Н.В. Олейник

НОВЫЙ СПОСОБ УТИЛИЗАЦИИ ОТВАЛЬНОЙ ПОРОДЫ УГОЛЬНЫХ ШАХТ

Изложен подход к решению двух экологических проблем. Первая — утилизация крупнотоннажных отходов Донбасса, образ ующихся вследствие добычи угля шахтным способом. Вторая проблема — использование растительных масел в качестве моторного топлива для дизельных двигателей. Таб. 6, рис. 6, ист. 5.

Постановка проблемы и анализ публикаций. В работе рассмотрено решение двух экологических проблем. Первая — утилизация крупнотоннажных отходов Донбасса, образующихся вследствие добычи угля шахтным способом. Вторая проблема — использование растительных масел в качестве моторного топлива для дизельных двигателей.

Первая проблема. Производственная деятельность разнообразных промышленных предприятий Донбасса сопровождается образованием и накоплением значительных объемов техногенных отходов в количестве 1,3-1,5 т в год, которые необходимо утилизировать. В отвалах, террикониках и других формах складирования накоплено около 25 млрд. т такого материала (рис. 1). При шахтной добыче на 1 т угля приходится 0,25-0,35 м³ породы, которая складируется в терриконики. В настоящее время в регионе накопилось более 1500 отвалов, в каждом из которых в среднем содержится 1144 тыс. м³ отвальной массы [1].

Рис. 1. Отвалы у гольных шахт

Вторая проблема. В условиях истощения мировых запасов нефти и газа актуальным становится поиск альтернативных видов сырья для производства моторных топлив. Эта проблема еще более остро стоит перед Украиной, импортирующей большую часть нефти и газа. Поэтому в последнее время большой интерес стали вызывать возобновляемые источники энергии растительного происхождения, в том числе растительные масла и их эфиры [2]. Растительное масло действительно может служить моторным топливом для дизельных двигателей. Средняя теплотворная способность масла (33,1 МДж/л) лишь чуть меньше, чем у диæльного топлива (35,1 МДж/л). Вышеуказанное растительное масло можно получить из рапса.

Введение в севооборот посевов рапса в качестве энергетической культуры позволяет осуществить кроме топливного и ряд других циклов. Отходы, остающиеся при уборке рапса (брикетированная солома), могут использоваться в качестве печного топлива, а отходы маслоотделения (жмыхи) для корма скота (рис. 2).

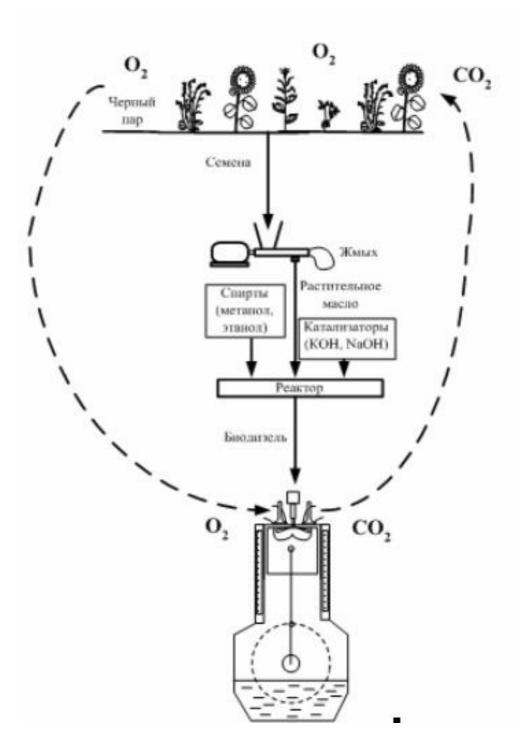


Рис. 2. Схема топливного севооборота по Остраухову А.Е.

Рапс — прекрасный предшественник озимой пшеницы, ярового ячменя, кукурузы и других культур. Он оставляет на гектаре около 60 центнеров корневых остатков и в них — 65 кг азота, 34 кг фосфорной кислоты, 60 кг калия. Немаловажно,

что эта культура является при цветении хорошим медоносом, обеспечивая с гектара до 90 кг меда [3].

Рапсовое масло, как естественный натуральный продукт, можно получать обыкновенным выжиманием семян без химической обработки.

Растительное масло не токсично и не опнеопасно. В отличие от нефтепродуктов, растительное масло не имеет отвратительного вкуса и запаха. И, поскольку растительное масло не содержит сернистых соединений, то и не является причиной кислотных дождей. Растительные масла нейтральны, с точки зрения образования CO_2 при сжигании. И, еще один факт, масличные растения, с помощью своей хорошо развитой корневой системы, задерживают вымывание азотистых соединений и улучшают структуру почвы. Рапс, с экономической точки зрения, позволяет сохранить плодородие и рационально использовать пустующие земли.

Рапсовое масло самое распространенное растительное масло и наиболее устойчиво к влиянию низких температур (без добавок минимум до -10° C).

Рапсовое масло не содержит соединений серы;

Рапсовое масло не токсично, не загрязняет грунтовые воды и водоемы (при утечках полностью разлагается в почве в течение трех недель);

Рапсовое масло – самое безопасное горючее (точка воспламенения 325°C).

Преимущество отдается рапсовому маслу, полученному из рапсовых семян способом холодного прессования (теоретически можно использовать и подсолнечное масло, но у этого масла высокая температура застывания, что отрицательно сказывается зимой на эксплуатации транспортных средств).

Существуют следующие очевидные отличия свойств рапсового масла от дизельного топлива: повышенная вязкость, повышенная и сильно зависящая от температуры плотность, более низкая удельная теплота сгорания, содержание кислорода около 11 % и практическое отсутствие сернистых и ароматических углеводородных соединений [4].

Рапсовое масло содержит до 50% эруковой кислоты, 12-15-олеиновой, 15линолевой, 10-13% линоленовой, а также другие кислоты. Его используют только на технические цели. В пищу оно непригодно: во-первых, высокое содержание линоленовой кислоты при длительном хранении придает ему горьковатый вкус; вовторых, рапсовое масло с большим удельным весом эруковой кислоты отрицательно влияет на сосудисто-сердечную систему [5].

Целью нашей работы является исследование возможности использования отвальной породы шахт Донбасса в качестве удобрений под посев рапса.

Для достижения поставленной цели были решены следующие задачи:

- Исследовать возможность выращивания рапса на смеси отвальной породы угольных шахт с суглинистой породой карьера.
- Оценить экологическое состояние полученной растительной продукции и возможность использования рапсового масла, выращенного на смеси отвальной породы с суглинком карьера, в качестве моторного топлива.

Для решения поставленных задач были использованы нижеприведенные методики. Для определения содержания общего азота использован метод Кьельдаля, общий фосфор определен фотометрическим методом, а общий калий - пламенно-фотометрическим методом. Выявление тяжелых металлов осуществлялось с помощью атомно-эмиссионного спектрального анализа. Содержание «сырого» жира в семенах рапса определено методом обезжиренного остатка.

В качестве объекта исследований использован отвал ГХК «Луганскуголь». Растения рапса выращивали на субстрате, составленном из породы этого отвала и суглинка с днища карьера, находящегося вблизи шахты.

Результаты исследований

На рис. 3 представлены данные по содержанию основных микроэлементов (N, P, K) в отвальной породе.

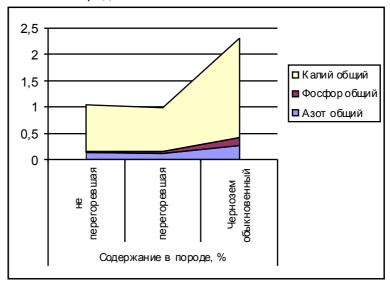


Рис. 3. Содержание N, P, K в отвальной породе

В табл. 1 представлены результаты спектрального анализа, характеризующие содержание в породе микроэлементов.

Результаты спектрального анализа

Таблица 1

1 05y75 tarbi oliokiparbiloto alianisa								
	Содержа	ние, мг/кг		Содержание, мг/кг				
Элемент	неперего-	перего-	Элемент	неперего-	перегорев-			
	ревшая	ревшая		ревшая	шая			
Р	700	700	Be	2	2			
Sb	-	-	Nb	20	20			
Pb	15	15	Мо	2	2			
Cu	30	30	Sn	7	5			
Ti	3000	3000	Li	50	30			
As	-	30	Cd	-	-			
V	100	100	Zr	150	150			
Mn	700	500	Ag	3·10 ⁻⁵	3·10 ⁻⁵			
Ga	10	10	La	10	10			
W	3	3	Zn	150	100			
Ni	50	30	Sc	10	10			
Cr	100	70	Sr	-	-			
Ge	3	2	Ce	-	-			
Co	10	7	Au	-	-			
Bi	2	2	Y	15	10			
Ва	300	300						

Для некоторых химических элементов определена подвижная форма, результаты представлены в табл. 2.

Содержание подвижной формы микроэлементов

a all alternations of the man in the action of the control of the							
Элемент	Содержание подвижной формы, мг/кг						
	неперегоревшая	перегоревшая					
Mn	124	124					
Zn	11,5	50					
Cu	15,4	17					
Pb	13,4	5,45					
Cd	0,48	0,61					
Ni	16,2	18,06					
Co	8,0	4,0					
Fe	8300	9000					

По данным таблицы 1 и 2 в отвальной породе содержится значительное количество металлов, которые отнесены к тяжелым. В связи с этим с помощью методики Института почвоведения и агрохимии им. А.Н. Соколовского нами определена экологическая ситуация по загрязнению тяжелыми металлами отвальной породы (табл. 3).

Таблица 3 Оценка экологической ситуации по загрязнению отвальной породы тяжелыми металлами

Элемент			ϵ	кая синуа- ция	Отношение фактического содержания к ПДКв алов ой фор мы		Экологиче- ская ситуа- ция		Отношение фактического содержания к ПДК подвижной формы		Экологиче- ская ситуа- ция	
	1	2	1	2	1	2	1	2	1	2	1	2
Mn	0,82	0,59	Благопр.	Благопр.	0,47	0,33	Благопр.	Благопр.	2,48	2,48	Кризисн.	Кризисн.
Zn	3	2	Удовлет	Удовлет	1,5	1	Предкр.	Удовлет	0,5	2,17	Благопр.	Кризисн.
Cu	1,5	1,5	Благопр.	Благопр.	0,55	0,55	Удовлет.	Удовлет.	5,13	5,67	Кризисн.	Кризисн.
Pb	1,5	1,5	Благопр.	Благопр.	0,47	0,47	Благопр.	Благопр.	6,7	2,73	Кризисн.	Кризисн.
Cd	-	-	-	-	-	-	-	-	0,69	0,87	Благопр.	Благопр.
Ni	1,25	0,75	Благопр.	Благопр.	0,59	0,35	Удовлет	Благопр.	4,05	4,52	Кризисн.	Кризисн.

Примечание: 1 — показатели, характеризующие неперегорев шую породу, 2 - показатели, характеризующие перегорев шую породу.

Исходя из данных таблицы 3 наблюдается в основном благоприятная и удовлетворительная ситуация при сравнении с кларком и ПДК валовой формы. При сравнении фактического содержания с ПДК подвижной формы экологическая ситуация резко трансформируется в кризисную по содержанию марганца, цинка, меди, свинца и никеля.

Для выполнения первой задачи нами проведен вегетационный опыт (рис.4), матрица планирования которого представлена в табл. 4.

Таблица 4

Матрица планирования вегетационного опыта								
Номер варианта	Фак	торы	Обозначения вариантов					
помор варианта	Α	В	Coccina ioninii Bapilanii CB					
1	0	-	a_0					
2	1	0	a₁b₀					
3	1	1	a₁b₁					
4	2	0	a_2b_0					
5	2	1	a_2b_1					
6	3	0	a_3b_0					
7	3	1	a_3b_1					
8	4	0	a_4b_0					
9	4	1	a_4b_1					
10	5	0	a_5b_0					
11	5	1	a₅b₁					

Примечание: Фактор А: 0- перегорев шая порода, 1 – неперегорев шая порода; Фактор В: 0- 0% породы; 1- 10% породы; 2 – 25% породы; 3 – 50% породы; 4 – 75% породы; 5 – 100% породы;

Рис. 4. Результаты в егетационного опыта

Измельченную породу помол 5 мм, вносили в суглинок в соотношениях: 10% породы и 90% суглинка, 25% породы и 75% суглинка, 50% породы и 50% суглинка, 75% породы и 25% суглинка, 100% породы и 0% суглинка, а для сравнения использован чистый суглинок.

При этом подготовленную смесь помещали в пятилитровые банки, а для чистоты эксперимента все варианты троекратно повторяли. После этого высажива-

ли семена рапса в каждый вегетационный сосуд (согласно норме высева 4,-5,5 млн. семян на 1 га).

Через две недели растения взошли, периодически производились замеры растений. Всхожесть семян колебалась от 6% до 28%. Также отличались длина стебля, его толщина, количество листьев, количество стручков и масса семян. Результаты вегетационного опыта представлены в виде рис. 5.

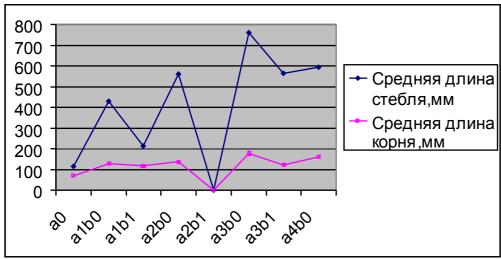


Рис. 5. Показатели роста рапса по в ариантам

В табл. 5 представлены результаты спектрального анализа семян рапса.

Таблица 5

	Результаты спек	трального а	анализа		·		
	Содержание, мг/кг						
элемент	рапс на	рапс на	элемент	рапс на	рапс на		
	породе	почве	O TO WICH T	породе	почве		
Р	>10000	10000	Ве	-	-		
Sb	-	-	Nb	-	-		
Pb	10	5	Мо	15	10		
Cu	50	50	Sn	1,5	1		
Ti	300	100	Li	15	-		
As	-	-	Cd	-	-		
V	3	7	Zr	30	30		
Mn	1000	500	Ag	1,5·10 ⁻³	5·10 ⁻³		
Ga	-	-	La	-	-		
W	-	-	Zn	70	100		
Ni	50	50	Yb	-	-		
Cr	50	70	Sr	300	-		
Ge	-	-	Ce	-	-		
Со	-	-	Au	=	-		
Bi	2	2	Υ	=	-		
Ва	200	100					

В табл. 6 предложена оценка экологической ситуации по загрязнению растений рапса тяжелыми металлами.

Оценка экологической ситуации по загрязнению растений рапса ТМ

Эле- мент	Содержані	ие, мг/кг	Отношение ф содержания тени	кПДКв рас-	Экологическая ситу ация		
	на су бстрате	на почве	на су бстрате	на почве	на су бстрате	на почве	
Mn	1000	500	22,7	11,4	Катаст.	Катаст.	
Zn	70 100		1,4	2	Кризис.	Катаст.	
Cu	50 50		5	5	Катаст.	Катаст.	
Pb	10	5	33	16,6	Катаст.	Катаст.	
Cd	-	-	-	-	-	-	
Ni	50 50		100	100	Катаст.	Катаст.	
Co			-	-	-	-	

Исходя из данных таблицы 6 наблюдается катастрофическая ситуация по содержанию марганца, меди, свинца и никеля как в семенах, выращенных на почве, так и на субстрате.

С целью определения возможности использования рапсового масла, выращенного на смеси отвальной породы угольных шахт с карьерной породой, была определена масличность семян рапса. На рис. 6 представлены результаты определения масличности и влажности семян рапса.

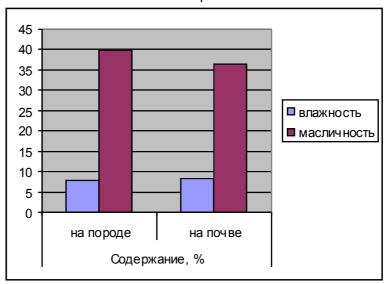


Рис. 6. Результаты анализа

Масличность семян рапса, выросшего на породе составила 39,97% при масличности 36,32% на контроле (чистая почва).

Рапсовое масло экстрагировали из семян с помощью растворителя, в качестве которого выступал эфир, т.к. по данным исследований Луганского областного государственного проектно-технологического центра охраны плодородия грунтов и качества продукции, при экстрагировании тяжелые металлы, имеющиеся в семенах, не переходят в жидкость, а остаются в шроте семян. После этого рапсовое масло, полученное из растений, выращенных на смеси отвальной породы с суглинком, вполне пригодно для использования в качестве моторного топлива.

Выводы

Исходя из проведенных исследований, можно сделать следующие выводы:

- 1. Смесь отвальной породы с суглинком карьера подходит для выращивания рапса. Самая высокая всхожесть семян наблюдается при соотношении 10% не перегоревшей породы и 90% суглинка. Лучшие показатели роста растений наблюдаются при соотношении перегоревшей породы с суглинком 50%:50% и 75%:25%.
- 2. Масличность семян рапса, выращенных на смеси отвальной породы и с суглинком выше на 3,5%, чем на чистой почве.
- 3. Рапсовое масло, полученное только путем экстрагирования, а не способом холодного прессования, из растений, выращенных на смеси отвальной породы и суглинка может быть использовано в качестве моторного топлива в дизельном двигателе.

Литература

- 1. Бакланов В.И., Подкопаев А.А. Защитно-декоративное озеленение террикоников Донбасса // Уголь Украины. 1985.-№5.-с.34-36.
- 2. А.П. Марченко, А.Ф. Минак, И.А. Слабун. Результаты исследований рабочего процесса и токсичности дизеля, работающего на топливах растительного происхождения // Двигатели в нутреннего сгорания. 1-2/2003.-с.33-40.
 - 3. А. Ку́ ликов. Дизели меняют рацион // Наука и жизнь. 1993. -№6. –с.26-30.
- 4. Н. Ку шель. Нату ральное рапсовое масло горючее для дизельных моторов, блочных ТЭЦ и котельных. Опыт федеральных земель Германии.// Москва. март 2001.
- 5. Рапс, сурепица / А.А. Гольцов, А.М. Ковальчук, В.Ф. Абрамов, Н.З. Милащенко. М.: Колос. 1983. –с. 172-175.