
1

Physics-based Water Interaction and Shading:
The SiViFlow Algorithm

David Sena

Instituto Superior Técnico

davidsena@ist.utl.pt

Abstract—This work presents a new approach called SiViFlow that simulates watercourses in real-time. The algorithm is flexible

enough to be used in any type of environment and allows a river to be dynamically generated given any riverbed. The component that

manages the flow is responsible for the water animation and allows the use of various techniques to simulate visual features. As all the

information is dynamically generated, SiViFlow also reacts to dynamic objects that come in contact with the river, properly adjusting

the course of the flow. This work helps accelerate and improve the methods of creating realistic rivers so that they can be used in video

games.

Keywords—Water, Real-Time, River Animation, Flow Simulation.

1 INTRODUCTION

With the introduction of faster hardware and increasing
demand for more realistic nature effects, researchers
have been trying to create feasible nature models that
are computationally viable and meet the constraints
imposed by real-time applications. Nowadays applica-
tions such as video games try to simulate fully featured
worlds with weather effects, large rivers and oceans,
realistic animation systems among many other traits
common in the real world. Due to the tight restric-
tions of real-time applications, an approach to simulate
this type of phenomena would have to contain only
the minimum amount of physical features necessary to
make a river behave correctly and still leave enough
computational resources available to draw a convincing
visual representation of the fluid being simulated. The
objective of the presented work is to create a new
approach that simulates watercourses with any width,
that flow correctly and are dynamic enough to be able
to adapt to the features of their surroundings. A visually
appealing representation of the flow being simulated is
also included in order to be able to recreate with fidelity
the watercourses from a visual standpoint. Our focus
will reside mainly on the architecture of the algorithm
and less on implementation specific optimization and
details. In order to focus the objectives of our work inside
a broad subject such as fluid dynamics and as this work
will be used in the context of video games, we decided to
use real-time rendering techniques that allow the use of
this approach in highly complex scenes. The final result
had to be easily configurable both in terms of visual
appearance and physical parameters in order to allow
this approach to be used in any setting. This would allow
not only to change the visual features but also the be-
haviour of the river according to its surrounding, making
it more flexible to adapt to different surroundings (e.g. it
should be flexible enough to able portray both a tropical

or a sea like environments). Two main contributions in
the dynamic flow simulation were done in our work.
First the automatic generation of a velocity vector field
given an arbitrary river surface mesh. Given the mesh
as input, the algorithm analyses and generates enough
data to be able to create a vector field that describes
not only the direction of the flow but also its velocity at
any point. Second once we’ve calculated the vector field,
we’ll generate a realistic and adaptive flow behaviour
which allows us to portray any amount of turns in a
given river network and even take into account changes
performed to the river channel such as dynamic objects
altering the flow. This contribution takes into account
the fact that the river surface mesh might have any
width, have a complex river shape and that all the flow
information drawn on screen is updated accordingly.

2 RELATED WORK

2.1 Navier-Stokes equations

The basis of all fluid simulation models both in Com-
putational Fluid Dynamics and Computer Graphics are
the Navier-Stokes equations. These equations allow us
to represent a fluid by its velocity field and a pressure
field, varying both in time. If both fields are known at
the initial time then we can describe the state of the fluid
over time using:

∂u

∂t
= −(u · ∇)u−

1

ρ
∇p+ v∇2u+ f (1)

∇ · u = 0 (2)

where · denotes a dot product between vectors, ∇ is
the vector of spatial derivatives, u and p are the velocity
and pressure fields of the fluid, ρ is the density and v is
the kinematic viscosity. f is a vector representing exter-
nal forces. Equation 2 is called the continuity equation



2

and means that fluids conserve mass[16]. The right-hand
side of the equation 1 consists of four parts:

• Advection - −(u · ∇)u which represents the process
by which a fluid’s velocity transports itself and
other quantities in the fluid. In most simulations
this represents the force that the surrounding
fluid particles exert on a particle and causes it to
transport itself along the velocity field.

• Pressure - − 1

ρ
∇p causes regions with a higher

pressure to accelerate the molecules away from that
area.

• Diffusion - v∇2u represents the force caused by the
viscosity of the fluid.

• External forces - f represents forces that act on the
fluid like gravity.

2.2 Approaches to Fluids Simulation

Physically-based water simulation has been an active
research field for the last 30 years. Several different
approaches have been proposed but usually they can be
grouped into smaller distinct categories. In Figure 1 is
shown a schematic[10] where the main types of water
simulation are depicted.

Figure 1: Water modeling techniques

The widest classification that can be made is a di-
vision between surface-based and volume-based tech-
niques. The latter apply the Navier-Stokes equations to
model the liquid’s physical flow properties. Amongst the
volume-based techniques, we can find many different
approaches which all have in common the modelling
of the fluid as a volume. One of those categories is the
Eulerian approach. This approach looks at fixed points
in space, discretizing the domain in regular grids, either
in 2D [16][9][20] or 3D [13][4]. Each grid cell stores both
scalar quantities (such as pressure and temperature) and
vector quantities such as velocity. In this approach the
computational elements are fixed in space throughout
the simulation and a finite difference method is used to
solve the equations numerically. The major advantage

of this method is the possibility to allow adaptive time
steps and the inherent smooth liquid surface that it
allows. On the other hand, this method suffers from a
lengthy computational time and grid resolution limita-
tions allied with aliasing in the boundary discretization.
It also suffers from poor scalability in terms of com-
putational power and memory consumption. Another
approach is the Lagrangian, where the fluid is approxi-
mated by several discrete particles and their respective
properties. Each point in the fluid is considered as a
single particle, with a position x and a velocity u. In
order to solve several problems regarding the discretiza-
tion of the continuum using the Navier-Stokes equations,
the method most commonly used are Smoothed Parti-
cles Hydrodynamics(SPH)[3][11][5]. The approach taken
by SPH is to define a smoothing kernel to interpolate
physical properties (velocities, densities, etc) at an arbi-
trary position from the neighbouring particles, instead
of defining each particle and their physical properties
individually. This approach has two major drawbacks.
First the smoothing kernel should be designed carefully
because the stability, accuracy and speed of the SPH
method largely depends on the choice of those kernels.
Second there’s quite a complex step in the Lagrangian
method that is constructing a smooth surface for render-
ing. Many research works have presented possible solu-
tions [18] but up till now, the quality of liquid surfaces
constructed from the whole bunch of particles is not as
compelling as its Eulerian counterpart. Among surface-
based techniques, there are procedural methods which
despite the fact that they don’t model the whole fluid
domain, usually represent the fluid in terms of velocity
fields. These approaches don’t start from the equations
but pick a way to describe the state of the system (usu-
ally through a velocity field of the fluid), evaluating and
updating it anywhere in space and time. Even nowadays
this kind of approach is preferable because it provides
an extremely simple approach to efficiently generate a
fluid like behaviour in a body. It also allows to control
the animation of a body of water, something that is not
as easy to obtain when using volume-based methods
as in those approaches we would have to deal with
the discretization of partial differential equations, grids
and solving systems of equations. Additionally most
of previous methods rely on data that was computed
with a fixed resolution, something that doesn’t take into
account a freedom of movement present inside most
real-time applications and not present in movies or non-
interactive demonstrations. One last advantage is the
possibility to control several visual features of the fluid
without having to recompute the whole system, set
the initial values and make sure that all the boundary
conditions are well defined. For this work we chose
the procedural approach because of its advantages and
the fact that it suits better the requirements of real-time
applications.

In Table 1 we show a summary of all the advantages
and disadvantages of each technique.



3

Table 1: Advantages and disadvantages of the techniques presented in this chapter

Method Advantages Disadvantages

Eulerian Smooth Surface Memory use
Adaptive time step Scalability problems

Grid Resolution limitation
Lagrangian Particle Systems are more intu-

itive
Smoothing Kernel

Irregular boundary Surface reconstruction
Easy to model some phenomena
such as bubbles

Procedural Easy integration Difficult to model other fluid
Easily Extensible values such as turbulence

2.3 Water Rendering

Fluids rendering is one of the most active fields inside
Computer Graphics. As most of the physical behaviour
of water couldn’t be modelled at interactive frame rates
inside real-time applications, developers and researchers
focused most of their attention in getting as much visual
fidelity as possible when rendering water. Reflection and
refraction are elements that have been widely used in
the simulation of water since the beginning of Computer
Graphics [8][10][14][17]. Their use allows the user to see
through the water and at the same time see the environ-
ment reflected on the water surface. This apparent trivial
contribution fools the eye so much that most commercial
products that include water algorithms sometimes only
have these elements plus a wave generator. The most
common way to describe reflection and refraction phe-
nomena are the Fresnel equations[15]. These equations
allows us describe the behaviour of light when moving
between media with different refractive indices.

2.4 River Simulation and Rendering

A situation where fluid simulation is commonly applied
to it’s when water flows between two or more bound-
aries, moving from a source into a sink. An example of
that can be a river flowing where we have at least two
river boundaries and the water flows to the river mouth
or estuary. A river simulation can be decomposed in two
main components: a simulation component where the
physical behaviour is simulated and a visual component
where the looks of the fluid are created. The work
”Scalable Real-Time Animation of Rivers”[21][22] was
able to simulate large scale rivers with realistic flow,
yielding very appealing results. This work depicted a
very realistic flow behaviour thanks to their new texture
advection method, allowed real-time editing of the river
channel with the respective flow adaptation to the new
river boundaries and best of all it didn’t depend on
the scene complexity. Despite all these advantages there
were still a couple of drawbacks. First the computa-
tional cost of the algorithm was linearly dependent with
the projected river surface being rendered. Second the
amount of data transferred between the Central Pro-
cessing Unit(CPU) to the Graphics Processing Unit(GPU)
is directly related with the Poisson-disk radius which
increases linearly and quickly becomes prohibitive even

with recent hardware. A final disadvantage was the
need for the advection step to run on the CPU and
the fact that this work assumed completely flat world
profiles, excluding potential effects related with slopes
of the terrain. On the visual component there’s a very
visually appealing algorithm called Tiled Directional
Flow[19]. This new algorithm offered several advantages
over other flow simulation algorithms, was very cheap
in terms of resources and yielded visually appealing
results. They achieve a very realistic flow animation
through the decomposition of the river surface in tiles,
generating overlapping tiles all over the river channel
(like a chess board on top of the river surface). Each
tile has its own flow, local speed, direction and size
of waves. By combining several normal maps together,
the final result doesn’t resemble sliding normal maps
anymore and portrays a very pleasant appearance and
animation. Even though the results of this algorithm
were very satisfactory the fact that the authors have
relied on the use of static flow maps limited the usage of
this algorithm for big sized domains as it would require
to either load a very large flow map or have some kind
of spatial division algorithm to load the flow maps on
the fly. Another disadvantage related with the use of
static flow maps is that they can’t take into account the
influence of dynamic objects interacting with the river in
real-time, which was something that had already been
solved [21].

3 SIVIFLOW

SiViFlow is composed by two main elements: the Sim-
ulation Engine and the Visualization Engine. The Simu-
lation Engine is where all the calculations related with
physics of the river take place. This engine is divided
in three main modules: the River Surface Generator, the
River Particle Generator and the Flow Texture Mapper.
From the programming point of view, the River Particle
Generator and the Flow Texture Mapper make up a
larger block called the River Particle Processor which
will be described later in detail. The Visualization Engine
is responsible for receiving the simulation data from the
Simulation Engine and to output a graphical representa-
tion. This engine is divided in two main modules: the
Flow Renderer and the Reflection. The description of





5

With these three points we can create a vector that is
perpendicular with the river section being processed. As
the flow is constant for each river section and is parallel
to the margins, the normal vector of the plane describes
correctly the flow direction of that section as shown
in Figure 3. As the plane generated has two possible
normal vectors, the normal generation procedure must
take into account this direction and return the correct
normal vector. In the end we have a flow field that is as
detailed as the mesh of the river surface and where each
vertex contains its own flow vector stored.

One advantage of generating the flow this way is
related with its flexibility to dynamically recalculate
the flow when an object interacts with the river. In
case a dynamic object alters the course of the flow, the
boundaries of the object will be used to recalculate the
new flow and will substitute the shore vertices that were
previously used. As the values are tied to the river mesh,
as long as we know the collision vertices, SiViFlow is
able to recompute the flow of the river and immediately
reflect the changes.

3.1.2 Flow Velocity

In order to obtain the flow velocity we calculate a stream
function field(Ψ) for the river channel flow using an exis-
tent interpolation scheme [21][22]. At this stage we have
all the information required to calculate the following
equations. We run for each vertex all the Equations 3,4
and 5 and store their values.

Ψ(P ) =

∑

i w(di)Ψi
∑

i w(di)
(3)

With P being the position of each river surface vertex,
di the distance from point P to the each of the bound-
aries and the weighting factor w is:

w(d) =

{

d−p · f(1− d
s
), if 0 < d ≤ s,

0, if s < d,
(4)

Where s is the radius used to search for boundaries,
p is a positive real number and f is defined as:

f(t) = 6t5 − 15t4 + 10t3 (5)

3.2 River Particle Processor

River particles are a concept we created in order to
sample information from our domain and retrieve its
values. As we want to be able to handle large water-
courses, it’s not feasible to rely on loading all the river
surface information to Video RAM(VRAM) every frame.
In our case we’re interested in getting only the visible
river mesh values so we can retrieve and send them
to be rendered on the GPU. One of the main features
of the river particles is that they’re created in screen
space in order to guarantee an uniform distribution of
the particles over the visible domain at each frame.
The reason for generating these points in screen space

is that as each particle contains a defined radius to
make sure no two particles are too close to each other,
analysing this problem in screen space guarantees that
these radius disks maintain an uniform radius, some-
thing that would not happen if they were projected
in world space. Another advantage of this scheme is
that we only process visible information as we eliminate
all non-visible particles which minimizes the waste of
resources. There are some similar approaches to ours
such as texture sprites [12] and wave sprites [21][22].

3.2.1 River Particle Generator

We start by generating several randomly distributed
points, generating a Poisson-disk pattern using a
modified boundary sampling algorithm [2][6]. We’ve
adapted this algorithm to start from a fixed set of
points instead of a random point. An advantage of this
algorithm is that it guarantees that all points are equally
distributed over the given domain, which in this case
as we’re aiming to generate particles in screen space,
means they’re all equally distributed over the screen.

In the end of running this algorithm, we end up with
a set of points that we’ll convert to river particles. In
order to generate a 3D world position for each of these
points (after being generated we only have their 2D
coordinates) we proceed as it’s shown in Figure 4. A
ray is cast for each particle and we store the collision
point between the ray and the 3D world. Using this
method we can compute at each frame, for each point,
its 3D world position. Besides calculating the world
position we also calculate other features such as global
identifiers to be able to identify each of the particles,
velocity and flow. Unlike other algorithms [21][22], we
don’t advect our particles during our CPU update loop.
The reason for this is due to the fact that our particles
aren’t concerned with the fluid’s motion, they’re simply
a way to sample the necessary information in screen
space and send it from the CPU to the GPU. An inherent
advantage of not having to advect particles during the
update loop is that it allows us to offload the work
from the CPU to the GPU.

All of this information will allow us to find out in
the next stage what’s the nearest flow data to load into
the flow texture. We just search inside a radius r for the
closest vertex and assign that flow information to the
river particle. This step differs from [21][22] as they first
render the river surface to a buffer inside the GPU, find
out which particles are inside the river surface and then
query each individual pixel to find out which particle sits
inside. Our approach despite being a bit more computa-
tionally intensive, doesn’t have the inherent problems
that might arise from relying in performing constant
transfers between the CPU and GPU.



6

Figure 4: Ray cast performed from camera position and
mapped into world space to obtain each particle’s

world position

3.2.2 Flow Texture Mapper

In order to feed the GPU with the information required
to render the flow, we used a flow texture and an
auxiliary texture. Similar ideas have been explored by
other authors [21][22][14] to achieve similar objectives.
We store all the information we need inside each color
channel and read it back when it reaches the GPU. In
Figure 5 we can see the distribution of each of the com-
ponents in both the flow texture and auxiliary texture.

Figure 5: How each component is stored inside each of
the 8 bit size texture channels

This approach of using an auxiliary texture to carry
data into the GPU allows us to update every frame the
contents of these two textures, refreshing the particles
and their respective values.

These textures will store the river particles previously
generated using each of the color channels of the
texture. In the flow texture we’ll store for every entry
data such as the global identifier of the river particle
and its respective flow. The identifier in this texture will
be used as a way to look-up the remaining data from
the auxiliary texture. For each entry of the flow texture,
we store the flow information that covers that pixel.
The auxiliary texture will have other parameters such
as velocity, river bed slope and river depth. In Figure 6
we can see how each river particle is stored in a smaller
sized version of the flow texture and how the global
identifier for each particle will be used to address the
auxiliary texture.

Algorithm 2: Application loop

1 while true do
2 forall the particles do
3 if Particle is outside of frustum then
4 Delete Particle
5 end
6 if Particle violates the minimum distance

criterion in Screen Space then
7 Delete Particle
8 end
9 Insert new particles to keep the Poisson-disk

10 forall the new particles do
11 Convert to river particles
12 end
13 Write new data to the flow texture
14 Write new data to the auxiliary texture
15 end
16 Render
17 end

In Algorithm 2 we can see that the whole update
process is performed at every frame update. First we
start by having to delete the particles that are not visible
as they are wasting resources and won’t affect the final
result. Then we need to delete the particles that are too
close to one another violating the initial Poisson-disk
requirement that all particles must be no closer to each
other more than a specified radius distance. In order to
keep a reasonable number of particles in screen, after
deleting all the unnecessary particles we generate new
ones using the previously mentioned algorithm. After
this, for all new particles, we have to convert them to
river particles by calculating all their features. To end
the algorithm we fill the flow and auxiliary textures
with the current data from that frame and get them
ready to be sent to the GPU.

3.3 Visualization Engine

The Visualization Engine is the last stage of SiViFlow
and consists of mapping a material to the river surface
mesh. This stage is divided in two main elements: the
Flow Renderer and the Reflection algorithm. We start by
accessing the flow texture and consult the river particle
identifier of this pixel. In order to optimize the texture
look-up, the flow information is also saved during this
operation. Now we can use the river particle identifier
to look-up the rest of the parameters contained inside
the auxiliary texture.

We use the flow information to generate a new normal
vector using the Tiled Directional Flow algorithm and
use this new normal to compute the scene’s reflection.
In the end all the elements are blended together. All the
steps of the algorithm are summed up in Algorithm 3.



7

Figure 6: Storage scheme used in the flow and auxiliary textures

Algorithm 3: Fragment Shader of the Visualization
Engine

1 Access flow texture to find covering sprite index
and flow information

2 Access auxiliary texture to find velocity and depth
3 Use flow information for Tiled Directional Flow

algorithm
4 Use new normal vector for reflection
5 Blend all the elements

3.3.1 Flow Renderer

The flow algorithm used is based in the approach
proposed called ”Tiled Directional Flow”[19]. One of
the main differences is that all the flow information
being fed to the algorithm isn’t based on a fixed flow
map but comes from our flow and auxiliary textures.
This allows us to work with a much smaller amount
of information at each render cycle because our flow
texture only contains information that’s visible during
that frame. The fact that our flow texture is updated
every frame, means that we can change the flow if any
dynamic object changes river flow.

Figure 7: Example of the tiling division performed on
top of the river surface for the flow algorithm

The way our approach works is by dividing a river

channel in tiles, similar to a chess board. We show this
division in Figure 7. Each tile is independent from its
peers and its composed by several normal maps. In order
to get a more convincing look, we used for each tile four
normal maps that are combined and blended together.
First the regular normal map is loaded for the tile being
processed. After that we sample a normal map with
half a tile shift in the x direction and we rotate it in
order to have independent features from the previous
normal map. These two tiles are blended together using
a blending factor. The next two normal maps follow the
same idea, the first one is sampled with a shift in the y
direction and the second is shifted in the x and y direc-
tion. Both these normal maps are rotated and combined
together using the same blending factor. To get the final
normal value, both normal maps that were combined
using the blending factor are blended once more. To con-
clude this final blending step of normal maps a scaling
operation has to be performed. This scaling operation
avoids the problem of having a resulting normal closer
to the actual average normal, which is common when
several normal vectors are added together.

3.3.2 Reflection

In order to simulate dynamic reflections of objects on our
river surface we used a method commonly called planar
reflections [1][7][14].

This approach has been widely used since the in-
troduction of the programmable pipelines because of
its ease of use and how inexpensive it is in terms of
resources. An example of this technique can be seen in
Figure 8(a) where it’s visible the reflection of the house
near the shore. This technique is based on the use of
a texture called a reflection map, which is an inverted
version of what it’s visible above the water level and
that we want to reflect. To obtain a reflection map, we
start by defining a clipping plan, which has to be about
the same height as the river surface.

This clipping plane will be useful to cut all the geom-
etry below the river surface that we’re not interested in
having rendered. If we didn’t clip the contents below the



8

(a) (b)

Figure 8: (a)Example of the final scene appearance using planar reflections (b)Example of a reflection map created
clipping all the geometry below the river surface and reflecting the remaining contents

river surface, we would reflect also the contents of the
river which would break all illusion of reflection. After
that we save an inverted copy of this clipped scene to a
texture as in Figure 8(b) where we can see the contents of
Figure 8(a) inverted and the whole river surface clipped.
As the inverted copy is saved into a texture, we can send
it to the GPU in order to be read inside our material.
When we render our river material, we sample the
correspondent pixel and blend the reflected information
with the color we’ll be outputting from the fragment
shader.

4 RESULTS

We can divide our approach in two main sections: the
Simulation Engine and the Visualization Engine. For the
Simulation Engine we consider all the stages that deal
with the creation, update and destruction of river parti-
cles and have to pack the required information in order
to make it readable by the GPU. For the Visualization
Engine we consider the Flow Renderer and Reflection
stages which are comprised within the river material.
We implemented our approach on top of the open-source
game engine Ogre1 version 1.7.3.(Cthuga). The algorithm
was coded in C++ using the DirectX 9 API renderer
provided by Ogre and the shaders were coded in HLSL.
The platform used for testing is a computer with an Intel
Core i7 running at 3 GHZ with 8GB of RAM, a Nvidia
GeForce GTX 480 with 1536 MB of VRAM and Microsoft
Windows 7 x64 as the operating system. In order to
measure the timings that each stage of our algorithm
takes, we used Intel’s VTune Amplifier2 for the code
that runs in the CPU and Intel’s Graphics Performance
Analyzer3 to profile the timings in the GPU.

4.1 Simulation Engine

The Simulation Engine is composed by the River Surface
Generator, the River Particle Generator and by the Flow
Texture Mapper. As the River Surface Generator only

1. http://www.ogre3d.org/
2. http://software.intel.com/en-us/intel-vtune-amplifier-xe
3. http://software.intel.com/en-us/vcsource/tools/intel-gpa

runs once to create the river surface mesh and it’s
not part of the application loop, all the measurements
performed focused on the remaining components. This
means that the application update loop can be divided
in two main phases: the River Particle Generator and
the Flow Texture Mapper. In Table 2 we can see how
many particles were used in average to sample the whole
screen.

Table 2: Average amount of river particles existent for
different screen resolutions and average frames per

second obtained throughout the tests.

Screen Resolution
Average Number of

River Particles
Frames per second

800x600 336 32
1280x800 369 30
1440x900 407 29

1680x1050 384 28

We didn’t use a fixed number of particles across all
tests due to the nature of the sampling method we
used. As the Poisson disk method randomly samples
points across the domain, in order to minimize possible
holes, some distributions might require more points than
others. As shown when the screen resolution increases,
the average frames per second decreases. This is due to
the fact that as screen resolution increases, more particles
are used and more pixels need to be processed in the
CPU in order to map the best particle into the flow
texture.

4.1.1 River Particle Generator

As mentioned in Section 3.2, the River Particle Generator
is responsible for deleting river particles that are not
visible, delete river particles that are too close to one
another and generate new particles making sure they’re
converted to river particles.

In Figure 9 we can see that the time taken to update the
river particles varies slightly across different resolutions.
It’s possible to see a slight increase in time taken to
update the particles as the resolutions increase but the
difference is less than 0.4 millisecond from the smaller
resolution to the largest one.



9

Figure 9: Time taken in milliseconds to update the river
particles

4.1.2 Flow Texture Mapper

The loading of new data into the flow and auxiliary
textures is a step that must run at every frame and is
performed in the Flow Texture Mapper. We’ll start by
analysing the time taken by the flow texture and after
we’ll analyse the auxiliary texture. As soon as we started
profiling the application, we saw that the loading of data
into the flow texture was the step in the whole algorithm
that consumed more time. We used for all tests a flow
texture with 64 by 64 pixels, meaning we had to map
the screen resolution being used to the size of the flow
texture and find the best particle that cover that section
of the screen.

Figure 10: Time taken in milliseconds to load all the
data into the Flow texture

We can see in Figure 10 that all the values tend to stay
relatively close to one another. This is due to the fact that
this step is not only our application’s bottleneck but it’s
not directly influenced by the screen resolution as we
always load a flow texture with the same dimensions.
Upon closer look we noticed that the operations that
were taking most of the time were finding the particle
that better covers the largest amount of the pixels that
are being processed and making sure that there were
no sections of the texture without river particles. As the
flow texture has a smaller size than our screen resolution,
we map an amount of screen pixels that correspond to
a single entry in the flow texture and process it. We
retrieve all the river particles that cover this section and
choose the one that covers the largest amount of the

area being processed. The second costly operation is the
second pass that we must perform in the flow texture to
make sure that when one hole is found, a suitable value
is retrieved.
On the other hand, we have the auxiliary texture that
contrary to the flow texture, is only affected by the
amount of particles used as we load all the particles data
into it.

Figure 11: Time taken in milliseconds to load all the
data into the auxiliary texture

As the number of particles doesn’t change abruptly
across screen resolutions, we can see in Figure 11 that the
difference in values is no bigger than 0.05 milliseconds.
As the auxiliary texture only needs to go over all river
particles and load their respective values in the texture,
this operation can be seen as a linear copy of data from
the river particles array into the texture, which can be
performed quite fast.

4.2 Visualization Engine

As we’ve previously mentioned the components that
make up the Visualization Engine are implemented as
two distinct elements: the vertex shader and the frag-
ment shader. Both the Flow Renderer and the Reflection
make use of information existent in both of these ele-
ments.

All the tests were performed with the same river mesh
and the camera placed in the positions seen in Figure
12. This way we can not only understand how the cost
evolves across different resolutions but also how it varies
according to different percentages of river mesh present
on screen.

4.2.1 Vertex Shader

We have in Figure 13(a) the results of several mea-
surements performed at different distances and with
different resolutions. As most of our computations are
performed in the fragment shader, the vertex shader per-
forms only very simple calculations such as transforming
vertex positions from one space to another, calculate the
camera direction and pass the vertex normal and texture
mapping coordinates to the pixel shader. This means
that all values are very small and despite the apparent
increase in the near distance values when compared with





11

and as far as new calculations go, we perform only the
flow algorithm and the reflections which are not very
expensive.

4.3 Conclusions and Future Work

We presented a new approach called SiViFlow which
simulates realistic rivers in real-time. SiViFlow has two
main components: the Simulation Engine and the Vi-
sualization Engine. Thanks to the Simulation Engine,
SiViFlow is able to adapt to an arbitrary shaped river bed
with any number of turns and dynamically calculate the
necessary data based on the river surface mesh alone. It
also utilizes a concept called river particles to retrieve
flow information from the river surface mesh and send
it to be drawn in the GPU. The Visualization Engine
renders the river flow and is flexible enough to be com-
bined with any visual technique used to simulated water,
not being bounded only to the techniques presented in
this work. SiViFlow also allows for dynamic objects to
alter the course of the flow and change in real-time its
behaviour through access to the flow information stored
at the river surface mesh.While this approach fulfilled all
of the objectives initially defined, there’s still room for
improvement. With all the advances in the computing
capabilities of the new GPU’s and respective API’s that
allow them to perform general computations, a future
improvement would be to move the particle update,
creation and destruction to the GPU, performing the
whole update loop there. As the loading of new data to
the flow texture does not have interdependencies among
entries, this means that in the limit the whole process of
filling the flow texture can be performed completely in
parallel. As the approach presented does not have any
limitation when it comes to the shading of the water,
all visual techniques are compatible with the algorithm
and are easily implementable within the Visualization
Engine.

REFERENCES

[1] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-
Time Rendering 3rd Edition, chapter Reflections, pages 386–391. A.
K. Peters, Ltd., Natick, MA, USA, 2008.

[2] Robert Bridson. Fast poisson disk sampling in arbitrary dimen-
sions. In ACM SIGGRAPH 2007 sketches, SIGGRAPH ’07, New
York, USA, 2007. ACM.

[3] Yuanzhang Chang, Kai Bao, Youquan Liu, Jian Zhu, and Enhua
Wu. Particle importance based fluid simulation. In Proceedings
of the 2009 Sixth International Conference on Computer Graphics,
Imaging and Visualization, CGIV ’09, pages 38–43, Washington, DC,
USA, 2009. IEEE Computer Society.

[4] Jonathan M. Cohen, Sarah Tariq, and Simon Green. Interactive
fluid-particle simulation using translating eulerian grids. In SI3D,
pages 15–22. ACM, 2010.

[5] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles:
a new paradigm for animating highly deformable bodies. In
Proceedings of the Eurographics workshop on Computer animation and
simulation ’96, pages 61–76, New York, USA, 1996. Springer-Verlag
New York, Inc.

[6] Daniel Dunbar and Greg Humphreys. A spatial data structure
for fast poisson-disk sample generation. ACM Transactions on
Graphics, 25(3):503–508, 2006.

[7] Wolfgang Engel. ShaderX Shader Programming Tips and Tricks With
DirectX 9, chapter Rippling Reflective and Refractive Water, pages
357–362. Wordware Publishing, 2003.

[8] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Ani-
mation and rendering of complex water surfaces. In Proceedings
of the 29th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’02, pages 736–744, New York, USA, 2002.
ACM.

[9] Nick Foster. Realistic animation of liquids. Graphical Models and
Image Processing, 58(5):471–483, 1996.

[10] Jostein Gustavsen and Dan Lewi Harkestad. Visualization of
water surface using GPU. Master’s thesis, Norwegian University
of Science and Technology, 2006.

[11] Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi.
Smoothed Particle Hydrodynamics on GPUs. In Proceedings of
Computer Graphics International, pages 63–70, 2007.

[12] Fabrice Neyret. Advected textures. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation, SCA
’03, pages 147–153, Aire-la-Ville, Switzerland, Switzerland, 2003.
Eurographics Association.

[13] Hubert Nguyen. GPU Gems 3, chapter Real-Time Simulation
and Rendering of 3D Fluids, pages 633–675. Addison-Wesley
Professional, 2007.

[14] Matt Pharr and Randima Fernando. GPU Gems 2 - Program-
ming Techniques for High-Performance Graphics and General-Purpose
Computation, chapter Octree Textures on the GPU, pages 595–613.
Addison Wesley, 2005.

[15] Raymon Serway and John Jewett. Physics for Scientists and Engi-
neers 8th Edition, chapter The Nature of Light and the Principles
of Ray Optics, pages 1010–1025. Brooks Cole, 2009.

[16] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’99,
pages 121–128, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[17] Jerry Tessendorf. Simulating ocean water. In SIGGRAPH’99 Course
Notes, volume 2. ACM, 1999.

[18] Wladimir J. van der Laan, Simon Green, and Miguel Sainz. Screen
space fluid rendering with curvature flow. In Proceedings of the
2009 symposium on Interactive 3D graphics and games, I3D ’09, pages
91–98, New York, NY, USA, 2009. ACM.

[19] Frans van Hoesel. Tiled directional flow. In ACM SIGGRAPH
2011 Posters, SIGGRAPH ’11, pages 19:1–19:1, New York, USA,
2011. ACM.

[20] Enhua Wu, Youquan Liu, and Xuehui Liu. An improved study
of real-time fluid simulation on gpu: Research articles. Computer
Animation and Virtual Worlds, 15(3-4):139–146, July 2004.

[21] Qizhi Yu and Fabrice Neyret. Models of Animated Rivers for the
Interactive Exploration of Landscapes. PhD thesis, Institut National
Polytechnique de Grenoble, November 2008.

[22] Qizhi Yu, Fabrice Neyret, Eric Bruneton, and Nicolas Holzschuch.
Scalable real-time animation of rivers. In Computer Graphics Forum
(Proceedings of Eurographics), volume 28 (2), March 2009.


