
Optimized Rendering for a Three-Dimensional
Videoconferencing System

Rachel Chu
Department of Structural Engineering
University of California at San Diego

La Jolla, California, USA

Susumu Date, Seiki Kuwabara,
Atsushi Nakazawa, Haruo Takemura

Cybermedia Center, Osaka University
Osaka, Japan

Daniel Tenedorio, Jürgen P. Schulze
Department of Computer Science

University of California at San Diego
La Jolla, California, USA

Fang-Pang Lin

National Center for
High-Performance Computing

Hsinchu, Taiwan

 Abstract — Industry widely employs the two-dimensional
videoconferencing system as a long distance communication
tool, but current limitations such as its tendency to
misrepresent eye contact prevent it from becoming more
widely adopted. We are exploring the possibility of a three-
dimensional videoconferencing system for future interactive
streaming of point cloud data, and present the preliminary
research results in this paper. We have tested thus far with
one sender and one receiver, using pre-recorded data for the
sender. The sender, encircled by high-definition cameras,
stands and speaks in a room. A cluster of computers
reconstructs each frame of the camera images into a 3D
point cloud and streams it across a high-speed, low-latency
network. On the receiving end, a splat-based renderer
employs a new algorithm to efficiently resample the points
in real-time, maintaining a user-specified frame rate. Parallel
hardware projects onto multiple screens while head tracking
equipment records the viewer's movements, allowing the
receiver to view a stereoscopic 3D representation of the
sender from multiple angles. We can combine these visuals
with appropriate use of multiple audio channels to forge an
unparalleled virtual experience. This next step towards
immersive 3D videoconferencing brings us closer to
empowering worldwide collaboration between research
departments.

1. Introduction
 Standard videoconferencing currently serves government,
industry, and academia as an effective communication tool
for multiple parties, allowing groups to conduct meetings at
their convenience without incurring long-distance travel
costs. Unfortunately, collaborators may decide to forgo
teleconferencing when its technological limitations make it
insufficient as a substitution for in-person meetings. For
example, many complain that single-camera systems give
the impression that viewers avoid eye contact while
speaking when they look at the display rather than the
camera [1]. The stereoscopic, three-dimensional
videoconferencing system that we propose does not suffer
from this defect. Because it is more immersive than
traditional systems, groups may decide to communicate
remotely more often, saving time and money.
 The system we envision works as follows, as shown in
figure 1. The sender stands in a room full of cameras
pointed at the center of the room. The sender speaks and
moves around while the cameras take footage and record
sound. Each frame, a stereo reconstruction computer uses
U.C. Berkeley's CITRIS software package [10] to transform

the camera images into a 3D point cloud. The system then
sends the cloud across a fast network to the receiver, along
with a portion of sound information from each channel. The
receiving computer runs an algorithm on the new points,
resampling them into a uniform cloud of as many points as
it is capable of drawing within a specified framerate.
 The receiving computer is now ready to send drawing
commands to the rendering cluster. Each node of the cluster
sends video data to one projector. The projectors are
divided into pairs. Each pair superimposes two images on
the same screen using orthogonally polarized filters. The
pair is responsible for drawing only the subset of graphical
data that lies within the bounds of its corresponding screen,
allowing the rendering to run in parallel. These screens are
arranged in a roughly spherical formation, facing the center.
The viewer stands in the center and wears 3D glasses with
the same two filters, allowing each eye to see a separate
image. The brain combines the two similar images, creating
the illusion of depth. The viewer also wears a visor with
head tracking hardware attached; as the viewer moves, the
computer recognizes his new position and updates the
image accordingly. This allows the viewer to see the sender
from different angles. Finally, in our system, the viewer
carries a remote control, allowing him to scale and rotate
the image, as well as navigate through the menu system.
 We have established a one-directional working model of
this ideal system at Osaka University. In section 2 we
describe the research that we built upon to construct our
camera capturing room and stereoscopic rendering center.
We discuss these setups in sections 3 and 4, respectively.
Sections 5 and 6 explain how the system streams the 3D
data over the network and subsequently resamples it at the
other end. In sections 7 and 8, we explain the results of a
streaming experiment we conducted between the National
Center for High Performance Computing in Taiwan and
Osaka University in Japan.
 Due to performance limitations of today’s hardware, our
working model currently uses a cluster of computers to
perform the stereo reconstruction of the large data set,
instead of a single computer. Also, assuming high network
bandwidth, the receiving hardware may not be capable of
rendering the data set quickly enough to maintain high
framerates. The algorithm we present addresses this issue,
performing a fast resampling and producing a smaller point
cloud that the hardware can render in time.

2. Previous Work
 Our project builds on U.C. Berkeley's CITRIS Tele-
immersion Project [10] [2]. Their capturing system,
comprising 48 cameras, sends camera footage to a cluster of
thirteen nodes for parallel reconstruction into 3D point
clouds. Each camera in our setup sends its data via Firewire
to its own reconstruction computer. However, we
constructed a CAVE setup to render the data using sixteen
orthogonally polarized projectors, four for each screen,
while Berkeley’s virtual viewing environment uses only a
total of two projectors with circular polarization.
 After establishing their tele-immersion labs, U.C.
Berkeley conducted a streaming test with U.C. Davis [11].
Berkeley scientists used a small cluster to transfer the data
over a dedicated gigabit connection to a single renderer in
U.C. Davis. The test achieved framerates of ten to fifteen
frames per second at two to six hundred Mbps. They were
able to solve latency issues and maintain playback
synchronization by attaching timestamps to the packets. In
exchange for a short lag, the renderer buffered about twenty
frames of data, dropping any packets that were delayed past
a certain threshold. While conducting similar tests between
Osaka University and the National Center for High
Performance Computing in Taiwan, we were able to
achieve similar framerates, but at a much lower data rate of
about 1.5 Mbps.
 Several schemes for efficient streaming transmission of
point clouds have been proposed, including [6]. One of the
most popular is the network adaptation [5] of QSplat, a
software package for displaying large point-based models
in real time [4]. The QSplat format restructures the point
data in an optimal format for rendering on systems of
various processing resources, achieving as high of a level of
detail as possible under specified time constraints.
 The point cloud resampling procedure by [7] uses a
recursive algorithm to process a large point cloud and
produce a smaller cloud of regularly spaced points. While
its designers originally created the procedure to manipulate
3D geometry using conventional 2D image processing
techniques, we found it to be a useful starting point for
investigating different resampling techniques. The
algorithm we present is superior to the prior art because it

runs in O(N) time on the cloud size, quickly enough to
interactively process hundreds of thousands of points on a
typical desktop CPU. We describe the resampling algorithm
in greater detail in its own section later in this paper.

3. Camera Capturing Setup
 Our camera studio at Osaka University is simpler than its
Berkeley counterpart. We installed eight cameras in an
octagonal shape such that they surround an actor. The
cameras use the visual hull algorithm to capture time series
volume data of the human body [12]. All cameras are
calibrated and synchronized and can capture XGA video
sequences at 30fps. The software detects the actor's image
regions using background subtraction. We use the CIELab
color space at this point to remove the shadows on the floor.
Then, we apply a silhouette-based visual hull to reconstruct
the target volume data. The pipeline of this step is shown in
figure 2.

4. Stereoscopic Rendering
 We use Osaka University’s CAVE to render the point
data in an immersive environment. Our CAVE, shown in
figure 4, is shaped like a cube; left, front, right, and ground
screens are all perpendicular to each other. The CAVE uses
one master computer and sixteen worker nodes to process
graphics data, as shown in figure 3. We installed Fedora
Core 7 on all computers. Each group of four nodes
communicates with four projectors, which displays the
image through orthogonally polarized filters. When the
viewer wears 3D glasses with the same filters, each eye
sees images from one filter. The brain then combines the
two images, producing a stereoscopic effect. All worker
nodes project from behind the screens except the one
responsible for the ground screen.
 The tracking system of the CAVE uses an Ascension
Flock of Birds system with VRCO’s trackd software, and a
Wanda hand remote. The tracking equipment is attached to
the 3D glasses, and continually transmits the head location
to the rendering system. The software then updates the
virtual camera position of the viewer accordingly. With the
Wanda remote, the user can scale, rotate, and move the
image as he pleases.

 For the CAVE software, we decided to use

COVISE, developed at the University of Stuttgart [13]. We
performed the first installation onto the master node, then
mounted each worker node to continue the
installation. COVISE applications take the form of software
library plugins which divide into several concurrent
processing steps that can arbitrarily spread across
heterogeneous machine platforms. For this project, we only
utilized COVISE's OpenCOVER feature, its virtual reality
renderer. When running OpenCOVER, each worker node
only renders the portion of the image that falls within its
viewing space.

5. Network Transfer
 After the reconstruction equipment at the sending site
generates a point cloud, it must stream the cloud over the
network. We initially investigated the streaming QSplat
algorithm [5] for this purpose. To gain familiarity with the
QSplat software package, we implemented it as a plugin for
COVISE [13]. The plugin worked well for single QSplat

models, as shown in table 2 below, but we determined that
a progressive, tree-based approach was infeasible for a
streaming situation involving a different point cloud each
frame, since tree creation could no longer occur in a
preprocessing step. For example, preprocessing for the
172,974-point Stanford Armadillo model consumed an
average of three hundred milliseconds.
 In our current system, we decided to implement a
standard TCP connection in C++ using Unix Berkeley
network sockets. The software reads IP and port
information from the COVISE XML configuration file in
figure 5, along with a variable indicating whether the
machine on which the file resides should actively request a
TCP connection, or passively wait for one. For research
purposes, we did not implement any kind of compression
with our point data; one point comprises six floating point
values, three for the 3D location and three for the color,
totaling 24 bytes per point. Because the models we used
ranged in size from tens of thousands to millions of points,
network bandwidth emerged as a bottleneck in many test
scenarios. We therefore recommend the use of a local area
network for streaming large data sets.

6. Adaptive Resampling of the Cloud
 Tele-immersion requires framerates to be high enough for
interactive participation, typically at least 15fps. This
necessitates careful management of potential bottlenecks at
all stages of the pipeline, including video capturing,
network transfer, and rendering. We have already witnessed
via the CITRIS research that it is possible to use a cluster to
process multiple video streams in parallel and efficiently
generate 3D point clouds. Bandwidth limitations sometimes
caused slow rendering speeds during our tests, but
streaming over a LAN mitigates this issue. As network
technology improves over time, we will gradually
encounter a situation in which the video capturing
equipment produces very large clouds of points with no
spatial locality and quickly transfers them to another
workstation for rendering. The question at hand is: what
happens if the workstation cannot render millions of points
per frame and maintain fifteen frames per second?
 A streaming point renderer clearly cannot use the same
acceleration techniques as other renderers that initially load

a single model and then display it from different angles.
Because a new cloud of up to millions of points arrives
each frame, preprocessing becomes a luxury of the past.
One tempting idea is to draw only every N point; if the
cloud contains C points and the renderer is capable of
drawing F points at the desired framerate, N = C/F.
Unfortunately, the fact that the points arrive in no particular
order implies that simply skipping points will cause random
parts of the model to disappear each frame, resulting in a
flickery rendering process. For example, if the point cloud
represents a person and every third point lies on the
person’s arm, skipping every third point might cause the
rendered frame to miss an entire arm. The solution is to
resample the cloud instead, taking advantage of the ability
to perform limited processing on each point in less time
than it would take to send it all the way through the
rendering pipeline.
 Our algorithm for resampling a point cloud into a smaller,
representative cloud runs as shown in figure 6 below. The
idea is that we split the 3D space in which the point cloud
resides into small cubes; if at least one point lies in any
cube, draw only one point in that cube. By varying the size
of the cubes, we decide how many points in the original
cloud to render. The algorithm produces a regular point
cloud in O(N) time because it processes each point exactly
once; some previous approaches, such as [7], run in O(N2)
time because they split the points into groups multiple
times. Of course, the algorithm requires enough memory to
store the state of all such cubes. We use a voxel array of
5123 = 134,217,728 elements, consuming 128MB of RAM.

Fig. 6. The resampling algorithm. We implement this in
C++ using byte arrays for lists. The word “voxel” means a
subsection of the 3D space enclosing the point model. Each
element of the list v corresponds to one such subsection.

 We illustrate a 2D simplification of the algorithm in
figure 7. First, we divide the 2D space into 25 squares.
Then, we process each point, noting in which square the
point lies. If the square contains no previous points, i.e. is
“empty,” we mark it as “full” by shading it gray. We then
color the point red to indicate it is to be drawn later.
Otherwise, if the square is already taken, we leave the point
black, excluding it from the draw list.

 We can use this algorithm to manipulate the number of
points drawn. If we divide the x, y, and z coordinates of each
point by a constant number before processing, it becomes
more likely that multiple points will lie within each voxel.
We restricted this constant, termed the reduce parameter, to
a power of two, allowing us to perform the division using
fast integer bit shifting. If each voxel contains a large
number of points, it may be possible to occasionally skip
points while processing by varying a point increment
parameter, because the skipped points are highly likely to
reside in already-full voxels anyway.
 The renderer can use hard-coded parameters for the above
algorithm, or it can adaptively select and adjust them. In our
implementation, the software runs initial tests using several
possible values, then selects those that result in the most
points rendered within the target framerate.

7. Results
 To gauge whether the new algorithm could efficiently
work with our test system, we devised a timing test of
network performance. The idea was to implement the
algorithm as a COVISE plugin, then use the algorithm to
stream 3D point data between two geographically distant
sites, measuring rendering times for different point cloud
sizes. We simulated dynamic point cloud data by repeatedly
sending one point model over the network connection.
 We executed our streaming network test between the
National Center for High-Performance Computing in
Hsinchu, Taiwan, and Osaka University in Japan. We
focused our testing on four point models: the Stanford
Bunny (35,947 points), the Stanford Armadillo (172,974
points), and the Dawn and Lucy angel statue scans from the
Digital Michelangelo Project Archives (~3 million and
14,027,872 points, respectively) [3]. Network tests revealed
a sustained transfer rate of 1.5 MB/s; this constraint limited
our ability to send the large models quickly, but the software
was able to adapt to the size of the data sets, resampling each
to a reasonable size of no more than 200,000 points and
rendering within the 50 milliseconds maximum.
 We noticed emerging trends in the data as we varied the
model parameters. Figure 8 illustrates how increasing the
reduce parameter quickly cut down the number of points sent
to the GPU. However, it failed to cut down on rendering
times after exceeding a certain threshold, as figure 9 shows.
One explanation for this limitation is that as the algorithm
sent fewer and fewer points to the GPU, the CPU processing
time (constant over the number of points) remained constant.

 ResampleCloud(points)
 {

 Allocate a list v, initialized to all zeroes
 Allocate a list d of points to draw, initialized to empty
 For each point p
 {

 Determine in which voxel p lies
 If the corresponding list element v[i] = 0:

 assign v[i] = 1 and append p to d
 }
 Render all points in d

 }

 On the other hand, keeping the reduce parameter constant
but increasing the point increment parameter quickly
decreased rendering times, but did not significantly
decrease the number of points sent to the GPU. For
example, resampling the Lucy model with reduce = 0, point
increment = 1 yielded 349,585 points drawn, but setting
reduce = 0, point increment = 11 yielded 298,157 points.
Figure 10 illustrates similar results for the Stanford
Armadillo model. The fact that we processed one tenth of
the original data set but ended up drawing almost the same
number of points suggests that the original resampling was
rejecting a lot of points that happened to fall in full voxels.
This means that we can process fewer points and still end
up with a regular, non-flickery representation of the original
model.

 Table 4 below shows comprehensive timing results for
streaming the Stanford Armadillo model from Taiwan to
Japan, using different values of the reduce and point
increment algorithm parameters. Each table element
contains a rendering time and the number of points drawn.
Interestingly, two sets of parameters fit within a target
framerate of 20 fps (50 milliseconds per frame) equally
well. If we set reduce = 0 and point increment = 11, we can
render 15,716 points in about ten milliseconds. However, if
we set reduce = 2, point increment = 1, we can render
34,032 points in about twenty milliseconds. Clearly, the
second pairing is preferable because more points can be
rendered within the time allotted.

8. Conclusion and Discussion
 Our goal was to render large, unorganized point clouds
arriving over a network in real time. Table 1 illustrates how
real-time triangle meshing approaches were difficult to
implement; drawing the armadillo took over ten times
longer as a triangle mesh vs. a point cloud. QSPLAT was
not viable due to lengthy tree construction times.

Rendering Method Msec./Frame

Direct OpenGL point drawing 3.15468

Direct OpenGL triangle drawing 42.8694

Qsorting all points by X coordinate 33.1708

Splitting points into fixed-size groups 8.57614

Creating QSplat tree data structure 312.7368

Table 1: Rendering speeds of a PLY reconstruction of the
Stanford Armadillo (172,974 points, 345,944 faces).

 However, we eventually achieved our goal of writing our
renderer. The software efficiently resamples the clouds,
improving the videoconferencing system in the absence of
other performance bottlenecks. After running timing tests,
we realized that this may not be a safe assumption to make.

Network bandwidth was often prohibitively constrictive,
especially in the case of large wide-area networks.
Therefore, we recommend the use of intelligent point cloud
compression algorithms, e.g. [8], to increase throughput.
 The way the algorithm linearly processes the points
suggests that one might exploit concurrency to improve
performance by directing multiple threads to process the
points in parallel. We discovered that this tempting
approach was difficult to implement; only one thread may
hold the OpenGL rendering context at any one time, and
mutual exclusion issues exist with regard to the voxels
array. However, once the list of points to draw has been
populated, COVISE parallelizes the rendering by making
each node responsible for drawing only the points that fall
within its corresponding screen space.
 It is possible to adjust the rendering parameters to draw
the largest amount of points within the target framerate. For
a setup with stronger graphics processing capabilities, e.g. a
CAVE, set the point increment parameter to a high value,
keeping reduce low. This will avoid wasting time waiting
for the relatively weak CPU to finish preprocessing the
point cloud, and the slave nodes can render the points in
parallel anyway. Care must be taken not to skip too many
points, though, lest the rendered frames become too
flickery. For a setup with a weak GPU, e.g. a laptop
computer with onboard graphics, increase the reduce
parameter and process more of the points. This will cause
the algorithm to restrict the number of points sent to the
GPU each frame, but ensure that the points sent accurately
represent the original cloud.

9. Future Work
 To further improve performance, we suggest research and
testing of LAN streaming, as well as some kind of
compression on the point data, such as [8]. Being able to
render more points per frame profoundly improves the
realism of the 3D representation and makes the
videoconferencing system more immersive. Another idea is

to implement UDP streaming along with some kind of
mechanism for discarding duplicate or out-of-order packets.
We found that the system bottleneck became network
bandwidth; future tests with dedicated 10 Gbps connections
should mitigate this issue.
 Eventually, the ultimate goal is to establish bi-directional
streaming, allowing multiple parties to send and receive
data. Installing a camera setup inside a CAVE could work,
although the viewers would be able to see the cameras.
 The CITRIS stereo reconstruction process produces
colored points, but no normal vectors. This is typically not a
problem because the sender stands in a lighted area; the
receiving system can simply redraw the points with the
same colors to achieve realistic lighting. However, it may
be possible to calculate a normal vector for each point by
using the coordinates of its closest neighbors. This would
allow the receiver to render using specular lighting effects,
or even an arbitrary BRDF [9]. This approach is potentially
computationally expensive, but would allow the system to
use existing BRDF research to achieve heightened realism.

Acknowledgments
 All PLY models were obtained from the Stanford 3D
Scanning Repository at http://graphics.stanford.edu/
data/3Dscanrep. QSPLAT models were also obtained from
the sample models section of the QSPLAT main site at
http://graphics.stanford.edu/software/qsplat/models, and the
Digital Michelangelo Project Archive at http://www-
graphics.stanford.edu/dmich-archive, with permission from
Marc Levoy.
 We would also like to recognize the Pacific Rim
Experiences for Undergraduates (PRIME) program,
supported by NSF INT 0407508 and NSF OISE 0710726
and the California Institute for Telecommunication and
Information Technology (Calit2). Finally, we would like to
thank Gabriele Wienhausen, Peter Arzberger, and Teri
Simas for helping maintain the PRIME program.

Model Name Max Depth # Splats Drawn # Vertices in Model Rendering Speed (msec/frame)

Dragon 8 210,222 1,279,481 27.625

Lucy 8 243,944 10,072,906 31.587

Happy Buddha 6 62,774 1,060,220 8.129

Table 2: QSPLAT for COVISE rendering speeds. All tests run on an HP Compaq dx7200 with a 3.40 GHz Pentium D CPU,
1.5GB RAM, nVidia 7900GS with 256MB GPU. Each point stored at six floats = 24 bytes.

0 1 2 3 4

1 227.194 349.585 206.252 90.186 200.595 22.628 199.328 5414 203.047 1208

11 92.769 298.157 75.2105 83.089 70.728 21.414 69.3535 5241 69.031 1192

21 58.315 263.666 44.711 79.812 38.95 21.020 37.611 5181 37.294 1179

31 43.439 231.286 31.6695 76.885 27.246 20.689 26.089 5129 25.765 1167

41 35.509 203.302 25.638 74.466 21.48 20.383 20.1635 5099 20.056 1171

51 33.126 179.706 21.7455 72.059 17.6855 20.127 16.7965 5061 16.4065 1160

61 29.073 160.397 19.0445 69.704 15.239 19.837 14.0115 5019 13.7425 1155

Table 3: Streaming Stanford’s Lucy angel (14,027,872 points) to another computer in the same room over a short LAN. Across:
reduce parameter. Down: point increment parameter. Data: render times (milliseconds/frame) and number of points rendered.

0 1 2 3 4

1 77.798 171349 55.8245 109568 15.9705 34032 5.306 7904 4.3705 2294

11 9.2665 15716 56.955 15150 5.6775 12630 2.9305 6679 0.586 2074

21 3.07 8235 29.54 8109 2.753 7390 0.6255 5032 0.407 1920

31 0.8415 5579 29.695 5517 2.409 5186 2.539 4042 0.5325 1779

41 0.3955 4219 0.507 4184 0.4455 3988 0.7165 3287 5.3355 1669

51 2.0385 2291 0.302 3367 0.3675 3249 0.3105 2788 1.253 1553

61 0.406 2836 2.471 2825 0.274 2750 0.251 2404 0.1665 1443

71 0.1925 2437 1.9995 2426 0.236 2376 0.2335 2125 0.155 1362

Table 4: Streaming the Stanford Armadillo (172,974 points) to the newly established CAVE at Osaka University. Across: reduce
parameter. Down: point increment parameter. Data: render times (milliseconds/frame) and number of points rendered.

References

[1] R. Vertagal: Explaining Effects of Eye Gaze on
Mediated Group Conversations: Amount or
Synchronization? ACM Conference on Computer Supported
Cooperative Work, 2002.

[2] W. Wu, Z. Yang, K. Nahrstedt, G. Kurillo, & R. Bajcsy:
Towards Multi-Site Collaboration in Tele-Immersive
Environments. Proceedings of the 15th international
conference on Multimedia, 2007.

[3] M. Levoy, et al.: The Digital Michelangelo project: 3D
Scanning of Large Statues. In Proc. SIGGRAPH, 2000, pp.
131–144.

[4] S. Rusinkiewicz, M. Levoy: QSplat: A Multiresolution
Point Rendering System for Large Meshes. In Proc.
SIGGRAPH, 2000.

[5] S. Rusinkiewicz, M. Levoy: Streaming QSlpat: A
Viewer for Networked Visualization of Large, Dense
Models. In Proc. SIGGRAPH, 2001.

[6] Kimura Y., Mashita T., Nakazawa A., Machida T.,
Kiyokawa K., Takemura H.: A Hierarchical 3D Data
Rendering System Synchronized with HTML. The
International Journal of Virtual Reality, Vol. 5, No. 2,
2006, pp. 67-72.

[7] Sim J.-Y., Lee S.-U., Kim C.-S.: Construction of

Regular 3D Point Clouds Using Octree Partitioning and
Resampling. In IEEE INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS, 2005, pp. 956-959.

[8] Schnabel R., Klein R.: Octree-based point-cloud
compression. In Symposium on point-based graphics, 2006

[9] Schaaf C., Martonchik J., Pinty B., Govaerts Y., Gao F.,
Lattanzio A., et al: Retrieval of Surface Albedo from
Satellite Sensors. In Advances in Land Remote Sensing:
System, Modeling, Inversion and Application, 2008, pp.
219-243.

[10] Jung S. An Overview of the TI Project [PowerPoint
slides] Retrieved from http://tele-immersion.citris-
uc.org/files/teleimmersion/Teleimmersion.ppt.

[11] Kurillo G. Performance Analysis of the Tele-
immersion system [PDF document] Retrieved from
http://tele-immersion.citris-
uc.org/files/teleimmersion/CV_Class_presentation.pdf.

[12] A. Laurentini: The visual hull concept for silhouette-
based image understanding. In IEEE Trans. on PAMI, Vol.
16, No. 2, pp. 150–162, 1994.

[13] D. Rantzau, K. Frank, U. Lang, D. Rainer, U. Wössner,
COVISE in the CUBE: An Environment for Analyzing
Large and Complex Simulation Data. In Proc. 2nd
Workshop on Immersive Projection Technology, 1998

