МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 621.793.72

Исследование поверхностной плотности микрокапель в титановых покрытиях, полученных в вакуумно-дуговом испарителе с арочным магнитным полем

Гранкина О.О, студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, Кафедра «Плазменные энергетические установки»

Гранкина Т.О., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, Кафедра «Плазменные энергетические установки»

Научный руководитель: Кириллов Д.В., ассистент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана <u>kirillovdv@bmstu.ru</u>

Введение

Вакуумно-дуговые испарители активно используются в машиностроении для нанесения различных износостойких, коррозионностойких, селективных, жаростойких и антифрикционных покрытий.

Особенностью вакуумно-дугового разряда является наличие в плазменном потоке микрокапель материала испаряемого катода, что приводит к неоднородности покрытий. Это снижает их служебные характеристики, в частности, антикоррозионные, декоративные, оптические и др.

Несмотря на всё более широкое применение дуговых испарителей в технологии осаждения покрытий, как в отечественной, так и в зарубежной литературе мало внимания уделено изучению микрокапельной фазы в продуктах эрозии катода. Недостаточно данных о размерах, форме капель, их количестве, массовой доли капель в покрытии.

В работе [1] приведены исследования титанового покрытия, осаждённого дуговым испарителем с расходящимся магнитным полем при наличии азота в разрядном промежутке. Минимальный диметр, зафиксированный среди обнаруженных капель, составил 0,1 мкм. Указывается, что максимальный диаметр капель составляет 40 мкм. Приведено распределение числа капель в зависимости от их размера для покрытия TiN при разных значениях давления и расположения образцов относительно катода. Показано, что общей тенденцией для всех построенных кривых является монотонный рост числа

капель с уменьшением их диаметра. Минимальный диаметр, который учитывался при построении зависимостей, составил 2 мкм.

В работе [2] были приведены результаты изучения поверхности покрытий TiN, CrN, TiBN, полученных при напылении испарителем, работающем при постоянном токе разряда и в импульсным режиме. Указывается, что в основном наблюдались капли небольшого размера с диаметром меньше, чем 1 мкм. Капли с диаметром более чем 10 мкм практические не наблюдались. В статье приведена зависимость числа капель от их диаметра для различных материалов покрытий и режимов. Установлено, что количество капель снижается при применении импульсного режима, по сравнению с режимом постоянного тока на 15% для TiN и на 8% для TiBN.

В работе [3] были исследованы пленки аморфного углерода, Ті и Аu, нанесенные на кремниевую подложку вакуумно дуговым методом с магнитной сепарацией капель. Сообщается, что капли имеют размеры от 0.2 до 100 мкм. Представлены функции распределения капель по размерам для Ті и Au. На алмазоподобных плёнках и плёнках золота были обнаружены капли с размером меньшим, чем 100 нм. В работе также отмечено, что число капель уменьшается с увеличением температуры плавления материала катода, а размер микрокапель связан с размером катодного пятна.

В работах [4,5] изучалось распределение размеров капель и их массовая доля в покрытиях Ті и ТіN при работе дугового испарителя с расходящимся и арочным магнитным полем. Показано, что наличие арочного магнитного поля приводит к снижению размеров капель и их массовой доли в покрытии.

Таким образом, в отечественных и зарубежных публикациях не достаточно освещён вопрос о влиянии индукции магнитного поля и его конфигурации на размеры микрокапель, в особенности влияния магнитного поля арочной конфигурации, предложенной для удержания катодного пятна ещё в 1959 году [6].

Целью работы является исследование микрокапельной фазы в покрытии, осаждённом вакуумным дуговым испарителем с арочным магнитным полем, в микро и нано диапазоне и получение данных о поверхностной плотности микрокапель различного диаметра.

Оборудование

По имеющимся данным [1-5] размеры микрокапель могут быть как менее 0,1 мкм, так и более 10 мкм. Для измерения размеров капель в столь широком диапазоне использовалось два типа микроскопов. Для измерения микрокапель размером более 1 мкм применялся конфокальный микроскоп Carl Zeiss Axio Imager.Z2m с лазерным сканирующим модулем LSM700. Для капель размером менее 1 мкм применялся атомносиловой сканирующий микроскоп Bruker ScanAsyst MultiMode8.

Конфокальный микроскоп сочетает в себе два метода получения изображения: традиционная оптическая микроскопия и лазерная конфокальная микроскопия. Микроскоп оборудован объективами EC Epiplan – APOCHROMAT- NEOFLUAR 10x, 20x, и Epiplan – APOCHROMAT 50x, 100x. Наилучшее пространственное разрешение микроскопа составляет 120 нм при поле сканировании 123x123 мкм, разрешение по вертикали 10 нм.

Измерения на атомно-силовом микроскопе проводились в контактном режиме кремниевым кантеливером модели SCANASYST-AIR с радиусом закругления острия 25 нм.

Покрытия на образцы осаждались торцевым вакуумным дуговым испарителем (рис. 1) с диаметром катода 150 мм и с управляемым движением катодных пятен [7]. Дуговой испаритель оснащен электромагнитной системой, которая создаёт на поверхности катода арочное магнитное поле и позволяет изменять величину и конфигурацию магнитного поля. Положение и скорость движения катодного пятна определяется величиной и соотношением токов в катушках магнитной системы (рис. 1). При этом изменялся радиус и скорость кругового движения катодного пятна [8].

Величина индукции магнитного поля определялась Gaussmeter GM-2 AlphaLab Inc. на расстоянии 1 мм от поверхности катода в точке 4 (рис. 1) под аркой магнитного поля.

Рис. 1. Схема дугового испарителя: 1 - катод, 2 – магнитопровод, 3 – внутренняя электромагнитная катушка, 4 – внешняя электромагнитная катушка 5- положение катодной привязки

Эксперимент

В используемой методике время осаждения покрытия подбиралось таким образом, чтобы можно было измерить размеры каждой капли в отдельности, а толщина покрытия была меньше или соизмерима с размерами капель. Это делалось для того, чтобы избежать трудностей и неточностей, связанных с тем, что в толстых покрытиях (более, чем несколько сот нанометров) при большом времени нанесения, капли накладываются друг на друга, а толщина плёнки сопоставима с размерами капель.

Покрытия наносились на образцы размером 50х30 мм и толщиной 3 мм из флоатстекла М1. Подготовленные и очищенные образцы устанавливались на подложкодержатель на расстоянии 240 мм от катода перпендикулярно потоку плазмы (рис. 2). Катод испарителя был изготовлен из титана марки ВТ1-0. При достижении в вакуумной камере остаточного давления 1.6х10⁻³ Па, в камеру напускался аргон до давления 1.5х10⁻² Па. Покрытия наносились при постоянном токе разряда 140 A и индукции арочного магнитного поля 12,5 мТл.

Рис. 2. Схема нанесения покрытия: 1 – камера испарителя; 2 – катод-мишень; 3 – магнитная катушка; 4 – нейтральная вставка; 5 – плодложкодержатель; 6 – подложка;

Перед началом осаждения покрытия дуговой испаритель закрывался заслонкой, поджигался дуговой разряд, и производилась очистка катода в течение 30 секунд. Затем в течение 5 с производилось напыление покрытия. При таком времени осаждения толщина покрытия составляет 65 нм. Это даёт возможность проводить измерение размеров каждой капли в отдельности, так как размеры капель не меняются в результате осаждения покрытия на их поверхность и, при этом, капли не замуровываются в растущем покрытии.

При проведении измерений на оптическом микроскопе, для каждого образца был сделан ряд снимков объективом 100х размером 128х128 мкм с разрешением 512х512 пикселей для измерения капель с диаметром от 1 - 10 мкм и ряд снимков объективом 50х размером 69х69 мкм с разрешением 512х512 пикселей для подсчёта количества капель диаметром более 10 мкм (рис. 3).

Снимки были сделаны в центральной области образцов. Далее с помощью программного обеспечения микроскопа проводились измерения диаметров микрокапель на каждом из снимков. При этом определялась и фиксировалась площадь, на которой проводились измерения. Всего для построения плотности распределения капель по поверхности было проведено не менее 400 измерений.

a)

б)

Рис. 3. Топография поверхности образцов с титановым покрытием: а) снимок поверхности образца титанового покрытия; б) крупная капля (сканирование в конфокальном режиме) на поверхности подложки

Исследование микрокапель в диапазоне размеров менее 1 мкм проводилось на атомно-силовом микроскопе. Для каждого образца был сделан ряд снимков размером 100х100 мкм с разрешением 903х924 пикселей для измерения капель с диаметром от 0,5 - 1 мкм и ряд снимков размером 10х10 мкм с разрешением 899х924 пикселей для измерения капель диаметром до 0,5 мкм (рис. 4).

Рис. 4. Снимок поверхности образца с титановым покрытием

Измерение размеров микрокапель проводилось с помощью программного обеспечения микроскопа по схеме, аналогичной предыдущей: диаметр капель

измерялся на соответствующей площади поверхности до достижения достаточного количества измерений.

Результаты измерений

На основании полученного массива размеров капель на известной площади было построено распределение числа капель в зависимости от их размеров. Для этого диапазон диаметров капель в выборке был разбит на группы по диаметрам с интервалом равным 0,1 мкм: $d_i < d < d_i + 0.1$ мкм.

Для определения поверхностной плотности капель *Ni/S* с диаметрами, лежащими в диапазоне *i*, использовалось следующее соотношение:

$$\frac{N_i}{S} = \frac{\sum N_{k.i}}{\sum S_k},\tag{1}$$

где *k* - номер обработанного снимка,

 $N_{k,i}$ - количество капель с диаметрами, лежащими в диапазоне *i* на снимке *k*,

 S_k – площадь снимка k,

 $\sum S_k$ - сумма площадей всех обработанных снимков.

После обработки массива экспериментальных данных по выражению (1) строилась зависимость распределения поверхностной плотности капель при различных диаметрах (рис. 5).

Рис. 5. Поверхностная плотность капель в титановом покрытии при различных диаметрах (катод BT1-0, магнитное поле на поверхности катода 12,5 мТл, ток разряда 140 A)

Из полученных данных следует, что мирокапли в тиатновом покрытии, осаждённом вакуумно-дуговым испарителем с арочным магнитным полем, имеют

размеры от 30 нм до нескольких десятков микрон. Распределение капель по размерам имеет ярко выраженный максимум в области 0,6 мкм. При этом число капель, поступающих на единицу поверхности в единицу времени составляет 168 капель/(мм²·с).

Вывод

В данной работе было показано, что капли имеют размер от 30 нм до нескольких десятков микрон. При этом, минимальный диметр, зафиксированный среди обнаруженных капель, составил 0,3 мкм, максимальный – 21 мкм. Полученное распределение имеет максимум при размере капель около 0,6 мкм. По виду распределения было установлено, что до наблюдаемого максимума распределения с уменьшением значение поверхностной плотности диаметра капель капель резко снижается. Поверхностная плотность капель с ростом их диаметра после максимума медленно и монотонно снижается, что согласуется с результатами работ [1-5] для капель диаметром более 1 мкм.

Список литературы

- 1. Аксенов А. И. Вакуумная дуга в эрозионных источниках плазмы / под общ. ред. И.М. Неклюдова, В.М. Шулаева. Харьков: ННЦ «ХФТИ», 2005. С. 212.
- Keutel K.; Fuchs H.; Mecke H.; Edelmann Chr. Modified pulse arc deposition for reducing of droplet emission // XVIIIth. International Syposium on Discharges and Electrical Insulation in Vacuum, Eindhoven, Niederlande, 17.-21. August 1998, Proceedings, P. 562-565.
- 3. Monteiro O., Anders A.. Vacuum Arc Generated Macroparticles in the Nanometer Range // IEEE Transactions on plasma science. 1999. Vol. 27. P 1030-1033: DOI: 10.1109/27.782276.
- Береговский В.В, Марахтанов М.К., Духопельников Д.В, Щуренкова С.А. Объемное содержание и дисперсный состав капельной фазы в покрытиях, полученных вакуумнодуговым методом на установке Platit π-80 // Упрочняющие технологии и покрытия. 2009. № 1. С. 3-5.
- 5. Береговский В.В., Духопельников Д.В., Марахтанов М.К., Щуренкова С.А. Сравнительный анализ капельной фазы в покрытиях, полученных методом вакуумнодугового осаждения на установках типа ННВ и Platit π80 // Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2008. №4. С. 29-

32. Электрон. журн. Режим доступа: <u>http://vestnik.magtu.ru/content_en/Vestnik%20MSTU</u> <u>%20for%202008,%20Number%204.pdf</u> (дата обращения 20.09.2014).

6. Кесаев И.Г., Пашкова В.В. Электромагнитная фиксация катодного пятна // Журнал технической физики. 1959. Т. 29. № 3, С. 287-298.

 Духопельников Д.В., Кириллов Д.В., Рязанов В.А., Чжо Вин Наинг. Оптимизация траектории движения катодного пятна для повышения равномерности выработки катода вакуумного дугового испарителя // Инженерный журнал: наука и инновации. 2013. № 10 (22). С. 42. Режим доступа:

http://engjournal.ru/catalog/machin/plasma/1042.html (дата обращения 20.09.2014).

 Духопельников Д.В., Кириллов Д.В, Щуренкова С.А. Динамика движения катодных пятен по поверхности катода в поперечном магнитном поле // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2012. № 1. Режим доступа: http://technomag.bmstu.ru/doc/256359.html (дата обращения 20.09.2014).