derivatives. An 
isophote with isophote value T can be obtained by thresholding an image with the 
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threshold value that is equal to T. The isophotes then appear as the edges in the resulting 
binary image. Figure 14 shows how to derive the depth map for isophotes of value T. The 
topological ordering can be computed during the process of scanning the isophote image 
and flood-filling all 4-connected regions. First the image border pixels are visited. Each 
object found by flood-filling is assigned depth 0. Any other object found during the scan 
is then directly assigned a depth value equal to one plus the depth from the previous 
scanned pixel. In the end, a complete depth map of isophotes with a value of T is 
obtained. Repeating this procedure for a representative set of values of T, e.g. [0, 255], 
for an image, the final depth map is computed by adding or averaging all the T depth 
maps.  

Note that isophotes usually occur in grey-scale images. In the case of color images, 
images of one or more color components are first extracted and each undergoes the entire 
operation separately. The results are then combined by averaging the depth maps. 

Simple transform 

The simple transform method creates a dense depth map by means of a straightforward 
transform from the pixel intensities. Given the intensity image of the original image, the 
intensities of pixels directly above the domain of interest are assigned value 0 and all 
other pixels outside the domain are assigned the intensity value ∞ (see Figure 15 to the 
left).  

For each pixel, paths are constructed from the pixel to an arbitrary pixel at the top of the 
image domain. From pixel q to its neighboring pixel r , the step cost is the absolute value 
of intensity difference between the two pixels. A path from pixel p to a top pixel has a 
path cost equal to the sum of all the step costs it makes between these two ends. Various 
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paths from a certain pixel p to the image top boundary exist. The depth of p is assigned 
the smallest path cost from itself to the top of the image. 

2.13 Statistical patterns  

Statistical patterns are the elements which occur repeatedly in images. When the number 
or the dimension of the input data is large, machine learning techniques can be an 
effective way to solve the problems. In recent years, as a tool to estimate depth maps, 
machine learning has been receiving increasing interest. Especially supervised learning 
making use of training data with the ground truth appears highly advantageous to the 
field of 2D to 3D conversion. As well as a set of representative and sufficient training 
data, good features and suitable classifiers are all essential ingredients for satisfactory 
results.  

With statistical pattern recognition techniques, it is even possible to estimate the absolute 
average depth given a single image, even thought absolute depth estimation was claimed 
to be the plus point of multi-ocular cues such as binocular disparity or motion. Torralba 
and Oliva [24] looked into the Fourier domain of images and discovered that certain 
features like the global spectral signature of an image, which denotes the mean amplitude 
spectrum, are closely related to the average absolute depth. They applied the EM 
algorithm (Estimation-Maximization) to find the conditional probability function (PDF) 
of the mean depth, given the measured image features. The mean depth is then estimated 
by plugging the resulting PDF into a mixture model of linear regressions or simply by 
searching the depth value with the maximum likelihood. 

If the mean depth of an image can be estimated by machine learning, then following the 
same way of thinking, it must be possible to estimate the depth value per pixel. A recent 
work of Saxena et al. proves this postulation [25]. Firstly, a set of global and local 
features, such as texture variations, texture gradients, haze (atmosphere scattering), image 
features extracted at multiple image scales etc., is collected. Secondly, the Markov 
Random Field (MRF) is chosen to model the conditional PDF - 

(depth|features, model parameters)P . MRF is chosen because of its superior ability in 
modeling correlated data: the depth of a particular patch is close related to depth of its 
neighboring patches and also that of some of the non-immediate neighbors. The latter is 
tackled by incorporating the depths at multiple scales into the conditional PDF. Thirdly, 
the model parameters are learned using the maximum likelihood estimator and linear 
regression based on the training data. Finally, the estimated depth d̂ is obtained as the 
maximum a posteriori estimate (MAP) of the depths 'd s , shown in equation(2.15): 

{ }ˆ arg max ( | features,model parameters
d

d P d= (2.15)

Machine learning is also helpful in understanding the image semantics. Knowledge of 
image content helps to enhance the accuracy of estimated depth. In the work of Battiato 
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et al. [8], a group of color-based rules is derived using a large set of training images to 
categorize the color regions in the image to specific groups: Sky, Farthest Mountain, Far 
Mountain, Near Mountain, Land and Other. Then each category is assigned a depth level 
so that a coarse qualitative depth map is formed. Based on this information of 
categorization, the input image goes further through the image classification procedure, 
where the entire image is classified as one of the three types: Outdoor/Landscape, 
Outdoor with geometric appearance or Indoor. Applying a depth estimation technique 
based on linear perspective, tailored to each of these three classes, a dense depth map can 
be reconstructed. The algorithm will be explained in further detail in Chapter 4. 

2.14 Other depth cues 

Apart from the depth cues described in this chapter, which are fairly dominant in the 
current computer vision field, a number of other depth cues with different principles exist 
and have also been successfully translated into algorithms, for example, shadow, dynamic 
occlusion, static occlusion based on T-junction, and so on. Due to reasons like intellectual 
property rights and the limited scope of the survey, these depth cues are not investigated 
here.   
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3 Comparison 

Fair and effective performance evaluation of 2D to 3D conversion algorithms requires 
careful design of criteria and data sets. However, there is a lack of uniformity in the 
framework based on which methods are evaluated. Furthermore, a lot of papers do not 
provide an explicit quantitative performance analysis, which complicates the evaluation 
process. It is thus imprudent to make explicit claims such as which methods indeed have 
the lowest error rates or which methods are the fastest. Implementing these algorithms 
and evaluating them based on common data sets and the same performance standards is 
beyond the scope of this survey. Another complication is that for each individual depth 
cue, there are a vast number of algorithms, each having different characteristics and 
performances. In order to grasp the general principle of each depth cue, efforts have been 
made in Chapter 2 to choose a number of representative algorithms for each depth cue. 
Therefore, when discussing issues such as accuracy or operating speed of the algorithms 
of each depth cue, we resort, if available, to the experimental results present in the papers 
of these representative algorithms. Only in the case when no performance data is 
available in these representative works, attempts have been made to find qualitative or 
quantitative data from other algorithms that belong to the same depth cue.  

The comparison is based on 9 qualitative aspects. Some of them are correlated with each 
other. The results are presented in Table 2 and Table 3. This chapter is thus dedicated to 
evaluating and clarifying the results in the various aspects in the comparison table. 

1. Image acquisition
This aspect describes the purposive modification of the image acquisition system’s 
parameter, that is, whether the method is active or passive. It is observed that almost all 
multi-ocular depth cues require a special camera set-up, and most monocular depth cues 
do not. 

2. Image content
The image content aspect involves what kind of image characteristics is needed by the 
algorithms in order for them to work reliably. Some of them have been assigned the term 
“All” in the table, which indicates that no special requirement of the image content is 
needed. 

3. Motion presence
The motion presence aspect concerns the presence of disparity of the same feature point 
in the input images. It is only applicable for multi-ocular depth cues. Since monocular 
depth cues operate on a single image, no motion is needed. 

4. Real-time processing
Some of the investigated papers provide explicit running time and environment 
parameters, others just claim that the algorithm is suitable for real-time application or do 
not mention the speed at all. This is reflected in the comparison table. In order to make 
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the speed comparable, a simple conversion rule is applied when quantitative performance 
data is available. It is considered that the speed of 25 frame/second (fps) is the speed of 
real-time processing, running on one regular PC of current standards with a frame size of 
640x480 pixels. If an algorithm runs on a normal PC with a speed of 25 frame/second 

and a frame size 256x256, this speed is then converted to 5.3 fps (
(256 256) 25

5.3
(640 480)

× ×
≈

×
) 

since the total number of processed pixels within the same period remains the same. If 
more PCs are used then this result needs also to be divided by the number of PCs. In the 
case when no explicit data are available, a general description is given. 

Another remark is that the speed of algorithms is highly related to the accuracy. Higher 
accuracy requires more processing time. Therefore, a frequently used practice for 
achieving real-time speed is to simply reduce the accuracy to an acceptable limit. In the 
comparison table, we present the speed and accuracy for algorithms of each depth cue, 
but the data filled in the table do not necessarily belong to the same single algorithm. 

The traditional depth-from-focus methods [5] are fast but less accurate. Several 
researchers have published different techniques to improve the accuracy, but they require 
higher computation costs. A recent example of more accurate algorithms is the one 
proposed by Ahmad and Choi [26] using dynamic programming optimization technique. 
They tested several representative depth-from-focus methods including the traditional 
one. The speeds for constructing a depth map vary from 4 seconds to 4 minutes for a 
sequence of 97 images of size 256x256, running on a 2.8 GHz P-IV PC. With this fastest 

result (
97 (256 256)

5.2
4 (640 480)

× ×
=

× ×
fps), it can be concluded that the current depth-from-focus 

methods are not yet suitable for real-time application. 

Shape-from-Silhouette is normally computationally and memory intensive. Thanks to 
various techniques such as parallel PC processing or 2D intersection, it is possible to 
meet the real-time criterion. The hardware accelerated visual hulls algorithm developed 
by Li et al. [27] relies on several consumer PCs following a server-client architecture and 
renders arbitrary views of the visual hull directirely from the input silhouette. For input 
images of 320x240, it runs at a speed of 84 fps using 1 PC as server and 4 PCs as clients. 

Converted to our standard, it has a speed of 
84 (320 240)

4.2
5 (640 480)

× ×
=

× ×
fps, which seems slow. 

But considering the strength of this algorithm lies exactly in parallel processing, it is 
labeled as real-time algorithm.  

5. Accuracy
As the aspect of real-time processing, accuracy comparison also lacks experimental data 
for certain depth cues. And if it exists, the test data and environment are not based on a 
uniform foundation. We therefore only present the available error measurements here and 
do not make any normalization.  

Binocular disparity (stereo) suffers from occlusion, i.e. points that cannot be seen by one 
of the cameras. Tri-ocular or multi-ocular stereo gives more accurate results as more 
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views (constraints) of the objects are available. The current best binocular stereo 
correspondence algorithm [28] evaluated in the Middlebury homepage [9] has the 
percentage of “bad” pixels of 0.16% – 0.97% depending on the test images. 

The depth-from-focus method is sensitive to the aberrations of the lens system. Light rays 
have different focus points according to their distance to the optical axis. It results in 
distortion in the images in a form of barrel or pincushion distortion. A curvature of field 
is a significant reason, which means a planar object does not appear as a planar image. 
This leads to different and erroneous depth values because distinct parts of the object are 
not focused at the same distance. A method to reduce this symptom is to estimate the 
error by fitting a second order surface to the depth map and utilizes this error to construct 
a more accurate depth map [29]. However, the author did not present the error rate in the 
paper.  

6. Absolute depth or relative depth
Some algorithms provide absolute (real) distance between the viewing camera and the 
objects, and they are able to estimate the actual size of the object; others measures 
relative depth by analyzing shading, edges and junction etc., providing a relative depth 
ordering between parts but no actual size. Most algorithms which rely on camera 
parameters can recover the real depth. It is also widely conceived that monocular depth 
cues cannot be used to estimate the real depth. As noted in section 2.13, this belief needs 
to be revised thanks to the machine learning techniques.  

7. Dense or sparse depth map
This aspect focuses on the density of the depth map – whether each pixel of the image is 
assigned a depth level. A dense depth map is constructed using the global image features. 
This is desirable for the 3D television application since the entire image content needs to 
be presented. A sparse depth map offers only depth values for feature points. It is more 
suitable for 3D shape extraction. Some depth cues are able to generate both dense and 
sparse depth maps, depending on whether the specific algorithm makes use of local 
feature points or global structures. 

8. Depth range
This aspect describes the effective depth range a human can perceive based on each 
individual depth cue. For example, occlusion works in all ranges; and atmospheric 
scattering works only at large distance. The depth ranges presented in the table are partly 
extracted from the work of Cutting and Vishton [30], illustrated in Figure 16. In the 
comparison table, we use the value of the depth range when the depth contrast is equal to 
0.08. The resultant depth ranges conform in great line with other relevant literatures.  

When considering the depth range which a 2D to 3D conversion algorithm can produce, 
it should be noted that the depth ranges of most relative depth cues are unlimited. What a 
relative depth cue provides is a depth ordering but no real magnitude. It is up to the user 
to choose the right depth range scale so that the recovered depth map creates the most 
realistic stereo effects. When a depth cue is suitable for absolute depth estimation (see 
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aspect 6), the output depth range of the algorithms based on this depth cue coincides with 
the depth range humans can perceive using the same cue. 

9. State of each depth cue
The state of depth cue describes approximately when the first or earlier algorithm based 
on certain depth cue was published in the realm of computer vision.  

9 figure adapted from [30] 
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Table 2: Multi-ocular Depth Cue Comparison 

The Number 
of Input 
Images 

Depth Cues Image acquisition Image content Motion 
presence

Real-time 
processing 

Accuracy Absolute/relative 
depth 

Dense/Sparse 
depth map 

Depth 
range 

State of 
algorithm 

Miscellaneous 

Binocular disparity Active: 2 images of 
the scene taken from 
different view points 
so that corresponding 
points can be 
observed 

All Yes Yes Percentage of pixels 
whose absolute disparity 
error is greater than 1: 
0.16% - 0.97 % [28] 

Absolute Dense/sparse < 30 
meter 

 1976, Marr & 
Poggio [31] 

Sensitive to occlusions; 
Disparity must not be too 
small; 
suffer from the lack of 
local surface texture due 
to smoothness of depth 
constraint 

Motion Active/passive: 
Image sequences of 
moving objects or 
static scene taken by 
moving cameras 

All Yes Yes High accuracy achieved 
especially by algorithms 
which allows integration 
of multiple frames from 
image sequences 

Absolute Dense/sparse < 30 
meter 

1979, Ullman 
[32] 

Disparity is required to 
be small; optical flow 
method is sensitive to 
noise. 

Defocus Active: 2 or more 
images taken by one 
camera using 
different camera 
parameters 

Objects with complex 
surface characteristics 
(e.g. textured images 
either due roughness of 
the surface or 
reflectance variations). 

No Yes  Relative error rate: 0.5% 
when object is 2.5 meter 
away from camera [33]  

 Absolute  Dense N/A 1987, Pentland 
[12]  

Focus Active: a series of 
images taken by one 
camera by varying 
the distance between 
the camera and 
objects 

Objects with complex 
surface characteristics 

No No: 

 5.2 fps[26]

Relative error rate: 0.1% 
when object is 1.2 meter 
away from the camera 
[33] 

Absolute   Dense N/A  1987, Pentland 
[12]  

Sensitive to the 
aberrations of lens 
system;  

Better performance for 
indoor scenes where the 
target is close by. 

It is applicable to images 
of small objects with a 
size up to hundreds 
microns. 

Two or 
More 
Images  
(multi-
ocular) 

Silhouette Active: Images taken 
by multiple cameras 
surrounding the scene 

Foreground objects 
must be distinguishable 
from background 

Yes Yes: 

4.2 fps [27]

Volume can be 
reconstructed well but 
texturing is not realistic. 

Absolute Sparse, only 
depth values of 
the foreground 
objects are 
recovered 

Indoor 
size 

 1983, Martin & 
Aggarwal [34] 
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Table 3: Monocular Depth Cue Comparison 
The Number 
of Input 
Images 

Depth Cues Image 
acquisition 

Image content Motion 
presence

Real-time 
processing 

Accuracy Absolute/relative 
depth 

Dense/Sparse 
depth map 

Depth range State of 
algorithm 

Miscellaneous 

Atmosphere 
Scattering 

Passive Scene contains haze No N/A  Relative error rate: 
10% for outdoor 
scenes 

Relative Dense 900 - 8000 
meter; 
suitable for 
distant 
objects 

 1997, Cozman 
and Krotkov 
[15 ] 

 More suitable for 
outdoor images 

Defocus Passive Image contains one in-focus 
region and one out-of-focus 
region; either one of them is 
in foreground or background.

No Yes N/A Relative Dense All ranges 1998, Elder & 
Zucker [35] 

Not suitable for images 
of blurred textures. 

Shading Passive Image must not be too dark. 
The depth of regions such as 
shadow area which contains 
too little intensity information 
and cannot be recovered. 

No  No Mean error rate 4.6%, 
Maximum error 40% 
for cliffy surface [17]

Relative  Dense on surface All ranges 1975, Horn [36] Good estimates of local 
surface areas, but some 
of them have problems 
with variable albedo and 
spherical surfaces 

Linear perspective Passive Image contains geometric 
appearance 

No Yes N/A Relative Dense All ranges 1980, Haralick 
[37] 

Patterned texture 
(incorporating 
relative size) 

Passive Some algorithm requires 
segmented texture region, 
other not 

No No  The average error is 
the angle between the 
estimated and actual 
surface normal = 8  
degree [38] 

Relative Sparse (only on 
texels) /Dense 

All ranges 1976, Bajcsy & 
Lieberman [39]

Many algorithms need 
texture segmentation 
beforehand 

Symmetric patterns Passive Non-frontal image of bilateral 
symmetric objects 

No N/A  N/A Relative Sparse, only depth 
values of 
symmetric objects 
are recovered 

All ranges 1981, Kanade 
[40]   

Static occlusion 

   - Curvature Passive All No Yes N/A Relative Dense All ranges 2005, Redert 
[22] 

 More omplex than the 
cue “transform” 

       - Simple 
Transform 

Passive All No Yes: 
40 fps [23] 

N/A Relative Dense All ranges 2005, Redert 
[23] 

 Low complexity, time-
stable 

One single 
image  
(monocular) 

Statistical patterns Passive All No Yes Average error: 0.132 
in log scale (base 10); 
the training depth 
maps has a maximum 
range of 81 meter 
[25] 

Absolute/Relative Dense All ranges 2002, Torralba 
& Oliva [24] 

Especially good in 
estimating depth map of 
outdoor scenes 
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4 A new Trend: Pattern Recognition in Depth 
Estimation 

It can be observed that a lot of the 2D to 3D conversion algorithms are still in the 
research phase. They are not yet ready for real-time use due to factors such as their high 
complexity or unsatisfactory quality. As well as improving the existing algorithms, a 
new trend in this field is to analyze the semantic content of the image and use this 
knowledge to help reconstruct the 3D object. The depth cue “statistical patterns” plays 
the central part in this trend. This chapter is dedicated to a more detailed description of a 
recent developed algorithm of Battiato [8] et al. using the image classification technique. 
The algorithm operates on a single color image. No a priori knowledge about the image 
content is needed. It is also claimed to be fully unsupervised and suitable for real-time 
applications. 

Eight steps are involved in this algorithm. Throughout the process, two intermediate 
depth maps are constructed, the qualitative depth map and the geometric depth map. In 
the end, these two depth maps are combined together to generate the final depth map. 
The following paragraphs expound on these eight steps. Note that the fifth and sixth 
steps make use of the depth cue of the linear perspective and have been introduced in 
section 2.7. For the sake of completeness, these two steps are repeated here. 

1. Color-based segmentation
Color-based segmentation identifies the chromatic homogeneous regions present in
the image. The image is under-segmented so that main chromatic regions are
retrieved and fine details are filtered out.

2. Rule-based regions diction to find specific areas
The segmented image in the RGB color model is converted to the HSI color model.
The HSI model is more suitable for color description. Subsequently, the intensity
values of the R, G, B, H and S components of each pixel in the image undergo
various checks based on a set of color-based rules, which has been learned
heuristically. These color-based rules are able to identify six semantic regions
possibly present in the image: Sky, Farthest Mountain, Far Mountain, Near
Mountain, Land and Other.

3. Qualitative depth map construction
Each semantic region is assigned a depth level, which corresponds to
a certain gray level following the trend: Gray(Sky) < Gray(Furthest Mountain) <
Gray(Far Mountain) < Gray(Near Mountain) < Gray(Land) < Gray(Other). The
resultant image is termed the qualitative depth map (Figure 17).
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4. Image classification to discriminate three categories: Indoor, Outdoor without
geometric appearance, Outdoor with geometric appearance.
The six semantic regions obtain their own labels in this step, for example, the sky is
labeled as ‘s’. The qualitative depth map is then sampled column-wise. Each column
is represented by a label sequence which labels from top to down each region present
in the column. A typical sequence could be “sml”, for instance, which indicates that
the sample column consists of the 3 regions -Sky, Mountain and Land.

Figure 19: Determining the number of accepted sequences in an image 

A sequence is accepted if it belongs to a typical landscape sequence and the number 
of jumps is smaller than a certain threshold (denoted by J_B in Figure 19). Finally, 
the following heuristics is applied to classify the image into three categories: 

1) #Accepted_sequences > Threshold ×  #Sequence ⇒ OUTDOOR
2) #Sequences with the first region SKY > Threshold ×  #Sequences

⇒OUTDOOR WITH GEOMETRIC APPEARANCE
3) Otherwise ⇒  INDOOR

5. Vanishing lines detection
Different vanishing line detection strategies are applied according to the category to
which the image belongs. For Outdoor scenes, the vanishing point is put in the center
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region of the image and a set of vanishing lines passing through the vanishing points 
are generated. For the categories Indoor and Outdoor with geometric appearance, a 
more complex technique is applied. Edge detection (using Sobel operators) and line 
detection (Hough transform) are conducted to determine the main straight lines. The 
vanishing point is chosen as the intersection point with the most intersections around 
it while the vanishing lines are the predominant lines passing close to the vanishing 
point. 

6. Geometric depth map construction
Taking the position of the vanishing point into account, a set of horizontal or vertical 
gradient planes is assigned to each neighboring pair of vanishing lines. A gradient plane 
has a fixed depth level. There are more gradient planes close to the vanishing point than 
further away because human vision is more sensitive for the depth perception of objects 
close by (Figure 7). 

7. Consistency verification of detected regions
In this step, the qualitative depth map is checked for consistency. False classified
semantic regions are detected and corrected. For example, if between two “Sky”
regions, there is a region of another type (e.g. a Mountain) with a vertical size larger
than certain threshold, the second sky region is then identified as a “false” Sky and
its type is changed to the same type of the upper zone (Figure 21).

8. Fusion of the qualitative depth map and the geometric depth map
The final depth map of INDOOR category image is just the geometric depth map. No
fusion occurs. For OUTDOOR WITHOUT GEOMETRIC APPEARANCE, the final
depth of pixel ( , )x y is assigned the depth value in the qualitative depth map in all
cases, except when it belongs to the Land Other∪  category. In the latter case,
pixel ( , )x y obtains its depth value from the geometric depth map (see Figure 22). For
the image category OUTDOOR WITH GEOMETRIC APPEARANCE, the final
depth of pixel ( , )x y is assigned the depth value in the geometric depth map for all
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cases, except when it is a Sky pixel, it then adopts the depth value in the qualitative 
depth map. 
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5  Discussion and Conclusion 

A vast number of 2D to 3D conversion algorithms are dedicated to recover the 
“structure” or “shape” of objects in the images, which are understood to mean the 3D 
coordinates of a small set of points in the scene. These algorithms (e.g. shading, 
silhouette, symmetric patterns) can be possibly put into better use in computing the 3D 
motion of the camera or the objects, robot navigation, surveillance etc. rather than 3D 
video. For applications such as 3D TV, a dense depth map of all pixels in the image is 
conceivably better suited.   

The multi-ocular depth cues take both spatial and temporal image information into 
account, which yield in general a more accurate result. The monocular depth cues are less 
accurate but do not require multiple images, which makes them more versatile. Image 
sequences where both objects and camera barely move can best resort to the monocular 
cues. 

A single solution to convert the entire class of 2D images to 3D models does not exist due 
to the tremendous variations of the problem domain. The conversion problem is an ill-
posed problem. It is often solved with strong enough constraints on the underlying 
problem domain. A new trend of the development of 2D to 3D conversion algorithms is 
to operate in association with robust algorithms for image semantics analysis and to 
design specialized conversion algorithm for each specific semantic entity.  

It can be stated that no one cue is superb or indispensable for depth perception. Each cue 
has its own advantages and disadvantages. It is necessary to combine the suitable depth 
cues in order to achieve a robust all-round conversion algorithm. Some depth cues 
produce less detailed surface information (low frequency) due to reasons such as 
smoothness constraints (e.g. stereo), other depth cues offers a bettered detailed surface 
(high frequency), combing them may leads to a better result. The method based on image 
classification [8] is an example of depth cue fusion, where the depth maps derived from 
two complementary single cues enhance each other. The novel 2D to 3D conversion 
algorithm (e.g. [25]) based on supervised learning is in fact also one of the convincing 
ways of combining different depth cues. Its promising performance makes it certainly a 
new valuable research direction in this field. 

It can also be concluded that serious considerations of systematic performance evaluation 
in quantitative aspects are needed. This would allow both the designers and the users of 
2D to 3D conversion algorithms to know which ones are competitive in which domains. 
It would also stimulate researchers to devise truly more effective and efficient conversion 
algorithms. 

Most 2D to 3D conversion algorithms for generating stereoscopic videos and ad-hoc 
standards are based on the generation of a depth map. However, a depth map has a 
disadvantage that it needs to be fairly dense and accurate. Otherwise local deformations 
in the derived stereo pairs are easy to happen. There are also approaches which do not 
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work with a depth map. A recent example is the algorithm proposed by Rotem, 
Wolowelsky and Pelz [41], which creates the stereo pairs directly from the original video 
frames. Each pair is composed of the original image and a transformed image. The latter 
is generated by warping another image from the original video sequence using planar 
transformation. This method is claimed to be less prone to local deformation and the 
quality is so good that it is even suitable for applications where deformation is forbidden 
as in reconnaissance and medial systems. It is therefore helpful to also explore the 
alternatives than to confine ourselves only in the conventional methods based on depth 
maps.  
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