
Automatic Derivation of Finite-State Machines for Behavior Control∗

Blai Bonet
Universidad Simón Bolı́var

Caracas, Venezuela
bonet@ldc.usb.ve

Héctor Palacios
Universidad Simón Bolı́var

Caracas, Venezuela
hlp@ldc.usb.ve

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, SPAIN
hector.geffner@upf.edu

Abstract
Finite-state controllers represent an effective action selection
mechanisms widely used in domains such as video-games
and mobile robotics. In contrast to the policies obtained from
MDPs and POMDPs, finite-state controllers have two advan-
tages: they are often extremely compact, and they are general,
applying to many problems and not just one. A limitation
of finite-state controllers, on the other hand, is that they are
written by hand. In this paper, we address this limitation, pre-
senting a method for deriving controllers automatically from
models. The models represent a class of contingent problems
where actions are deterministic and some fluents are observ-
able. The problem of deriving a controller is converted into
a conformant problem that is solved using classical planners,
taking advantage of a complete translation into classical plan-
ning introduced recently. The controllers derived are ‘gen-
eral’ in the sense that they do not solve the original problem
only, but many variations as well, including changes in the
size of the problem or in the uncertainty of the initial situa-
tion and action effects. Several experiments illustrating the
automatic derivation of controllers are presented.

Introduction
Figure 1(a) illustrates a simple 1 × 5 grid where a robot,
initially at one of the two leftmost positions, must visit the
rightmost position, marked B, and get back to A. Assuming
that the robot can observe the mark in the current cell if any,
and that the actions Left and Right deterministically move
the robot one unit left and right respectively, the problem
can be solved by a contingent planner or a POMDP solver,
resulting in the first case in a contingent tree, and a function
mapping beliefs into actions in the second (Levesque 1996;
Kaelbling, Littman, and Cassandra 1999). A solution to the
problem, however, can also be expressed in a simpler man-
ner as the finite-state controller shown in Fig. 1(b). Starting
in the controller state q0, this controller selects the action
Right, whether A or no mark is observed (‘−’), until ob-
serving B. Then the controller switches to state q1 where it
selects Left as long as no mark is observed.

The finite-state controller displayed in the figure has two
features that make it more appealing than contingent plans
∗This AAAI-10 Nectar paper is based on (Bonet, Palacios, and

Geffner 2009).
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) A B

(b)
q0

A/Right
-/Right

q1
B/Left

-/Left

Figure 1: (a) A planning problem where an agent initially in one of
the two leftmost positions has to get to B and then back to A. These
two marks are observable. (b) A 2-state controller that solves this
problem and many variations. The circles are the controller state,
and an edge q → q′ labeled o/a says to do a when observing o in
the controller state q, switching then to q′.

and POMDP policies: it is very compact (it involves two
state only), and it is very general. Indeed, the problem can
be changed in a number of ways and the controller will still
work. For example, the size of the grid can be changed
from 1 × 5 to 1 × n, the agent can be placed initially any-
where in the grid (except at B), and the actions can be made
non-deterministic by the addition of ‘noise’. This general-
ity is well beyond the power of contingent plans or exact
POMDP policies that are tied to a particular state space.
For these reasons, finite-state controllers are widely used in
practice, from controlling non-playing characters in video-
games (Buckland 2004) to mobile robots (Murphy 2000;
Mataric 2007). Memoryless controllers or policies (Littman
1994) are widely used as well, and they are nothing but
finite-state controllers with a single state. The additional
states provide controllers with a memory that allows differ-
ent actions to be taken given the same observation.

The benefits of finite-state controllers come at a price: un-
like contingent trees and POMDP policies, they are usually
not derived automatically from a model but are written by
hand; a task that is non-trivial even in the simplest cases.
There have been attempts for deriving finite-state controllers
for POMDPs with a given number of states (Meuleau et al.
1999; Poupart and Boutilier 2003; Bernstein et al. 2009),
but the problem is then solved approximately with no cor-
rectness guarantees.

In this work, we present the model-based method for de-
riving finite-state controllers automatically that we recently



introduced (Bonet, Palacios, and Geffner 2009). The models
represent a class of contingent problems where actions are
deterministic and some fluents are observable. The task of
deriving a controller for such models is converted into a con-
formant planning problem that is solved by state-of-the-art
classical planners, taking advantage of a complete transfor-
mation (Palacios and Geffner 2009). A conformant problem
is a contingent problem with no sensing whose solutions,
like solutions of classical problems, are action sequences.

Model, Language, and Control
Finite-state controllers are derived from a simple but expres-
sive model for contingent planning in which actions are de-
terministic and may have conditional effects but no precon-
ditions, and sensing is passive meaning that the set of ob-
servable fluents is fixed and does not change with the actions
taken.

More precisely, we consider a class of control problems
of the form P = 〈F, I,A,G,R,O,D〉, where F , I , G and
A denote the set of (primitive) fluents, the initial and goal
situations, and the set of actions respectively, as in a classical
planning problem, except that I is not a set of literals but a
set of clauses that accommodate uncertainty. In addition, R
stands for a set of non-primitive fluents defined in terms of
the primitive fluents by means of a collection D of axioms
or ramification rules, and O is a subset of R that represent
the observable fluents. Likewise,
• A state s is a truth valuation over the primitive fluents F

that defines values for all non-primitive fluents R through
the axioms r ⇐ C in D (Thiébaux, Hoffmann, and Nebel
2005).

• I is given by a set of F -clauses so that the possible initial
situations are the truth valuations over F that satisfy I .

• Actions have empty preconditions and conditional effects
of the form C → C ′, where C is a set of literals over
F ∪R and C ′ is a set of literals over F only.

• The observable fluents O ⊆ R denote the information
perceived by the agent: an observation o is the set of O-
literals that are true in a given state. The observation that
corresponds to state s is denoted as o(s), and the set of all
observations as O∗.

While the solution of control problems can be expressed in
many forms, including policies mapping belief states into
actions, contingent plans, and trees, we consider solutions
that are represented by finite-state controllers (FSCs) of the
form C = 〈Q,A,O∗, δ, q0〉, where Q is a set of states or
nodes,1 A and O∗ are sets of actions and observations, δ :
O∗×Q→ A×Q is a (partial) transition function that maps
observation and node pairs into action and node pairs, and
q0 ∈ Q is the initial node. The nodes serve as the controller
memory allowing the selection of different actions given the
same observation. A FSC with one node is memoryless.

Controllers are represented in two ways: graphically, us-
ing circles to represent nodes and edges with labels to repre-
sent transitions (Fig. 1), and as sets of tuples t = 〈o, q, a, q′〉
that express that δ is defined on 〈o, q〉 and maps it to 〈a, q′〉.

1Henceforth, we refer to controller states as nodes.

A controller C provides an specification of the action
ai+1 to do next after a given observation-action sequence
〈o0, a0, . . . , ai, oi+1〉. The action to do at time i = 0 is a if
t = 〈o0, q0, a, q′〉 is in C and o(s0) = o0, and q′ is the con-
troller node that results at time i = 1. Similarly, the action
to do at time i in the state s is a if t = 〈o, q, a, q′〉 is in C,
o(s) = o, and the controller node at time i is q.

A controller solves a problem if all the state trajectories
that it produces, starting from an initial state s0 ∈ I , reach a
goal state. This is a weak form of solution as it does not de-
mand that all such trajectories terminate in a goal state. This
difference does not matter when the goals are observable but
is relevant otherwise.

Formulation
The key result in our work is that the problem of deriving
a controller CN with N nodes for a control problem P can
be translated into the problem of solving a conformant plan-
ning problem PN (Bonet, Palacios, and Geffner 2009). This
translation performs basically the following tasks:

1. it translates the observations o ∈ O∗ and the controller
nodes q ∈ Q into fluents in PN ,

2. it sets the fluent (corresponding to) q0 to true in the initial
situation, and sets all fluents q, with q 6= q0, and all fluents
o to false,

3. it makes the effects of the actions a in P conditional on
each observation o and fluent q by defining ‘controller ac-
tions’ b(t), for each tuple t = 〈o, q, a, q′〉, that behave like
a when o and q are true, and replace q by q′,

4. it captures the effects of the actions on the non-primitive
fluents by means of a single ‘ramification action’, and

5. it assures that all controller actions used in a solution
are pairwise consistent; i.e., that no plan contains actions
b(〈o, q, a, q′〉) and b(〈o, q, a′, q′′〉) with 〈a, q′〉 6= 〈a′, q′′〉.

The problem PN is conformant because the uncertainty
in the initial situation of P is transferred into the uncer-
tainty about the initial situation of PN , while the observa-
tions o ∈ O∗ are compiled away into the conditional effects
of the actions of PN .

For solving PN , a sound and complete translation KS0

that transforms PN into a classical planning problem
KS0(PN ) is used (Palacios and Geffner 2009). The result-
ing classical planning problem, KS0(PN ), is solved with ei-
ther a sequential suboptimal heuristic-search planner, or an
optimal parallel SAT-based planner. For lack of space, we
omit further details. We mention, however, that the trans-
lation is sound and complete, meaning that there is a con-
troller CN with N nodes for solving P iff there is a plan
for the classical planning problem KS0(PN ). In that case,
the controller can be read off the plan. There is no free
lunch though, and both the translation of P into PN , and the
translation of PN intoKS0(PN ) are exponential in the worst
case. The experiments below, however, show that this worst-
case behavior is not necessarily a practical impediment.



q0

q3

q1

q2

−/Down

C/Up

−/Left

A/Down −/Right

D/Right

−/Up
B/Left

A ↓ ← ← ← B

↓ ↑
↓ ↑

D → → → ↑ C

--→ Forward A-→ Forward

AW→ TurnRight B-→ Forward

BW→ TurnRight C-→ Forward

CW→ TurnRight D-→ Forward

DW→ TurnRight

A � → → � B

↑ ↓
↑ ↓

D � ← ← � C

Figure 2: Top: 4-state controller obtained for the instance of Hall-
A shown on right, with resulting execution. Bottom: memoryless
controller obtained for the instance of Hall-R shown on right, with
resulting execution. In Hall-A agent moves in each of the four
directions, in Hall-R it only moves forward and rotates. Both con-
trollers generalize to Halls of any size and work in the presence of
noisy actions.

Experiments
We computed controllers for several problems as described
next; further details can be found in Bonet, Palacios, and
Geffner (2009).

Halls
The problem in Fig. 1 is the version 1 × 5 of the Halls do-
main. The n× n version, includes four 1× n halls arranged
in a square, and observable marks A, B, C, D at the four
corners. Starting in A, the robot has to visit all the marked
positions and return to A. We consider two representations
for the problem: in Hall-A, there are four actions that move
the robot along each compass direction, in Hall-R, there are
actions to move forward and to turn 90◦ left or right, and the
presence of a wall in front of the robot can be detected (W).

A 4-state controller obtained for the 4×4 instance of Hall-
A, and a memoryless controller obtained for a 4×4 instance
of Hall-R are shown in Fig. 2. The arrows in the cells show
the execution that results when the controller is applied to
the initial state where the agent is atA. Both controllers gen-
eralize to Halls of any dimension, and work also in the pres-
ence of noise in both the initial situation and in the action
effects. This generalization is achieved in spite of having
inferred the controller from a fixed initial state, and results
from the change of representation: sequential plans do not
generalize as they do not represent finite-state controllers,
unless we associate controller nodes with time indices. By
removing the dependence on time indices, the generaliza-
tion is achieved. Another way to look at the controllers, is
as contingent plans in a language where looping constructs
are allowed (Levesque 2005).

Blocks
Blocks is the problem of picking up a green block from a
tower with n blocks of different colors. We encode the do-
main with three actions, Unstack, Drop, and Collect, that

q0

-G/Unstack
H-/Collect

q1

--/Unstack

HG/Drop

H-/Drop

q0

--S/Move

BH-/Drop
-H-/Drop

BHS/Drop
-HS/Drop

q1

B-S/Move

BH-/Move

-H-/Move

-HS/Move

B-S/Pickup
BHS/Pickup

Figure 3: Left. Blocks: 2-state controller for collecting a green
block in a tower, by observing whether the top block is green and
whether an object is being held. Right. Gripper: 2-state controller
for the instance (3, 5) that consists of a robot with 3 grippers and an
uncertain number of balls, from 1 to 5. The controller generalizes
for problems with an arbitrary number of balls and grippers.

FNU→WanderForTrash AAU→ Grab
FAU→WanderForTrash AFU→WanderForTrashcan
FFU→WanderForTrash AFU→WanderForTrashcan
NAU→MoveToTrash FNH→MoveToTrashcan
NNU→MoveToTrash FAH→ Drop
NFU→MoveToTrash FAH→ Drop
ANU→ Grab

Figure 4: Memoryless Controller for Trash Collecting: first posi-
tion in observation vector refers to how far is the trash (Far, Near,
At), the second to how far is the trash can (Far, Near, At), and the
third, to whether trash is being held.

take no arguments and have conditional effects. The first is
that unstack x clears y and puts x in the gripper, if x is clear
and is on y; the second that a block can be discarded when
held in the gripper; the third, that the goal is achieved if the
collect action is done while a green block is being held (a
collect action with a block of a different color results in a
dead-end). The observable fluents are whether the top block
in the tower is green (‘G’), and whether a block is being held
(‘H’). Thus the condition that the block being held is green
is not observable, and a memoryless controller would not
solve the problem. A 2-state controller that generalizes to
any number of blocks is shown in Fig. 3 (Left).

Gripper

In this problem, a robot must carry balls from room B to
room A. The robot can move between rooms, and it can pick
up and drop balls using its grippers. The observations con-
sist of whether there are balls left in B (‘B’), whether there
is space left in the grippers (‘S’), and whether the robot is
holding some ball (’H’). The robot cannot directly observe
its location yet it is initially at room A with certainty. The
instance (n,m) refers to a problem with n grippers and an
uncertain number of balls in room B, that could range from
1 to m. Fig. 3 (Right) shows the controller obtained for the
instance (3, 5) which also works for problems (n,m) for ar-
bitrary n and m. The robot goes first to B, and picks up
balls until no space is left in the grippers, then it moves to
A, where it drops all the balls, one by one, repeating the cy-
cle, until no balls are left in B and the robot is not holding
any ball. In this case, the goal is observable and is true when
neither B nor H are true.



q0

TB/Up
-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

Figure 5: Left: The visual marker shown as an ‘eye’ must be
placed on a green block in the blocks-world scene shown, where
the location of the green block is unknown. Right: The controller
derived for the instance that works also for any number and config-
uration of blocks

Trash Collecting
Figure 4 shows a controller for a trash-can collecting robot
(Connell 1990; Murphy 2000; Mataric 2007), that can wan-
der for a target object until the object is near, can move to
an object if the object is near, can grab an object if located
right where the object is, and can drop an object if the object
is being held. The task is to move around, wandering for
trash, and when a piece of trash is being held, wander for
a trash can to drop it. In the encoding, the observable flu-
ents are trash-held, far-from-X , near-X and at-X where X
is trash or trashcan. The observations correspond to vectors
ABC where A refers to how far is the trash (Far, Near, At),
B refers to how far is the trash can (Far, Near, At), and C
refers to whether the trash is being held (Held, Unheld).

Moving a Visual Marker
The second blocksworld problem is about placing a vi-
sual marker over a green block whose location is unknown
(Fig. 5), and is inspired by the use of deictic representations
(Chapman 1989; Ballard et al. 1997). The visual marker,
initially at the lower left corner, can be moved along the four
compass directions between the cells of the scene, one cell
at a time. The observations are whether the cell beneath
the marker is empty (‘C’), is a non-green block (‘B’), or is
a green block (‘G’), and whether it is on the table (‘T’) or
not (‘−’). We obtained controllers for different instances
yet none generalized over arbitrary configurations. An in-
stance (n,m) contains m horizontal cells and n blocks in
some disposition. By restricting the left/right movements of
the visual marker to the level of the table (i.e., when ‘T’ is
observed to be true), we obtained a controller that works for
any number of blocks and cells. The controller is shown on
the right of Fig. 5; it basically searches for a tower with a
green block from left to right, going all the way up to the
top in each tower, then going all the way down to the table,
and moving to the right, and iterating in this manner until
the visual marker reaches a green block.

Summary
We have presented the method for deriving finite-state con-
trollers automatically recently introduced by Bonet, Pala-
cios, and Geffner (2009). The problem of deriving a con-
troller is converted into a conformant planning problem that
is then transformed into a classical planning problem and
solved by state-of-the-art planners. The controllers derived

in this way are often general in the sense that they do not
solve the original problem only, but many variations too, in-
cluding changes in the size of the problem or in the uncer-
tainty of the initial situation and action effects.

In the future, we would like to investigate the guaran-
tees on the generalization achieved by the resulting con-
trollers, the synthesis of controllers when actions have non-
deterministic effects, and the problem of termination when
the goal is not observable.

Acknowledgements The work of H. Geffner is partially
supported by grant TIN2009-10232, MICINN, Spain.

References
Ballard, D.; Hayhoe, M.; Pook, P.; and Rao, R. 1997. Deic-
tic codes for the embodiment of cognition. Behavioral and
Brain Sciences 20(04):723–742.
Bernstein, D.; Amato, C.; Hansen, E. A.; and Zilberstein, S.
2009. Policy iteration for decentralized control of Markov
decision processes. Journal of Artificial Intelligence Re-
search 34:89–132.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. ICAPS, 34–41.
Buckland, M. 2004. Programming Game AI by Example.
Wordware Publishing, Inc.
Chapman, D. 1989. Penguins can make cake. AI magazine
10(4):45–50.
Connell, J. H. 1990. Minimalist Mobile Robotics. Morgan
Kaufmann.
Kaelbling, L. P.; Littman, M.; and Cassandra, A. R. 1999.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101:99–134.
Levesque, H. 1996. What is planning in the presence of
sensing? In Proc. AAAI, 1139–1146.
Levesque, H. 2005. Planning with loops. In Proc. IJCAI,
509–515.
Littman, M. L. 1994. Memoryless policies: Theoretical lim-
itations and practical results. In Cliff, D., ed., From Animals
to Animats 3. MIT Press.
Mataric, M. J. 2007. The Robotics Primer. MIT Press.
Meuleau, N.; Peshkin, L.; Kim, K.; and Kaelbling, L. P.
1999. Learning finite-state controllers for partially observ-
able environments. In Proc. UAI, 427–436.
Murphy, R. R. 2000. An Introduction to AI Robotics. MIT
Press.
Palacios, H., and Geffner, H. 2009. Compiling Uncertainty
Away in Conformant Planning Problems with Bounded
Width. Journal of Artificial Intelligence Research 35:623–
675.
Poupart, P., and Boutilier, C. 2003. Bounded finite state
controllers. In Proc. NIPS, 823–830.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1–2):38–69.


