ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ ОЧИСТНЫХ СООРУЖЕНИЙ ГОРОДА МАКЕЕВКИ

Джембрий Ю. А., Чайка Л. В. (ДонНТУ, г. Донецк)

Постановка проблемы. Охрана водных ресурсов должна быть приоритетом для всех государств с целью обеспечения населения достаточным количеством высококачественной воды для удовлетворения потребностей людей, экономики и окружающей среды.

В настоящее время в большинстве поверхностных водоемов эвтрофикация наблюдается антропогенная ЭТО повышение биологической продуктивности водных экосистем результате В обогащения их питательными веществами, поступающими вследствие разнообразной хозяйственной деятельности, И вызванное продуктивность водорослей и высших водных растений [1]. Водотоки города претерпевают гораздо большую нагрузку в связи с большой численностью населения и концентрацией промышленных предприятий. Катализаторами процесса эвтрофикации выступают биогенные элементы (азот, фосфор, углерод, водород, калий, кальций, кислород), которые входят в состав коммунальных и промышленных неочищенных или недостаточно очищенных сточных вод. Повышенное содержание этих элементов способствует протеканию несбалансированной эвтрофикации, что приводит к «цветению» воды и появлению в ней цианобактерий, которые выделяют токсины, способные вызвать отравления как у животных, так и у людей. Негативным следствием этих процессов является увеличение потребления кислорода в процессах разложения органических загрязняющих веществ, что ведет к уменьшению общего содержания кислорода, особенно в зимнее время в придонных слоях. Следствием этого является образование водорода сульфида, который приводит к заморам водных организмов [1]. Вышеуказанные причины превышения порога самоочищения поверхностных водоемов демонстрируют необходимость развития и совершенствования технологий более эффективной очистки сточных вод.

В данной работе в качестве объекта изучения были выбраны очистные сооружения города Макеевки (ГОС), представляющие сложный производственный комплекс. Согласно [2] ежесуточно на ГОС поступают 79 934 м³ хозяйственно-бытовых, производственных и ливневых сточных вод. Общая проектная суточная производительность предприятия 100 тыс. м³, а фактическая – 28 тыс. м³. Характеристика состава сточных вод за 2014 год до и после очистки представлена в таблице [2].

Таблица — Характеристика среднегодового состава сточных вод города Макеевки за 2014 год, мг/дм³

Показатели	Концентрация	
	«до»	«после»
БПК5	184,0	9,7
Взвешенные вещества	194,0	14,0
Сухой остаток	1193,0	1102,0
Хлориды	207,0	189,0
Сульфаты	333,0	298,0
Азот аммонийный	26,0	1,9
Нитриты	0,20	1,90
Нитраты	1,5	65,0
Фосфаты	7,8	5,4
СПАВ	1,5	0,28
Нефтепродукты	1,5	0,29
Железо	1,4	0,27
Фенолы	0,012	0,001
ХПК	375,0	42,0

Анализ данных таблицы показывает, что концентрации таких загрязняющих веществ как $БПК_5$, взвешенные вещества, хлориды, сульфаты, азот аммонийный, фосфаты, СПАВ, нефтепродукты, железо, фенолы, XΠΚ уменьшаются на стадиях механической и биохимической очистки. В то время как для нитритов и нитратов они значительно увеличиваются вследствие протекающей реакции нитрификации, условную схему которой можно представить в виде:

$$NH_4^+ \longrightarrow NO_2^- \longrightarrow NO_3^-$$
.

Проведение процесса нитрификации в аэробных условиях сопровождается переходом нитрит-ионов в нитрат-ионы, при этом, чем больше концентрация нитрит-ионов, тем выше концентрация конечного продукта. Но в то же время известно, что избыток нитрит- и нитрат-ионов негативно воздействует на водоемы, усиливая их антропогенную эвтрофикацию. Катализаторами окисления аммонийного азота служат аэробные нитрифицирующие бактерии. К сожалению, эти процессы при существующей технологии очистки стоков неизбежны. Необходимость внедрения новых биохимических методов является перспективным решением возникшей экологической проблемы, связанной с охраной поверхностных водных источников.

Одним из таких направлений может быть микробное анаэробное окисление аммония, получившее название «ANAMMOX» [3].

Процесс протекает в две стадии, в котором вторая представляет собой реакцию денитрификации, конечным продуктом является инертный азот, участвующий в малом биогеохимическом цикле. Анаммокс-процесс можно представить следующими уравнениями реакций:

$$2NH_4^+ + 3O_2 \longrightarrow 2NO_2^- + 4H^+ + 2H_2O,$$

 $NH_4^+ + NO_2^- \longrightarrow N_2 + 2H_2O,$

Суммарная реакция процесса выглядит как:

$$4NH_4^+ + 3O_2 \longrightarrow 2N_2 + 4H^+ + 6H_2O.$$

Как видно анаммокс-процесс позволяет полностью исключить нитрит- и нитрат-ионы из сферы очистки сточных вод. Поскольку технологическая схема очистных сооружений города Макеевки не использует эту технологию, то наличие повышенных концентраций нитрит- и нитрат-ионов приводит к «цветению» водоемов, появлению неприятных запахов, ухудшению среды обитания рыб и, в целом, загрязнению акватории.

Выводы. Таким образом, экологическую проблему негативного влияния ГОС на состояние речки Грузская возможно решить путем внедрения установки анаммокс-реактора перед вторичными отстойниками действующей технологической схемы.

Список литературы: 1. Салминен, П. Эвтрофикация — общая проблема / П. Салминен. — Финляндия, 2012. — 67 с. 2. Разрешение на специальное водопользование и нормативы предельно допустимого сброса загрязняющих веществ со сточными водами Макеевского ПУВКХ КП «Компания «Вода Донбасса»: Отчет годовой / Макеевское ПУВКХ КП «Компания «Вода Донбасса». — Макеевка, 2009. —60 с. 3. Данилович, Д. А. Анаэробное окисление аммония для удаления азота из высококонцентрированных сточных вод / Д. А. Данилович // Научнотехнический и производственный журнал. — 2010. - № 4. — С. 25-32.