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  Abstract — Industry widely employs the two-dimensional 
videoconferencing system as a long distance communication 
tool, but current limitations such as its tendency to 
misrepresent eye contact prevent it from becoming more 
widely adopted. We are exploring the possibility of a three-
dimensional videoconferencing system for future interactive 
streaming of point cloud data, and present the preliminary 
research results in this paper. We have tested thus far with 
one sender and one receiver, using pre-recorded data for the 
sender. The sender, encircled by high-definition cameras, 
stands and speaks in a room. A cluster of computers 
reconstructs each frame of the camera images into a 3D 
point cloud and streams it across a high-speed, low-latency 
network. On the receiving end, a splat-based renderer 
employs a new algorithm to efficiently resample the points 
in real-time, maintaining a user-specified frame rate. Parallel 
hardware projects onto multiple screens while head tracking 
equipment records the viewer's movements, allowing the 
receiver to view a stereoscopic 3D representation of the 
sender from multiple angles. We can combine these visuals 
with appropriate use of multiple audio channels to forge an 
unparalleled virtual experience. This next step towards 
immersive 3D videoconferencing brings us closer to 
empowering worldwide collaboration between research 
departments. 
 

1. Introduction 
   Standard videoconferencing currently serves government, 
industry, and academia as an effective communication tool 
for multiple parties, allowing groups to conduct meetings at 
their convenience without incurring long-distance travel 
costs. Unfortunately, collaborators may decide to forgo 
teleconferencing when its technological limitations make it 
insufficient as a substitution for in-person meetings. For 
example, many complain that single-camera systems give 
the impression that viewers avoid eye contact while 
speaking when they look at the display rather than the 
camera [1]. The stereoscopic, three-dimensional 
videoconferencing system that we propose does not suffer 
from this defect. Because it is more immersive than 
traditional systems, groups may decide to communicate 
remotely more often, saving time and money. 
   The system we envision works as follows, as shown in 
figure 1. The sender stands in a room full of cameras 
pointed at the center of the room. The sender speaks and 
moves around while the cameras take footage and record 
sound. Each frame, a stereo reconstruction computer uses 
U.C. Berkeley's CITRIS software package [10] to transform 

the camera images into a 3D point cloud. The system then 
sends the cloud across a fast network to the receiver, along 
with a portion of sound information from each channel. The 
receiving computer runs an algorithm on the new points, 
resampling them into a uniform cloud of as many points as 
it is capable of drawing within a specified framerate. 
   The receiving computer is now ready to send drawing 
commands to the rendering cluster. Each node of the cluster 
sends video data to one projector. The projectors are 
divided into pairs. Each pair superimposes two images on 
the same screen using orthogonally polarized filters. The 
pair is responsible for drawing only the subset of graphical 
data that lies within the bounds of its corresponding screen, 
allowing the rendering to run in parallel. These screens are 
arranged in a roughly spherical formation, facing the center. 
The viewer stands in the center and wears 3D glasses with 
the same two filters, allowing each eye to see a separate 
image. The brain combines the two similar images, creating 
the illusion of depth. The viewer also wears a visor with 
head tracking hardware attached; as the viewer moves, the 
computer recognizes his new position and updates the 
image accordingly. This allows the viewer to see the sender 
from different angles. Finally, in our system, the viewer 
carries a remote control, allowing him to scale and rotate 
the image, as well as navigate through the menu system. 
   We have established a one-directional working model of 
this ideal system at Osaka University. In section 2 we 
describe the research that we built upon to construct our 
camera capturing room and stereoscopic rendering center. 
We discuss these setups in sections 3 and 4, respectively. 
Sections 5 and 6 explain how the system streams the 3D 
data over the network and subsequently resamples it at the 
other end. In sections 7 and 8, we explain the results of a 
streaming experiment we conducted between the National 
Center for High Performance Computing in Taiwan and 
Osaka University in Japan. 
   Due to performance limitations of today’s hardware, our 
working model currently uses a cluster of computers to 
perform the stereo reconstruction of the large data set, 
instead of a single computer. Also, assuming high network 
bandwidth, the receiving hardware may not be capable of 
rendering the data set quickly enough to maintain high 
framerates. The algorithm we present addresses this issue, 
performing a fast resampling and producing a smaller point 
cloud that the hardware can render in time. 
 
     



2. Previous Work
   Our project builds on U.C. Berkeley's CITRIS Tele-
immersion Project [10] [2]. Their capturing system, 
comprising 48 cameras, sends camera footage to a cluster of 
thirteen nodes for parallel reconstruction into 3D point 
clouds. Each camera in our setup sends its data via Firewire 
to its own reconstruction computer. However, we 
constructed a CAVE setup to render the data using sixteen 
orthogonally polarized projectors, four for each screen, 
while Berkeley’s virtual viewing environment uses only a 
total of two projectors with circular polarization. 
   After establishing their tele-immersion labs, U.C. 
Berkeley conducted a streaming test with U.C. Davis [11]. 
Berkeley scientists used a small cluster to transfer the data 
over a dedicated gigabit connection to a single renderer in 
U.C. Davis. The test achieved framerates of ten to fifteen 
frames per second at two to six hundred Mbps. They were 
able to solve latency issues and maintain playback 
synchronization by attaching timestamps to the packets. In 
exchange for a short lag, the renderer buffered about twenty 
frames of data, dropping any packets that were delayed past 
a certain threshold. While conducting similar tests between 
Osaka University and the National Center for High 
Performance Computing in Taiwan, we were able to 
achieve similar framerates, but at a much lower data rate of 
about 1.5 Mbps. 
   Several schemes for efficient streaming transmission of 
point clouds have been proposed, including [6]. One of the 
most popular is the network adaptation [5] of QSplat, a 
software package for displaying large point-based models 
in real time [4]. The QSplat format restructures the point 
data in an optimal format for rendering on systems of 
various processing resources, achieving as high of a level of 
detail as possible under specified time constraints. 
   The point cloud resampling procedure by [7] uses a 
recursive algorithm to process a large point cloud and 
produce a smaller cloud of regularly spaced points. While 
its designers originally created the procedure to manipulate 
3D geometry using conventional 2D image processing 
techniques, we found it to be a useful starting point for 
investigating different resampling techniques. The 
algorithm we present is superior to the prior art because it 

runs in O(N) time on the cloud size, quickly enough to 
interactively process hundreds of thousands of points on a 
typical desktop CPU. We describe the resampling algorithm 
in greater detail in its own section later in this paper. 

3. Camera Capturing Setup
   Our camera studio at Osaka University is simpler than its 
Berkeley counterpart. We installed eight cameras in an 
octagonal shape such that they surround an actor. The 
cameras use the visual hull algorithm to capture time series 
volume data of the human body [12]. All cameras are 
calibrated and synchronized and can capture XGA video 
sequences at 30fps. The software detects the actor's image 
regions using background subtraction. We use the CIELab 
color space at this point to remove the shadows on the floor. 
Then, we apply a silhouette-based visual hull to reconstruct 
the target volume data. The pipeline of this step is shown in 
figure 2. 

4. Stereoscopic Rendering
   We use Osaka University’s CAVE to render the point 
data in an immersive environment. Our CAVE, shown in 
figure 4, is shaped like a cube; left, front, right, and ground 
screens are all perpendicular to each other. The CAVE uses 
one master computer and sixteen worker nodes to process 
graphics data, as shown in figure 3. We installed Fedora 
Core 7 on all computers. Each group of four nodes 
communicates with four projectors, which displays the 
image through orthogonally polarized filters. When the 
viewer wears 3D glasses with the same filters, each eye 
sees images from one filter. The brain then combines the 
two images, producing a stereoscopic effect.  All worker 
nodes project from behind the screens except the one 
responsible for the ground screen. 
    The tracking system of the CAVE uses an Ascension 
Flock of Birds system with VRCO’s trackd software, and a 
Wanda hand remote. The tracking equipment is attached to 
the 3D glasses, and continually transmits the head location 
to the rendering system. The software then updates the 
virtual camera position of the viewer accordingly. With the 
Wanda remote, the user can scale, rotate, and move the 
image as he pleases. 

 For the CAVE software, we decided to use 



COVISE, developed at the University of Stuttgart [13]. We 
performed the first installation onto the master node, then 
mounted each worker node to continue the 
installation. COVISE applications take the form of software 
library plugins which divide into several concurrent 
processing steps that can arbitrarily spread across 
heterogeneous machine platforms. For this project, we only 
utilized COVISE's OpenCOVER feature, its virtual reality 
renderer. When running OpenCOVER, each worker node 
only renders the portion of the image that falls within its 
viewing space. 

5. Network Transfer
   After the reconstruction equipment at the sending site 
generates a point cloud, it must stream the cloud over the 
network. We initially investigated the streaming QSplat 
algorithm [5] for this purpose. To gain familiarity with the 
QSplat software package, we implemented it as a plugin for 
COVISE [13]. The plugin worked well for single QSplat 

models, as shown in table 2 below, but we determined that 
a progressive, tree-based approach was infeasible for a 
streaming situation involving a different point cloud each 
frame, since tree creation could no longer occur in a 
preprocessing step. For example, preprocessing for the 
172,974-point Stanford Armadillo model consumed an 
average of three hundred milliseconds. 
   In our current system, we decided to implement a 
standard TCP connection in C++ using Unix Berkeley 
network sockets. The software reads IP and port 
information from the COVISE XML configuration file in 
figure 5, along with a variable indicating whether the 
machine on which the file resides should actively request a 
TCP connection, or passively wait for one. For research 
purposes, we did not implement any kind of compression 
with our point data; one point comprises six floating point 
values, three for the 3D location and three for the color, 
totaling 24 bytes per point. Because the models we used 
ranged in size from tens of thousands to millions of points, 
network bandwidth emerged as a bottleneck in many test 
scenarios. We therefore recommend the use of a local area 
network for streaming large data sets. 

6. Adaptive Resampling of the Cloud
   Tele-immersion requires framerates to be high enough for 
interactive participation, typically at least 15fps. This 
necessitates careful management of potential bottlenecks at 
all stages of the pipeline, including video capturing, 
network transfer, and rendering. We have already witnessed 
via the CITRIS research that it is possible to use a cluster to 
process multiple video streams in parallel and efficiently 
generate 3D point clouds. Bandwidth limitations sometimes 
caused slow rendering speeds during our tests, but 
streaming over a LAN mitigates this issue. As network 
technology improves over time, we will gradually 
encounter a situation in which the video capturing 
equipment produces very large clouds of points with no 
spatial locality and quickly transfers them to another 
workstation for rendering. The question at hand is: what 
happens if the workstation cannot render millions of points 
per frame and maintain fifteen frames per second? 
   A streaming point renderer clearly cannot use the same 
acceleration techniques as other renderers that initially load 



a single model and then display it from different angles. 
Because a new cloud of up to millions of points arrives 
each frame, preprocessing becomes a luxury of the past. 
One tempting idea is to draw only every N point; if the 
cloud contains C points and the renderer is capable of 
drawing F points at the desired framerate, N = C/F. 
Unfortunately, the fact that the points arrive in no particular 
order implies that simply skipping points will cause random 
parts of the model to disappear each frame, resulting in a 
flickery rendering process. For example, if the point cloud 
represents a person and every third point lies on the 
person’s arm, skipping every third point might cause the 
rendered frame to miss an entire arm. The solution is to 
resample the cloud instead, taking advantage of the ability 
to perform limited processing on each point in less time 
than it would take to send it all the way through the 
rendering pipeline. 
   Our algorithm for resampling a point cloud into a smaller, 
representative cloud runs as shown in figure 6 below. The 
idea is that we split the 3D space in which the point cloud 
resides into small cubes; if at least one point lies in any 
cube, draw only one point in that cube. By varying the size 
of the cubes, we decide how many points in the original 
cloud to render. The algorithm produces a regular point 
cloud in O(N) time because it processes each point exactly 
once; some previous approaches, such as [7], run in O(N2) 
time because they split the points into groups multiple 
times. Of course, the algorithm requires enough memory to 
store the state of all such cubes. We use a voxel array of 
5123 = 134,217,728 elements, consuming 128MB of RAM.  

Fig. 6. The resampling algorithm. We implement this in 
C++ using byte arrays for lists. The word “voxel” means a 
subsection of the 3D space enclosing the point model. Each 
element of the list v corresponds to one such subsection. 

   We illustrate a 2D simplification of the algorithm in 
figure 7. First, we divide the 2D space into 25 squares. 
Then, we process each point, noting in which square the 
point lies. If the square contains no previous points, i.e. is 
“empty,” we mark it as “full” by shading it gray. We then 
color the point red to indicate it is to be drawn later. 
Otherwise, if the square is already taken, we leave the point 
black, excluding it from the draw list.  

   We can use this algorithm to manipulate the number of 
points drawn. If we divide the x, y, and z coordinates of each 
point by a constant number before processing, it becomes 
more likely that multiple points will lie within each voxel. 
We restricted this constant, termed the reduce parameter, to 
a power of two, allowing us to perform the division using 
fast integer bit shifting. If each voxel contains a large 
number of points, it may be possible to occasionally skip 
points while processing by varying a point increment 
parameter, because the skipped points are highly likely to 
reside in already-full voxels anyway.  
   The renderer can use hard-coded parameters for the above 
algorithm, or it can adaptively select and adjust them. In our 
implementation, the software runs initial tests using several 
possible values, then selects those that result in the most 
points rendered within the target framerate. 

7. Results
   To gauge whether the new algorithm could efficiently 
work with our test system, we devised a timing test of 
network performance. The idea was to implement the 
algorithm as a COVISE plugin, then use the algorithm to 
stream 3D point data between two geographically distant 
sites, measuring rendering times for different point cloud 
sizes. We simulated dynamic point cloud data by repeatedly 
sending one point model over the network connection. 
   We executed our streaming network test between the 
National Center for High-Performance Computing in 
Hsinchu, Taiwan, and Osaka University in Japan. We 
focused our testing on four point models: the Stanford 
Bunny (35,947 points), the Stanford Armadillo (172,974 
points), and the Dawn and Lucy angel statue scans from the 
Digital Michelangelo Project Archives (~3 million and 
14,027,872 points, respectively) [3]. Network tests revealed 
a sustained transfer rate of 1.5 MB/s; this constraint limited 
our ability to send the large models quickly, but the software 
was able to adapt to the size of the data sets, resampling each 
to a reasonable size of no more than 200,000 points and 
rendering within the 50 milliseconds maximum.  
   We noticed emerging trends in the data as we varied the 
model parameters. Figure 8 illustrates how increasing the 
reduce parameter quickly cut down the number of points sent 
to the GPU. However, it failed to cut down on rendering 
times after exceeding a certain threshold, as figure 9 shows. 
One explanation for this limitation is that as the algorithm 
sent fewer and fewer points to the GPU, the CPU processing 
time (constant over the number of points) remained constant. 

 ResampleCloud(points) 
 { 

 Allocate a list v, initialized to all zeroes 
 Allocate a list d of points to draw, initialized to empty 
 For each point p 
 { 

 Determine in which voxel p lies 
 If the corresponding list element v[i] = 0: 

 assign v[i] = 1 and append p to d 
 } 
 Render all points in d 

 } 



   On the other hand, keeping the reduce parameter constant 
but increasing the point increment parameter quickly 
decreased rendering times, but did not significantly 
decrease the number of points sent to the GPU. For 
example, resampling the Lucy model with reduce = 0, point 
increment = 1 yielded 349,585 points drawn, but setting 
reduce = 0, point increment = 11 yielded 298,157 points. 
Figure 10 illustrates similar results for the Stanford 
Armadillo model. The fact that we processed one tenth of 
the original data set but ended up drawing almost the same 
number of points suggests that the original resampling was 
rejecting a lot of points that happened to fall in full voxels. 
This means that we can process fewer points and still end 
up with a regular, non-flickery representation of the original 
model. 

   Table 4 below shows comprehensive timing results for 
streaming the Stanford Armadillo model from Taiwan to 
Japan, using different values of the reduce and point 
increment algorithm parameters. Each table element 
contains a rendering time and the number of points drawn. 
Interestingly, two sets of parameters fit within a target 
framerate of 20 fps (50 milliseconds per frame) equally 
well. If we set reduce = 0 and point increment = 11, we can 
render 15,716 points in about ten milliseconds. However, if 
we set reduce = 2, point increment = 1, we can render 
34,032 points in about twenty milliseconds. Clearly, the 
second pairing is preferable because more points can be 
rendered within the time allotted. 

8. Conclusion and Discussion
   Our goal was to render large, unorganized point clouds 
arriving over a network in real time. Table 1 illustrates how 
real-time triangle meshing approaches were difficult to 
implement; drawing the armadillo took over ten times 
longer as a triangle mesh vs. a point cloud. QSPLAT was 
not viable due to lengthy tree construction times. 

Rendering Method Msec./Frame 

Direct OpenGL point drawing 3.15468 

Direct OpenGL triangle drawing 42.8694 

Qsorting all points by X coordinate 33.1708 

Splitting points into fixed-size groups 8.57614 

Creating QSplat tree data structure  312.7368 

Table 1: Rendering speeds of a PLY reconstruction of the 
Stanford Armadillo (172,974 points, 345,944 faces). 

   However, we eventually achieved our goal of writing our 
renderer. The software efficiently resamples the clouds, 
improving the videoconferencing system in the absence of 
other performance bottlenecks. After running timing tests, 
we realized that this may not be a safe assumption to make. 



Network bandwidth was often prohibitively constrictive, 
especially in the case of large wide-area networks. 
Therefore, we recommend the use of intelligent point cloud 
compression algorithms, e.g. [8], to increase throughput. 
   The way the algorithm linearly processes the points 
suggests that one might exploit concurrency to improve 
performance by directing multiple threads to process the 
points in parallel. We discovered that this tempting 
approach was difficult to implement; only one thread may 
hold the OpenGL rendering context at any one time, and 
mutual exclusion issues exist with regard to the voxels 
array. However, once the list of points to draw has been 
populated, COVISE parallelizes the rendering by making 
each node responsible for drawing only the points that fall 
within its corresponding screen space.  
   It is possible to adjust the rendering parameters to draw 
the largest amount of points within the target framerate. For 
a setup with stronger graphics processing capabilities, e.g. a 
CAVE, set the point increment parameter to a high value, 
keeping reduce low. This will avoid wasting time waiting 
for the relatively weak CPU to finish preprocessing the 
point cloud, and the slave nodes can render the points in 
parallel anyway. Care must be taken not to skip too many 
points, though, lest the rendered frames become too 
flickery. For a setup with a weak GPU, e.g. a laptop 
computer with onboard graphics, increase the reduce 
parameter and process more of the points. This will cause 
the algorithm to restrict the number of points sent to the 
GPU each frame, but ensure that the points sent accurately 
represent the original cloud.  

9. Future Work
   To further improve performance, we suggest research and 
testing of LAN streaming, as well as some kind of 
compression on the point data, such as [8]. Being able to 
render more points per frame profoundly improves the 
realism of the 3D representation and makes the 
videoconferencing system more immersive. Another idea is 

to implement UDP streaming along with some kind of 
mechanism for discarding duplicate or out-of-order packets. 
We found that the system bottleneck became network 
bandwidth; future tests with dedicated 10 Gbps connections 
should mitigate this issue. 
    Eventually, the ultimate goal is to establish bi-directional 
streaming, allowing multiple parties to send and receive 
data. Installing a camera setup inside a CAVE could work, 
although the viewers would be able to see the cameras. 
   The CITRIS stereo reconstruction process produces 
colored points, but no normal vectors. This is typically not a 
problem because the sender stands in a lighted area; the 
receiving system can simply redraw the points with the 
same colors to achieve realistic lighting. However, it may 
be possible to calculate a normal vector for each point by 
using the coordinates of its closest neighbors. This would 
allow the receiver to render using specular lighting effects, 
or even an arbitrary BRDF [9]. This approach is potentially 
computationally expensive, but would allow the system to 
use existing BRDF research to achieve heightened realism.  
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Model Name Max Depth # Splats Drawn # Vertices in Model Rendering Speed (msec/frame) 

Dragon  8 210,222 1,279,481 27.625 

Lucy  8 243,944 10,072,906 31.587 

Happy Buddha 6 62,774 1,060,220 8.129 

Table 2: QSPLAT for COVISE rendering speeds. All tests run on an HP Compaq dx7200 with a 3.40 GHz Pentium D CPU, 
1.5GB RAM, nVidia 7900GS with 256MB GPU. Each point stored at six floats = 24 bytes. 

0 1 2 3 4 

1 227.194 349.585 206.252 90.186 200.595 22.628 199.328 5414 203.047 1208 

11 92.769 298.157 75.2105 83.089 70.728 21.414 69.3535 5241 69.031 1192 

21 58.315 263.666 44.711 79.812 38.95 21.020 37.611 5181 37.294 1179 

31 43.439 231.286 31.6695 76.885 27.246 20.689 26.089 5129 25.765 1167 

41 35.509 203.302 25.638 74.466 21.48 20.383 20.1635 5099 20.056 1171 

51 33.126 179.706 21.7455 72.059 17.6855 20.127 16.7965 5061 16.4065 1160 

61 29.073 160.397 19.0445 69.704 15.239 19.837 14.0115 5019 13.7425 1155 



Table 3: Streaming Stanford’s Lucy angel (14,027,872 points) to another computer in the same room over a short LAN. Across: 
reduce parameter. Down: point increment parameter. Data: render times (milliseconds/frame) and number of points rendered. 

0 1 2 3 4 

1 77.798 171349 55.8245 109568 15.9705 34032 5.306 7904 4.3705 2294 

11 9.2665 15716 56.955 15150 5.6775 12630 2.9305 6679 0.586 2074 

21 3.07 8235 29.54 8109 2.753 7390 0.6255 5032 0.407 1920 

31 0.8415 5579 29.695 5517 2.409 5186 2.539 4042 0.5325 1779 

41 0.3955 4219 0.507 4184 0.4455 3988 0.7165 3287 5.3355 1669 

51 2.0385 2291 0.302 3367 0.3675 3249 0.3105 2788 1.253 1553 

61 0.406 2836 2.471 2825 0.274 2750 0.251 2404 0.1665 1443 

71 0.1925 2437 1.9995 2426 0.236 2376 0.2335 2125 0.155 1362 

Table 4: Streaming the Stanford Armadillo (172,974 points) to the newly established CAVE at Osaka University. Across: reduce 
parameter. Down: point increment parameter. Data: render times (milliseconds/frame) and number of points rendered. 
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