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ABSTRACT
Recommender systems provide users with personalized suggestions
for products or services. These systems often rely on Collaborat-
ing Filtering (CF), where past transactions are analyzed in order to
establish connections between users and products. The two more
successful approaches to CF are latent factor models, which di-
rectly profile both users and products, and neighborhood models,
which analyze similarities between products or users. In this work
we introduce some innovations to both approaches. The factor and
neighborhood models can now be smoothly merged, thereby build-
ing a more accurate combined model. Further accuracy improve-
ments are achieved by extending the models to exploit both explicit
and implicit feedback by the users. The methods are tested on the
Netflix data. Results are better than those previously published on
that dataset. In addition, we suggest a new evaluation metric, which
highlights the differences among methods, based on their perfor-
mance at a top-K recommendation task.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing
General Terms
Algorithms
Keywords
collaborative filtering, recommender systems

1. INTRODUCTION
Modern consumers are inundated with choices. Electronic retail-

ers and content providers offer a huge selection of products, with
unprecedented opportunities to meet a variety of special needs and
tastes. Matching consumers with most appropriate products is not
trivial, yet it is a key in enhancing user satisfaction and loyalty. This
emphasizes the prominence of recommender systems, which pro-
vide personalized recommendations for products that suit a user’s
taste [1]. Internet leaders like Amazon, Google, Netflix, TiVo and
Yahoo are increasingly adopting such recommenders.

Recommender systems are often based on Collaborative Filter-
ing (CF) [10], which relies only on past user behavior—e.g., their
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previous transactions or product ratings—and does not require the
creation of explicit profiles. Notably, CF techniques require no do-
main knowledge and avoid the need for extensive data collection.
In addition, relying directly on user behavior allows uncovering
complex and unexpected patterns that would be difficult or impos-
sible to profile using known data attributes. As a consequence, CF
attracted much of attention in the past decade, resulting in signif-
icant progress and being adopted by some successful commercial
systems, including Amazon [15], TiVo and Netflix.

In order to establish recommendations, CF systems need to com-
pare fundamentally different objects: items against users. There are
two primary approaches to facilitate such a comparison, which con-
stitute the two main disciplines of CF: the neighborhood approach
and latent factor models.

Neighborhood methods are centered on computing the relation-
ships between items or, alternatively, between users. An item-
oriented approach evaluates the preference of a user to an item
based on ratings of similar items by the same user. In a sense,
these methods transform users to the item space by viewing them
as baskets of rated items. This way, we no longer need to compare
users to items, but rather directly relate items to items.

Latent factor models, such as Singular Value Decomposition (SVD),
comprise an alternative approach by transforming both items and
users to the same latent factor space, thus making them directly
comparable. The latent space tries to explain ratings by characteriz-
ing both products and users on factors automatically inferred from
user feedback. For example, when the products are movies, fac-
tors might measure obvious dimensions such as comedy vs. drama,
amount of action, or orientation to children; less well defined di-
mensions such as depth of character development or “quirkiness”;
or completely uninterpretable dimensions.

The CF field has enjoyed a surge of interest since October 2006,
when the Netflix Prize competition [5] commenced. Netflix re-
leased a dataset containing 100 million movie ratings and chal-
lenged the research community to develop algorithms that could
beat the accuracy of its recommendation system, Cinematch. A
lesson that we learnt through this competition is that the neighbor-
hood and latent factor approaches address quite different levels of
structure in the data, so none of them is optimal on its own [3].

Neighborhood models are most effective at detecting very lo-
calized relationships. They rely on a few significant neighborhood-
relations, often ignoring the vast majority of ratings by a user. Con-
sequently, these methods are unable to capture the totality of weak
signals encompassed in all of a user’s ratings. Latent factor models
are generally effective at estimating overall structure that relates si-
multaneously to most or all items. However, these models are poor
at detecting strong associations among a small set of closely related
items, precisely where neighborhood models do best.

In this work we suggest a combined model that improves predic-



tion accuracy by capitalizing on the advantages of both neighbor-
hood and latent factor approaches. To our best knowledge, this is
the first time that a single model has integrated the two approaches.
In fact, some past works (e.g., [2, 4]) recognized the utility of com-
bining those approaches. However, they suggested post-processing
the factorization results, rather than a unified model where neigh-
borhood and factor information are considered symmetrically.

Another lesson learnt from the Netflix Prize competition is the
importance of integrating different forms of user input into the
models [3]. Recommender systems rely on different types of in-
put. Most convenient is the high quality explicit feedback, which
includes explicit input by users regarding their interest in products.
For example, Netflix collects star ratings for movies and TiVo users
indicate their preferences for TV shows by hitting thumbs-up/down
buttons. However, explicit feedback is not always available. Thus,
recommenders can infer user preferences from the more abundant
implicit feedback, which indirectly reflect opinion through observ-
ing user behavior [16]. Types of implicit feedback include purchase
history, browsing history, search patterns, or even mouse move-
ments. For example, a user that purchased many books by the same
author probably likes that author. Our main focus is on cases where
explicit feedback is available. Nonetheless, we recognize the im-
portance of implicit feedback, which can illuminate users that did
not provide enough explicit feedback. Hence, our models integrate
explicit and implicit feedback.

The structure of the rest of the paper is as follows. We start
with preliminaries and related work in Sec. 2. Then, we describe
a new, more accurate neighborhood model in Sec. 3. The new
model is based on an optimization framework that allows smooth
integration with latent factor models, and also inclusion of implicit
user feedback. Section 4 revisits SVD-based latent factor models
while introducing useful extensions. These extensions include a
factor model that allows explaining the reasoning behind recom-
mendations. Such explainability is important for practical systems
[11, 23] and known to be problematic with latent factor models.
The methods introduced in Sec. 3-4 are linked together in Sec.
5, through a model that integrates neighborhood and factor mod-
els within a single framework. Relevant experimental results are
brought within each section. In addition, we suggest a new method-
ology to evaluate effectiveness of the models, as described in Sec.
6, with encouraging results.

2. PRELIMINARIES
We reserve special indexing letters for distinguishing users from

items: for users u, v, and for items i, j. A rating rui indicates the
preference by user u of item i, where high values mean stronger
preference. For example, values can be integers ranging from 1
(star) indicating no interest to 5 (stars) indicating a strong interest.
We distinguish predicted ratings from known ones, by using the no-
tation r̂ui for the predicted value of rui. The (u, i) pairs for which
rui is known are stored in the set K = {(u, i) | rui is known}.
Usually the vast majority of ratings are unknown. For example, in
the Netflix data 99% of the possible ratings are missing. In order
to combat overfitting the sparse rating data, models are regularized
so estimates are shrunk towards baseline defaults. Regularization
is controlled by constants which are denoted as: λ1, λ2, . . . Exact
values of these constants are determined by cross validation. As
they grow, regularization becomes heavier.

2.1 Baseline estimates
Typical CF data exhibit large user and item effects – i.e., system-

atic tendencies for some users to give higher ratings than others,
and for some items to receive higher ratings than others. It is cus-

tomary to adjust the data by accounting for these effects, which we
encapsulate within the baseline estimates. Denote by µ the overall
average rating. A baseline estimate for an unknown rating rui is
denoted by bui and accounts for the user and item effects:

bui = µ + bu + bi (1)

The parameters bu and bi indicate the observed deviations of user
u and item i, respectively, from the average. For example, suppose
that we want a baseline estimate for the rating of the movie Titanic
by user Joe. Now, say that the average rating over all movies, µ, is
3.7 stars. Furthermore, Titanic is better than an average movie, so it
tends to be rated 0.5 stars above the average. On the other hand, Joe
is a critical user, who tends to rate 0.3 stars lower than the average.
Thus, the baseline estimate for Titanic’s rating by Joe would be 3.9
stars by calculating 3.7− 0.3 + 0.5. In order to estimate bu and bi

one can solve the least squares problem:

min
b∗

∑

(u,i)∈K

(rui − µ− bu − bi)
2 + λ1(

∑

u

b2
u +

∑

i

b2
i )

Here, the first term
∑

(u,i)∈K
(rui − µ + bu + bi)

2 strives to find
bu’s and bi’s that fit the given ratings. The regularizing term –
λ1(
∑

u b2
u +

∑

i b2
i ) – avoids overfitting by penalizing the magni-

tudes of the parameters.

2.2 Neighborhood models
The most common approach to CF is based on neighborhood

models. Its original form, which was shared by virtually all earlier
CF systems, is user-oriented; see [12] for a good analysis. Such
user-oriented methods estimate unknown ratings based on recorded
ratings of like minded users. Later, an analogous item-oriented
approach [15, 21] became popular. In those methods, a rating is
estimated using known ratings made by the same user on similar
items. Better scalability and improved accuracy make the item-
oriented approach more favorable in many cases [2, 21, 22]. In
addition, item-oriented methods are more amenable to explaining
the reasoning behind predictions. This is because users are famil-
iar with items previously preferred by them, but do not know those
allegedly like minded users. Thus, our focus is on item-oriented
approaches, but parallel techniques can be developed in a user-
oriented fashion, by switching the roles of users and items.

Central to most item-oriented approaches is a similarity measure
between items. Frequently, it is based on the Pearson correlation
coefficient, ρij , which measures the tendency of users to rate items
i and j similarly. Since many ratings are unknown, it is expected
that some items share only a handful of common raters. Computa-
tion of the correlation coefficient is based only on the common user
support. Accordingly, similarities based on a greater user support
are more reliable. An appropriate similarity measure, denoted by
sij , would be a shrunk correlation coefficient:

sij
def
=

nij

nij + λ2
ρij (2)

The variable nij denotes the number of users that rated both i and
j. A typical value for λ2 is 100. Notice that the literature suggests
additional alternatives for a similarity measure [21, 22].

Our goal is to predict rui – the unobserved rating by user u for
item i. Using the similarity measure, we identify the k items rated
by u, which are most similar to i. This set of k neighbors is denoted
by Sk(i; u). The predicted value of rui is taken as a weighted av-
erage of the ratings of neighboring items, while adjusting for user
and item effects through the baseline estimates:

r̂ui = bui +

∑

j∈Sk(i;u) sij(ruj − buj)
∑

j∈Sk(i;u) sij
(3)



Neighborhood-based methods of this form became very popu-
lar because they are intuitive and relatively simple to implement.
However, in a recent work [2], we raised a few concerns about such
neighborhood schemes. Most notably, these methods are not justi-
fied by a formal model. We also questioned the suitability of a simi-
larity measure that isolates the relations between two items, without
analyzing the interactions within the full set of neighbors. In addi-
tion, the fact that interpolation weights in (3) sum to one forces the
method to fully rely on the neighbors even in cases where neigh-
borhood information is absent (i.e., user u did not rate items similar
to i), and it would be preferable to rely on baseline estimates.

This led us to propose a more accurate neighborhood model,
which overcomes these difficulties. Given a set of neighbors Sk(i; u)
we need to compute interpolation weights {θu

ij |j ∈ Sk(i; u)} that
enable the best prediction rule of the form:

r̂ui = bui +
∑

j∈Sk(i;u)

θu
ij(ruj − buj) (4)

Derivation of the interpolation weights can be done efficiently by
estimating all inner products between item ratings; for a full de-
scription refer to [2].

2.3 Latent factor models
Latent factor models comprise an alternative approach to Collab-

orative Filtering with the more holistic goal to uncover latent fea-
tures that explain observed ratings; examples include pLSA [13],
neural networks [18], and Latent Dirichlet Allocation [7]. We will
focus on models that are induced by Singular Value Decomposi-
tion (SVD) on the user-item ratings matrix. Recently, SVD mod-
els have gained popularity, thanks to their attractive accuracy and
scalability. A typical model associates each user u with a user-
factors vector pu ∈ R

f , and each item i with an item-factors vector
qi ∈ R

f . The prediction is done by taking an inner product, i.e.,
r̂ui = bui + pT

u qi. The more involved part is parameter estimation.
In information retrieval it is well established to harness SVD for

identifying latent semantic factors [8]. However, applying SVD in
the CF domain raises difficulties due to the high portion of missing
ratings. Conventional SVD is undefined when knowledge about
the matrix is incomplete. Moreover, carelessly addressing only the
relatively few known entries is highly prone to overfitting. Earlier
works [14, 20] relied on imputation to fill in missing ratings and
make the rating matrix dense. However, imputation can be very
expensive as it significantly increases the amount of data. In ad-
dition, the data may be considerably distorted due to inaccurate
imputation. Hence, more recent works [4, 6, 9, 17, 18, 22] sug-
gested modeling directly only the observed ratings, while avoiding
overfitting through an adequate regularized model, such as:

min
p∗,q∗,b∗

∑

(u,i)∈K

(rui−µ−bu−bi−pT
u qi)

2+λ3(∥pu∥
2+∥qi∥

2+b2
u+b2

i )

(5)
A simple gradient descent technique was applied successfully to
solving (5).

Paterek [17] suggested the related NSVD model, which avoids
explicitly parameterizing each user, but rather models users based
on the items that they rated. This way, each item i is associated
with two factor vectors qi and xi. The representation of a user u

is through the sum:
(

∑

j∈R(u) xj

)

/
√

|R(u)|, so rui is predicted

as: bui + qT
i

(

∑

j∈R(u) xj

)

/
√

|R(u)|. Here, R(u) is the set of

items rated by user u. Later in this work, we adapt Paterek’s idea
with some extensions.

2.4 The Netflix data
We evaluated our algorithms on the Netflix data of more than

100 million movie ratings performed by anonymous Netflix cus-
tomers [5]. We are not aware of any publicly available CF dataset
that is close to the scope and quality of this dataset. To maintain
compatibility with results published by others, we adopted some
standards that were set by Netflix, as follows. First, quality of
the results is usually measured by their root mean squared error

(RMSE):
√

∑

(u,i)∈TestSet(rui − r̂ui)2/|TestSet|. In addition,

we report results on a test set provided by Netflix (also known as
the Quiz set), which contains over 1.4 million recent ratings. Net-
flix compiled another 1.4 million recent ratings into a validation
set, known as the Probe set, which we employ in Section 6. The
two sets contain many more ratings by users that do not rate much
and are harder to predict. In a way, they represent real requirements
from a CF system, which needs to predict new ratings from older
ones, and to equally address all users, not only the heavy raters.

The Netflix data is part of the ongoing Netflix Prize competition,
where the benchmark is Netflix’s proprietary system, Cinematch,
which achieved a RMSE of 0.9514 on the test set. The grand prize
will be awarded to a team that manages to drive this RMSE below
0.8563 (10% improvement). Results reported in this work lower
the RMSE on the test set to levels around 0.887, which is better
than previously published results on this dataset.

2.5 Implicit feedback
As stated earlier, an important goal of this work is devising mod-

els that allow integration of explicit and implicit user feedback. For
a dataset such as the Netflix data, the most natural choice for im-
plicit feedback would be movie rental history, which tells us about
user preferences without requiring them to explicitly provide their
ratings. However, such data is not available to us. Nonetheless,
a less obvious kind of implicit data does exist within the Netflix
dataset. The dataset does not only tell us the rating values, but also
which movies users rate, regardless of how they rated these movies.
In other words, a user implicitly tells us about her preferences by
choosing to voice her opinion and vote a (high or low) rating. This
reduces the ratings matrix into a binary matrix, where “1” stands
for “rated”, and “0” for “not rated”. Admittedly, this binary data
is not as vast and independent as other sources of implicit feed-
back could be. Nonetheless, we have found that incorporating this
kind of implicit data – which inherently exist in every rating based
recommender system – significantly improves prediction accuracy.
Some prior techniques, such as Conditional RBMs [18], also capi-
talized on the same binary view of the data.

The models that we suggest are not limited to a certain kind of
implicit data. To keep generality, each user u is associated with two
sets of items, one is denoted by R(u), and contains all the items for
which ratings by u are available. The other one, denoted by N(u),
contains all items for which u provided an implicit preference.

3. A NEIGHBORHOOD MODEL
In this section we introduce a new neighborhood model, which

allows an efficient global optimization scheme. The model offers
improved accuracy and is able to integrate implicit user feedback.
We will gradually construct the various components of the model,
through an ongoing refinement of our formulations.

Previous models were centered around user-specific interpola-
tion weights – θu

ij in (4) or sij/
∑

j∈Sk(i;u) sij in (3) – relating

item i to the items in a user-specific neighborhood Sk(i; u). In



order to facilitate global optimization, we would like to abandon
such user-specific weights in favor of global weights independent
of a specific user. The weight from j to i is denoted by wij and
will be learnt from the data through optimization. An initial sketch
of the model describes each rating rui by the equation:

r̂ui = bui +
∑

j∈R(u)

(ruj − buj)wij (6)

For now, (6) does not look very different from (4), besides our claim
that the wij ’s are not user specific. Another difference, which will
be discussed shortly, is that here we sum over all items rated by u,
unlike (4) that sums over members of Sk(i; u).

Let us consider the interpretation of the weights. Usually the
weights in a neighborhood model represent interpolation coeffi-
cients relating unknown ratings to existing ones. Here, it is useful
to adopt a different viewpoint, where weights represent offsets to
baseline estimates. Now, the residuals, ruj−buj , are viewed as the
coefficients multiplying those offsets. For two related items i and
j, we expect wij to be high. Thus, whenever a user u rated j higher
than expected (ruj− buj is high), we would like to increase our es-
timate for u’s rating of i by adding (ruj − buj)wij to the baseline
estimate. Likewise, our estimate will not deviate much from the
baseline by an item j that u rated just as expected (ruj − buj is
around zero), or by an item j that is not known to be predictive on
i (wij is close to zero). This viewpoint suggests several enhance-
ments to (6). First, we can use implicit feedback, which provide
an alternative way to learn user preferences. To this end, we add
another set of weights, and rewrite (6) as:

r̂ui = bui +
∑

j∈R(u)

(ruj − buj)wij +
∑

j∈N(u)

cij (7)

Much like the wij ’s, the cij ’s are offsets added to baseline esti-
mates. For two items i and j, an implicit preference by u to j lead
us to modify our estimate of rui by cij , which is expected to be
high if j is predictive on i.1

Viewing the weights as global offsets, rather than as user-specific
interpolation coefficients, emphasizes the influence of missing rat-
ings. In other words, a user’s opinion is formed not only by what he
rated, but also by what he did not rate. For example, suppose that a
movie ratings dataset shows that users that rate “Lord of the Rings
3” high also gave high ratings to “Lord of the Rings 1–2”. This
will establish high weights from “Lord of the Rings 1–2” to “Lord
of the Rings 3”. Now, if a user did not rate “Lord of the Rings
1–2” at all, his predicted rating for “Lord of the Rings 3” will be
penalized, as some necessary weights cannot be added to the sum.

For prior models ((3),(4)) that interpolated rui−bui from {ruj−
buj |j ∈ Sk(i; u)}, it was necessary to maintain compatibility be-
tween the bui values and the buj values. However, here we do
not use interpolation, so we can decouple the definitions of bui

and buj . Accordingly, a more general prediction rule would be:
r̂ui = b̃ui +

∑

j∈R(u)(ruj − buj)wij +
∑

j∈N(u) cij . Here, b̃ui

represents predictions of rui by other methods such as a latent fac-
tor model. We elaborate more on this in Section 5. For now, we
suggest the following rule that was found to work well:

r̂ui = µ + bu + bi +
∑

j∈R(u)

(ruj − buj)wij +
∑

j∈N(u)

cij (8)

Importantly, the buj’s remain constants, which are derived as ex-
plained in Sec. 2.1. However, the bu’s and bi’s become parameters,
which are optimized much like the wij ’s and cij ’s.
1In many cases it would be reasonable to attach significance
weights to implicit feedback. This requires a modification to our
formula which, for simplicity, will not be considered here.

A characteristic of the current scheme is that it encourages greater
deviations from baseline estimates for users that provided many
ratings (high |R(u)|) or plenty of implicit feedback (high |N(u)|).
In general, this is a good practice for recommender systems. We
would like to take more risk with well modeled users that provided
much input. For such users we are willing to predict quirkier and
less common recommendations. On the other hand, we are less cer-
tain about the modeling of users that provided only a little input, in
which case we would like to stay with safe estimates close to the
baseline values. However, our experience shows that the current
model somewhat overemphasizes the dichotomy between heavy
raters and those that rarely rate. Better results were obtained when
we moderated this behavior, replacing the prediction rule with:

r̂ui =µ + bu + bi + |R(u)|−
1

2

∑

j∈R(u)

(ruj − buj)wij

+ |N(u)|−
1

2

∑

j∈N(u)

cij (9)

Complexity of the model can be reduced by pruning parameters
corresponding to unlikely item-item relations. Let us denote by
Sk(i) the set of k items most similar i, as determined by the simi-

larity measure sij . Additionally, we use Rk(i; u)
def
= R(u)∩Sk(i)

and Nk(i; u)
def
= N(u)∩Sk(i).2 Now, when predicting rui accord-

ing to (9), it is expected that the most influential weights will be
associated with items similar to i. Hence, we replace (9) with:

r̂ui =µ + bu + bi + |Rk(i; u)|−
1

2

∑

j∈Rk(i;u)

(ruj − buj)wij

+ |Nk(i; u)|−
1

2

∑

j∈Nk(i;u)

cij (10)

When k = ∞, rule (10) coincides with (9). However, for other
values of k it offers the potential to significantly reduce the number
of variables involved.

This is our final prediction rule, which allows fast online predic-
tion. More computational work is needed at a pre-processing stage
where parameters are estimated. A major design goal of the new
neighborhood model was facilitating an efficient global optimiza-
tion procedure, which prior neighborhood models lacked. Thus,
model parameters are learnt by solving the regularized least squares
problem associated with (10):

min
b∗,w∗,c∗

∑

(u,i)∈K

⎛

⎝rui − µ− bu − bi − |Nk(i; u)|−
1

2

∑

j∈Nk(i;u)

cij

− |Rk(i; u)|−
1

2

∑

j∈Rk(i;u)

(ruj − buj)wij

⎞

⎠

2

+ λ4

⎛

⎝b2
u + b2

i +
∑

j∈Rk(i;u)

w2
ij +

∑

j∈Nk(i;u)

c2
ij

⎞

⎠

(11)

An optimal solution of this convex problem can be obtained by

2Notational clarification: With other neighborhood models it was
beneficial to use Sk(i; u), which denotes the k items most similar
to i among those rated by u. Hence, if u rated at least k items, we
will always have |Sk(i; u)| = k, regardless of how similar those
items are to i. However, |Rk(i; u)| is typically smaller than k, as
some of those items most similar to i were not rated by u.



least square solvers, which are part of standard linear algebra pack-
ages. However, we have found that the following simple gradient
descent solver works much faster. Let us denote the prediction er-
ror, rui− r̂ui, by eui. We loop through all known ratings in K. For
a given training case rui, we modify the parameters by moving in
the opposite direction of the gradient, yielding:

• bu ← bu + γ · (eui − λ4 · bu)

• bi ← bi + γ · (eui − λ4 · bi)

• ∀j ∈ Rk(i; u) :

wij ← wij+γ·
(

|Rk(i; u)|−
1

2 · eui · (ruj − buj)− λ4 · wij

)

• ∀j ∈ Nk(i; u) :

cij ← cij + γ ·
(

|Nk(i; u)|−
1

2 · eui − λ4 · cij

)

The meta-parameters γ (step size) and λ4 are determined by
cross-validation. We used γ = 0.005 and λ4 = 0.002 for the
Netflix data. A typical number of iterations throughout the train-
ing data is 15. Another important parameter is k, which controls
the neighborhood size. Our experience shows that increasing k al-
ways benefits the accuracy of the results on the test set. Hence, the
choice of k should reflect a tradeoff between prediction accuracy
and computational cost.

Experimental results on the Netflix data with the new neighbor-
hood model are presented in Fig. 1. We studied the model under
different values of parameter k. The pink curve shows that accuracy
monotonically improves with rising k values, as root mean squared
error (RMSE) falls from 0.9139 for k = 250 to 0.9002 for k =∞.
(Notice that since the Netflix data contains 17,770 movies, k =∞
is equivalent to k =17,770, where all item-item relations are ex-
plored.) We repeated the experiments without using the implicit
feedback, that is, dropping the cij parameters from our model. The
results depicted by the yellow curve show a significant decline in
estimation accuracy, which widens as k grows. This demonstrates
the value of incorporating implicit feedback into the model.

For comparison we provide the results of two previous neigh-
borhood models. First is a correlation-based neighborhood model
(following (3)), which is the most popular CF method in the litera-
ture. We denote this model as CorNgbr. Second is a newer model
[2] that follows (4), which will be denoted as WgtNgbr. For both
these two models, we tried to pick optimal parameters and neigh-
borhood sizes, which were 20 for CorNgbr, and 50 for WgtNgbr.
The results are depicted by the green and cyan lines. Notice that
the k value (the x-axis) is irrelevant to these models, as their differ-
ent notion of neighborhood makes neighborhood sizes incompati-
ble. It is clear that the popular CorNgbr method is noticeably less
accurate than the other neighborhood models, though its 0.9406
RMSE is still better than the published Netflix’s Cinematch RMSE
of 0.9514. On the opposite side, our new model delivers more ac-
curate results even when compared with WgtNgbr, as long as the
value of k is at least 500.

Finally, let us consider running time. Previous neighborhood
models require very light pre-processing, though, WgtNgbr [2] re-
quires solving a small system of equations for each provided pre-
diction. The new model does involve pre-processing where param-
eters are estimated. However, online prediction is immediate by
following rule (10). Pre-processing time grows with the value of k.
Typical running times per iteration on the Netflix data, as measured
on a single processor 3.4GHz Pentium 4 PC, are shown in Fig. 2.

4. LATENT FACTOR MODELS REVISITED
As mentioned in Sec. 2.3, a popular approach to latent factor

models is induced by an SVD-like lower rank decomposition of the
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Figure 1: Comparison of neighborhood-based models. We
measure the accuracy of the new model with and without im-
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test set, so lower values indicate better performance. RMSE is
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two prior models as two horizontal lines: the green line rep-
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Figure 2: Running times (minutes) per iteration of the neigh-
borhood model, as a function of the parameter k.

ratings matrix. Each user u is associated with a user-factors vector
pu ∈ R

f , and each item i with an item-factors vector qi ∈ R
f .

Prediction is done by the rule:

r̂ui = bui + pT
u qi (12)

Parameters are estimated by minimizing the associated squared er-
ror function (5). Funk [9] popularized gradient descent optimiza-
tion, which was successfully practiced by many others [17, 18, 22].
Henceforth, we will dub this basic model “SVD”. We would like to
extend the model by considering also implicit information. Follow-
ing Paterek [17] and our work in the previous section, we suggest
the following prediction rule:

r̂ui = bui + qT
i

⎛

⎝|R(u)|−
1

2

∑

j∈R(u)

(ruj − buj)xj

+ |N(u)|−
1

2

∑

j∈N(u)

yj

⎞

⎠ (13)



Here, each item i is associated with three factor vectors qi, xi, yi ∈
R

f . On the other hand, instead of providing an explicit parame-
terization for users, we represent users through the items that they
prefer. Thus, the previous user factor pi was replaced by the sum
|R(u)|−

1

2

∑

j∈R(u)(ruj − buj)xj + |N(u)|−
1

2

∑

j∈N(u) yj . This
new model, which will be henceforth named “Asymmetric-SVD”,
offers several benefits:

1. Fewer parameters. Typically the number of users is much
larger than the number of products. Thus, exchanging user-
parameters with item-parameters lowers the complexity of
the model.

2. New users. Since Asymmetric-SVD does not parameterize
users, we can handle new users as soon as they provide feed-
back to the system, without needing to re-train the model and
estimate new parameters. Similarly, we can immediately ex-
ploit new ratings for updating user preferences. Notice that
for new items we do have to learn new parameters. Interest-
ingly, this asymmetry between users and items meshes well
with common practices: systems need to provide immediate
recommendations to new users who expect quality service.
On the other hand, it is reasonable to require a waiting pe-
riod before recommending items new to the system. As a
side remark, it is worth mentioning that item-oriented neigh-
borhood models exhibit the same desired asymmetry.

3. Explainability. Users expect a system to give a reason for
its predictions, rather than facing “black box” recommenda-
tions. This not only enriches the user experience, but also en-
courages users to interact with the system, fix wrong impres-
sions and improve long-term accuracy. In fact, the impor-
tance of explaining automated recommendations is widely
recognized [11, 23]. Latent factor models such as SVD face
real difficulties to explain predictions. After all, a key to
these models is abstracting users via an intermediate layer of
user factors. This intermediate layer separates the computed
predictions from past user actions and complicates explana-
tions. However, the new Asymmetric-SVD model does not
employ any level of abstraction on the users side. Hence, pre-
dictions are a direct function of past users’ feedback. Such a
framework allows identifying which of the past user actions
are most influential on the computed prediction, thereby ex-
plaining predictions by most relevant actions. Once again,
we would like to mention that item-oriented neighborhood
models enjoy the same benefit.

4. Efficient integration of implicit feedback. Prediction accu-
racy is improved by considering also implicit feedback, which
provides an additional indication of user preferences. Obvi-
ously, implicit feedback becomes increasingly important for
users that provide much more implicit feedback than explicit
one. Accordingly, in rule (13) the implicit perspective be-
comes more dominant as |N(u)| increases and we have much
implicit feedback. On the other hand, the explicit perspective
becomes more significant when |R(u)| is growing and we
have many explicit observations. Typically, a single explicit
input would be more valuable than a single implicit input.
The right conversion ratio, which represents how many im-
plicit inputs are as significant as a single explicit input, is au-
tomatically learnt from the data by setting the relative values
of the xj and yj parameters.

As usual, we learn the values of involved parameters by mini-
mizing the regularized squared error function associated with (13):

min
q∗,x∗,y∗,b∗

∑

(u,i)∈K

(

rui − µ− bu − bi

− qT
i

⎛

⎝|R(u)|−
1

2

∑

j∈R(u)

(ruj − buj)xj + |N(u)|−
1

2

∑

j∈N(u)

yj

⎞

⎠

)2

+ λ5

⎛

⎝b2
u + b2

i + ∥qi∥
2 +

∑

j∈R(u)

∥xj∥
2 +

∑

j∈N(u)

∥yj∥
2

⎞

⎠

(14)

We employ a simple gradient descent scheme to solve the system.
On the Netflix data we used 30 iterations, with step size of 0.002
and λ5 = 0.04.

An important question is whether we need to give up some pre-
dictive accuracy in order to enjoy those aforementioned benefits
of Asymmetric-SVD. We evaluated this on the Netflix data. As
shown in Table 1, prediction quality of Asymmetric-SVD is actu-
ally slightly better than SVD. The improvement is likely thanks to
accounting for implicit feedback. This means that one can enjoy
the benefits that Asymmetric-SVD offers, without sacrificing pre-
diction accuracy. As mentioned earlier, we do not really have much
independent implicit feedback for the Netflix dataset. Thus, we ex-
pect that for real life systems with access to better types of implicit
feedback (such as rental/purchase history), the new Asymmetric-
SVD model would lead to even further improvements. Neverthe-
less, this still has to be demonstrated experimentally.

In fact, as far as integration of implicit feedback is concerned,
we could get more accurate results by a more direct modification
of (12), leading to the following model:

r̂ui = bui + qT
i

⎛

⎝pu + |N(u)|−
1

2

∑

j∈N(u)

yj

⎞

⎠ (15)

Now, a user u is modeled as pu + |N(u)|−
1

2

∑

j∈N(u) yj . We use
a free user-factors vector, pu, much like in (12), which is learnt
from the given explicit ratings. This vector is complemented by
the sum |N(u)|−

1

2

∑

j∈N(u) yj , which represents the perspective
of implicit feedback. We dub this model “SVD++”. Similar mod-
els were discussed recently [3, 19]. Model parameters are learnt by
minimizing the associated squared error function through gradient
descent. SVD++ does not offer the previously mentioned bene-
fits of having less parameters, conveniently handling new users and
readily explainable results. This is because we do abstract each
user with a factors vector. However, as Table 1 indicates, SVD++
is clearly advantageous in terms of prediction accuracy. Actually,
to our best knowledge, its results are more accurate than all pre-
viously published methods on the Netflix data. Nonetheless, in the
next section we will describe an integrated model, which offers fur-
ther accuracy gains.

5. AN INTEGRATED MODEL
The new neighborhood model of Sec. 3 is based on a formal

model, whose parameters are learnt by solving a least squares prob-
lem. An advantage of this approach is allowing easy integration
with other methods that are based on similarly structured global
cost functions. As explained in Sec. 1, latent factor models and
neighborhood models nicely complement each other. Accordingly,
in this section we will integrate the neighborhood model with our
most accurate factor model – SVD++. A combined model will sum



Model 50 factors 100 factors 200 factors
SVD 0.9046 0.9025 0.9009
Asymmetric-SVD 0.9037 0.9013 0.9000
SVD++ 0.8952 0.8924 0.8911

Table 1: Comparison of SVD-based models: prediction accu-
racy is measured by RMSE on the Netflix test set for varying
number of factors (f ). Asymmetric-SVD offers practical ad-
vantages over the known SVD model, while slightly improving
accuracy. Best accuracy is achieved by SVD++, which directly
incorporates implicit feedback into the SVD model.

the predictions of (10) and (15), thereby allowing neighborhood
and factor models to enrich each other, as follows:

r̂ui = µ + bu + bi + qT
i

⎛

⎝pu + |N(u)|−
1

2

∑

j∈N(u)

yj

⎞

⎠

+ |Rk(i; u)|−
1

2

∑

j∈Rk(i;u)

(ruj − buj)wij + |Nk(i; u)|−
1

2

∑

j∈Nk(i;u)

cij

(16)

In a sense, rule (16) provides a 3-tier model for recommenda-
tions. The first tier, µ+ bu + bi, describes general properties of the
item and the user, without accounting for any involved interactions.
For example, this tier could argue that “The Sixth Sense” movie is
known to be good, and that the rating scale of our user, Joe, tends to

be just on average. The next tier, qT
i

(

pu + |N(u)|−
1

2

∑

j∈N(u) yj

)

,

provides the interaction between the user profile and the item pro-
file. In our example, it may find that “The Sixth Sense” and Joe are
rated high on the Psychological Thrillers scale. The final “neigh-
borhood tier” contributes fine grained adjustments that are hard to
profile, such as the fact that Joe rated low the related movie “Signs”.

Model parameters are determined by minimizing the associated
regularized squared error function through gradient descent. Recall

that eui
def
= rui − r̂ui. We loop over all known ratings in K. For

a given training case rui, we modify the parameters by moving in
the opposite direction of the gradient, yielding:

• bu ← bu + γ1 · (eui − λ6 · bu)

• bi ← bi + γ1 · (eui − λ6 · bi)

• qi ← qi +γ2 · (eui · (pu + |N(u)|−
1

2

∑

j∈N(u) yj)−λ7 ·qi)

• pu ← pu + γ2 · (eui · qi − λ7 · pu)

• ∀j ∈ N(u) :

yj ← yj + γ2 · (eui · |N(u)|−
1

2 · qi − λ7 · yj)

• ∀j ∈ Rk(i; u) :

wij ← wij+γ3·
(

|Rk(i; u)|−
1

2 · eui · (ruj − buj)− λ8 · wij

)

• ∀j ∈ Nk(i; u) :

cij ← cij + γ3 ·
(

|Nk(i; u)|−
1

2 · eui − λ8 · cij

)

When evaluating the method on the Netflix data, we used the fol-
lowing values for the meta parameters: γ1 = γ2 = 0.007, γ3 =
0.001, λ6 = 0.005, λ7 = λ8 = 0.015. It is beneficial to de-
crease step sizes (the γ’s) by a factor of 0.9 after each iteration. The
neighborhood size, k, was set to 300. Unlike the pure neighbor-
hood model (10), here there is no benefit in increasing k, as adding
neighbors covers more global information, which the latent factors
already capture adequately. The iterative process runs for around

50 factors 100 factors 200 factors
RMSE 0.8877 0.8870 0.8868
time/iteration 17min 20min 25min

Table 2: Performance of the integrated model. Prediction ac-
curacy is improved by combining the complementing neighbor-
hood and latent factor models. Increasing the number of fac-
tors contributes to accuracy, but also adds to running time.

30 iterations till convergence. Table 2 summarizes the performance
over the Netflix dataset for different number of factors. Once again,
we report running times on a Pentium 4 PC for processing the 100
million ratings Netflix data. By coupling neighborhood and latent
factor models together, and recovering signal from implicit feed-
back, accuracy of results is improved beyond other methods.

Recall that unlike SVD++, both the neighborhood model and
Asymmetric-SVD allow a direct explanation of their recommen-
dations, and do not require re-training the model for handling new
users. Hence, when explainability is preferred over accuracy, one
can follow very similar steps to integrate Asymmetric-SVD with
the neighborhood model, thereby improving accuracy of the indi-
vidual models while still maintaining the ability to reason about
recommendations to end users.

6. EVALUATION THROUGH A TOP-K REC-
OMMENDER

So far, we have followed a common practice with the Netflix
dataset to evaluate prediction accuracy by the RMSE measure. Achiev-
able RMSE values on the Netflix test data lie in a quite narrow
range. A simple prediction rule, which estimates rui as the mean
rating of movie i, will result in RMSE=1.053. Notice that this rule
represents a sensible “best sellers list” approach, where the same
recommendation applies to all users. By applying personalization,
more accurate predictions are obtained. This way, Netflix Cine-
match system could achieve a RMSE of 0.9514. In this paper,
we suggested methods that lower the RMSE to 0.8870. In fact,
by blending several solutions, we could reach a RMSE of 0.8645.
Nonetheless, none of the 3,400 teams actively involved in the Net-
flix Prize competition could reach, as of 20 months into the com-
petition, lower RMSE levels, despite the big incentive of winning
a $1M Grand Prize. Thus, the range of attainable RMSEs is seem-
ingly compressed, with less than 20% gap between a naive non-
personalized approach and the best known CF results. Successful
improvements of recommendation quality depend on achieving the
elusive goal of enhancing users’ satisfaction. Thus, a crucial ques-
tion is: what effect on user experience should we expect by low-
ering the RMSE by, say, 10%? For example, is it possible, that a
solution with a slightly better RMSE will lead to completely dif-
ferent and better recommendations? This is central to justifying
research on accuracy improvements in recommender systems. We
would like to shed some light on the issue, by examining the effect
of lowered RMSE on a practical situation.

A common case facing recommender systems is providing “top
K recommendations”. That is, the system needs to suggest the top
K products to a user. For example, recommending the user a few
specific movies which are supposed to be most appealing to him.
We would like to investigate the effect of lowering the RMSE on
the quality of top K recommendations. Somewhat surprisingly, the
Netflix dataset can be used to evaluate this.

Recall that in addition to the test set, Netflix also provided a val-
idation set for which the true ratings are published. We used all
5-star ratings from the validation set as a proxy for movies that



interest users.3 Our goal is to find the relative place of these “inter-
esting movies” within the total order of movies sorted by predicted
ratings for a specific user. To this end, for each such movie i, rated
5-stars by user u, we select 1000 additional random movies and
predict the ratings by u for i and for the other 1000 movies. Fi-
nally, we order the 1001 movies based on their predicted rating,
in a decreasing order. This simulates a situation where the sys-
tem needs to recommend movies out of 1001 available ones. Thus,
those movies with the highest predictions will be recommended to
user u. Notice that the 1000 movies are random, some of which
may be of interest to user u, but most of them are probably of no
interest to u. Hence, the best hoped result is that i (for which we
know u gave the highest rating of 5) will precede the rest 1000
random movies, thereby improving the appeal of a top-K recom-
mender. There are 1001 different possible ranks for i, ranging from
the best case where none (0%) of the random movies appears be-
fore i, to the worst case where all (100%) of the random movies
appear before i in the sorted order. Overall, the validation set con-
tains 384,573 5-star ratings. For each of them (separately) we draw
1000 random movies, predict associated ratings, and derive a rank-
ing between 0% to 100%. Then, the distribution of the 384,573
ranks is analyzed. (Remark: since the number 1000 is arbitrary, re-
ported results are in percentiles (0%–100%), rather than in absolute
ranks (0–1000).)

We used this methodology to evaluate five different methods.
The first method is the aforementioned non-personalized prediction
rule, which employs movie means to yield RMSE=1.053. Hence-
forth, it will be denoted as MovieAvg. The second method is a
correlation-based neighborhood model, which is the most popular
approach in the CF literature. As mentioned in Sec. 3, it achieves
a RMSE of 0.9406 on the test set, and was named CorNgbr. The
third method is the improved neighborhood approach of [2], which
we named WgtNgbr and could achieve RMSE= 0.9107 on the test
set. Fourth is the SVD latent factor model, with 100 factors thereby
achieving RMSE=0.9025 as reported in Table 1. Finally, we con-
sider our most accurate method, the integrated model, with 100
factors, achieving RMSE=0.8870 as shown in Table 2.

Figure 3(top) plots the cumulative distribution of the computed
percentile ranks for the five methods over the 384,573 evaluated
cases. Clearly, all methods would outperform a random/constant
prediction rule, which would have resulted in a straight line con-
necting the bottom-left and top-right corners. Also, the figure ex-
hibits an ordering of the methods by their strength. In order to
achieve a better understanding, let us zoom in on the head of the
x-axis, which represents top-K recommendations. After all, in or-
der to get into the top-K recommendations, a product should be
ranked before almost all others. For example, if 600 products are
considered, and three of them will be suggested to the user, only
those ranked 0.5% or lower are relevant. In a sense, there is no dif-
ference between placing a desired 5-star movie at the top 5%, top
20% or top 80%, as none of them is good enough to be presented to
the user. Accordingly, Fig. 3(bottom), plots the cumulative ranks
distribution between 0% and 2% (top 20 ranked items out of 1000).

As the figure shows, there are very significant differences among
the methods. For example, the integrated method has a probabil-
ity of 0.067 to place a 5-star movie before all other 1000 movies
(rank=0%). This is more than three times better than the chance of
the MovieAvg method to achieve the same. In addition, it is 2.8
times better than the chance of the popular CorNgbr to achieve the
same. The other two methods, WgtNbr and SVD, have a probabil-
ity of around 0.043 to achieve the same. The practical interpretation
is that if about 0.1% of the items are selected to be suggested to

3In this study, the validation set is excluded from the training data.

the user, the integrated method has a significantly higher chance
to pick a specified 5-star rated movie. Similarly, the integrated
method has a probability of 0.157 to place the 5-star movie be-
fore at least 99.8% of the random movies (rank!0.2%). For com-
parison, MovieAvg and CorNgbr have much slimmer chances of
achieving the same: 0.050 and 0.065, respectively. The remaining
two methods, WgtNgbr and SVD, lie between with probabilities of
0.107 and 0.115, respectively. Thus, if one movie out of 500 is to
be suggested, its probability of being a specific 5-stars rated one
becomes noticeably higher with the integrated model.

We are encouraged, even somewhat surprised, by the results. It
is evident that small improvements in RMSE translate into signifi-
cant improvements in quality of the top K products. In fact, based
on RMSE differences, we did not expect the integrated model to
deliver such an emphasized improvement in the test. Similarly, we
did not expect the very weak performance of the popular correla-
tion based neighborhood scheme, which could not improve much
upon a non-personalized scheme.
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Figure 3: Comparing the performance of five methods on a
top-K recommendation task, where a few products need to be
suggested to a user. Values on the x-axis stand for the per-
centile ranking of a 5-star rated movie; lower values repre-
sent more successful recommendations. We experiment with
384,573 cases and show the cumulative distribution of the re-
sults. The lower plot concentrates on the more relevant region,
pertaining to low x-axis values. The plot shows that the in-
tegrated method has the highest probability of obtaining low
values on the x-axis. On the other hand, the non-personalized
MovieAvg method and the popular correlation-based neighbor-
hood method (CorNgbr) achieve the lowest probabilities.



7. DISCUSSION
This work proposed improvements to two of the most popular

approaches to Collaborative Filtering. First, we suggested a new
neighborhood based model, which unlike previous neighborhood
methods, is based on formally optimizing a global cost function.
This leads to improved prediction accuracy, while maintaining mer-
its of the neighborhood approach such as explainability of predic-
tions and ability to handle new users without re-training the model.
Second, we introduced extensions to SVD-based latent factor mod-
els that allow improved accuracy by integrating implicit feedback
into the model. One of the models also provides advantages that are
usually regarded as belonging to neighborhood models, namely, an
ability to explain recommendations and to handle new users seam-
lessly. In addition, the new neighborhood model enables us to de-
rive, for the first time, an integrated model that combines the neigh-
borhood and the latent factor models. This is helpful for improving
system performance, as the neighborhood and latent factor models
address the data at different levels and complement each other.

Quality of a recommender system is expressed through multi-
ple dimensions including: accuracy, diversity, ability to surprise
with unexpected recommendations, explainability, appropriate top-
K recommendations, and computational efficiency. Some of those
criteria are relatively easy to measure, such as accuracy and effi-
ciency that were addressed in this work. Some other aspects are
more elusive and harder to quantify. We suggested a novel ap-
proach for measuring the success of a top-K recommender, which is
central to most systems where a few products should be suggested
to each user. It is notable that evaluating top-K recommenders sig-
nificantly sharpens the differences between the methods, beyond
what a traditional accuracy measure could show.

A major insight beyond this work is that improved recommen-
dation quality depends on successfully addressing different aspects
of the data. A prime example is using implicit user feedback to ex-
tend models’ quality, which our methods facilitate. Evaluation of
this was based on a very limited form of implicit feedback, which
was available within the Netflix dataset. This was enough to show
a marked improvement, but further experimentation is needed with
better sources of implicit feedback, such as purchase/rental history.
Other aspects of the data that may be integrated to improve pre-
diction quality are content information like attributes of users or
products, or dates associated with the ratings, which may help to
explain shifts in user preferences.
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