Вісник ОНУ

УДК 54.128.13:541.124:542.943.7:546.262.3-31:546.92'284

Т. Л. Ракитская ¹, Т. А. Киосе ¹, В. Я. Волкова ² ¹ Одесский национальный университет им. И. И. Мечникова, кафедра неорганической химии и химической экологии, ул. Дворянская, 2, Одесса, 65026. E-mail: rabbit@farlep.net

² Физико-химический институт защиты окружающей среды и человека МОН и НАН Украины, ул. Преображенская, 3, Одесса, 65026

МЕТАЛЛИЧЕСКИЕ, ОКСИДНЫЕ И МЕТАЛЛОКОМПЛЕКСНЫЕ КАТАЛИЗАТОРЫ НИЗКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА КИСЛОРОДОМ

Представлены данные сравнительных исследований окисления СО кислородом в присутствии катализаторов: металлического Pd/Al_2O_3 , гопкалита MnO_2 -CuO и закрепленных на трепеле галогенидных комплексов Pd(II) и Cu(II) (Pd(II)-Cu(II)/T3K-M). Показано, что закрепленный на носитель металлокомплексный катализатор активен и стабилен при низком содержании палладия и высокой влажности газовоздушной смеси.

Ключевые слова: монооксид углерода, окисление, гопкалит, закрепленный металлический катализатор, нанесенный металлокомплексный катализатор.

Анализ научной и патентной литературы указывает на то, что усилия разработчиков катализаторов низкотемпературного окисления монооксида углерода кислородом сосредоточены в области поиска высокоактивных металлических, оксидных и оксидно-металлических катализаторов, как массивных, так и нанесенных на различные носители. Несмотря на многообразие предложений, в средствах индивидуальной защиты органов дыхания (СИЗОД) от СО (противогазы и малогабаритные стационарные установки очистки воздуха) преимущественно используются оксидные катализаторы типа гопкалита и металлические Pd/Al₂O₃ [1]. Однако указанные катализаторы имеют ряд недостатков, среди которых наиболее существенные — отравляемость парами воды для гопкалита и высокое содержание (до 5 масс. %) палладия во втором катализаторе. Нами показано [2], что галогенидные комплексы Pd(II) и Cu(II), закрепленные на трепеле ТЗК-М (диатомит), при определенном соотношении компонентов являются эффективными лишенными перечисленных недостатков катализаторами окисления СО кислородом. В цитируемых, а также во многих других работах отсутствуют данные о кинетике окисления СО кислородом, близких к условиям эксплуатации катализатора в противогазах, особенно при сравнительно низком содержании СО в газовоздушной смеси (ГВС), например не более 300 мг/м³ (15 ПДК), из-за чего затрудняется оценка

© Т. Л. Ракитская, Т. А. Киосе, В. Я. Волкова, 2004

защитных свойств катализатора и возможности использования его в средствах защиты окружающей и внутренней среды человека.

Цель работы — сопоставить защитные свойства трех типов катализаторов: металлического Pd/Al₂O₃, гопкалита MnO₂-CuO (промышленные образцы) и металлокомплексного Pd(II)-Cu(II)/T3K-M.

1. Методика эксперимента

Для опытов использовали следующие промышленные образцы. Катализатор АК-62 (ТУ 6-16-2578-82), содержащий 2,4 масс. % палладия в активной форме на Al_2O_3 (Pd/ Al_2O_3) и гопкалит формованный ГФГ (ТУ-6-16-2432-80), содержащий в масс. %: $MnO_2 - 60,0$; CuO – 25,0 [3].

Закрепленные на трепеле ТЗК-М металлокомплексные катализаторы получали методом импрегнирования носителя водным раствором, содержащем хлорид палладия(II), хлорид (или нитрат) меди(II) и дополнительные компоненты в виде галогенидов (Cl⁻, Br⁻) щелочного металла. Объем пропитывающего раствора должен примерно в 1,5 раза превышать суммарный объем пор носителя. Полученную влажную рыхлую массу сушили при температуре 383 К до постоянной массы, а затем образец выдерживали в эксикаторе над раствором серной кислоты (30–35 %) с относительным давлением насыщенных паров $P/P_o = 0,50-0,56$ в течении одного часа так, чтобы образец адсорбировал 0,1 г H₂O на 1 г носителя.

Тестирование образцов трех типов катализатора осуществляли в проточной по газу термостатированной при 293 К установке, в реакторе с неподвижным слоем катализатора. Размеры реактора, дисперсность образцов и линейная скорость ГВС соответствуют режиму идеального вытеснения и протеканию реакции в кинетической области для закрепленного металлокомплексного Pd(II)-Cu(II)/TЗК-М катализатора и промышленного гопкалита [4]. В случае промышленного катализатора Рd/Al₂O₃ может происходить искажение режима идеального вытеснения за счет пристеночного эффекта.

ГВС с определенной концентрацией СО получали путем разбавления концентрированного газа (98–99 об. % СО) очищенным воздухом до требуемой концентрации — 100; 200; 300 мг/м³ (или 3,57·10⁻⁶; 7,14·10⁻⁶; 10,72·10⁻⁶ моль/л). Начальную (C_{CO}^{H}) и конечную (C_{CO}^{K}) концентрации определяли с помощью газоанализатора 621ЭХО4 ("Аналітприлад", Украина), чувствительность которого 2 мг/м³. Влажность ГВС ($\phi_{\Gamma BC}$) поддерживали постоянной (70 %).

Скорость реакции расчитывали по формуле:

$$W \frac{\omega \left(C_{CO}^{H} - C_{CO}^{K}\right)}{m_{k}}, \text{ моль/(fc)}$$
(1)

где $\omega = 1,67 \cdot 10^{-2}$ — объемный расход, л/с; C_{CO}^{H} , C_{CO}^{K} — начальная и конечная концентрации СО, моль/л; m_{κ} — масса образца катализатора, г. Результаты исследования представляли в виде выходных кривых C^{K}_{CO} — τ и W – τ (τ — время реакции).

На основании экспериментальных данных для стационарного режима рассчитывали константу скорости:

$$k_{1} = \frac{1}{\tau'} \ln \frac{C_{CO}^{H}}{C_{CO}^{K}}, c^{-1}$$
(2)

где τ' — еффективное время контакта, а также степень превращения CO $(\eta_{\rm cr})$:

$$\eta_{\rm cr} = \frac{\left(C_{\rm CO}^{\rm H} - C_{\rm CO}^{\rm K}\right)}{C_{\rm CO}^{\rm H}} \cdot 100, \%.$$
(3)

2. Кинетика окисления СО кислородом в присутствии Pd/Al₂O₃-катализатора

Ассортимент металлических катализаторов для низкотемпературной очистки воздуха от СО достаточно широкий [1], однако для использования в СИЗОД предлагают в основном одно-, двух- или многокомпонентные катализаторы, содержащие от 0,15 до 5,0 масс. % металлов платиновой группы, а именно Pt и Pd [5–9], золото [10–13].

Применение катализаторов на основе золота в СИЗОД (патронные респираторы) было продемонстрировано на выставке, проводимой в рамках 13 Международного конгресса по катализу (11–16 июля 2004, Париж). Согласно рекламным материалам для снаряжения патрона необходимо всего 10 г катализатора.

На территории СНГ только Электростальский химический завод (Россия) выпускает два типа Pd/Al_2O_3 — катализаторов — АК-62 и АК-64, отличающихся содержанием активного палладия (2,4 и 4 масс. %, соответственно) [3]. В настоящей работе представлены данные по кинетике окисления СО в присутствии катализатора АК-62.

Влияние макрокинетических факторов. Известно, что такие показатели работы катализатора, как степень превращения СО, скорость реакции, время достижения стационарного режима процесса, время защитного действия ($\tau_{\Pi Д K}$) определяются макрокинетическими факторами, а именно дисперстностью (d_3 — средний размер зерен), массой катализатора (m_{κ}), линейной скоростью ГВС (U, см/с) и эффективным временем контакта ГВС с катализатором (τ' , с). На рис. 1 *а* представ-

лены данные по изменению C_{CO}^{κ} во времени при использовании разных навесок катализатора (m_к = 2,0; 4,0 и 7,0 г) и варьировании U и τ' . Все кривые характеризуются выходом на стационарный режим, в котором степень превращения СО (η , %) зависит от навески катализатора, линейной скорости ГВС и эффективного времени контакта. Очевидно, что при $m_{\kappa} = 2,0$ г, U = 8,4 и 11,1 см/с $C_{CO}^{\kappa} >> ПДК_{CO}$ (ПД $K_{CO} = 20,0$ мг/м³ — для рабочей зоны); при $m_{\kappa} = 4,0$ г конечная концентрация СО в стационарном режиме уменьшается с увеличением U от 2,9 до 9,8 см/с и при U > 2.9 см/с $C_{CO}^{\kappa} < ПДK_{CO}$; при $m_{\kappa} = 7,0$ г линейная скорость мало влияет на ход процесса (кривые 6, 7): $C_{CO}^{\kappa} << ПДK_{CO}$ и практически не зависит от линейной скорости (от 2,5 до 4,4 см/с). Скорость реакции изменяется во времени следующим образом (рис. 1 б). При $m_{\kappa} = 2,0$ и 4,0 г $W_{\mu} > W_{cT}$ и скорость реакции в стационарном режиме определяется линейной скоростью ГВС. Так, при $m_{\kappa} = 4,0$ г и U \geq 5,3 см/с $W_{cT} = \text{const.}$ При $m_{\kappa} = 7,0$ г $W_{\mu} \approx W_{cT}$ и остаются постоянными при U = 2,5 и 4,4 см/с.

Рис. 1 *а.* Изменение C_{co}^{κ} во времени при окислении СО кислородом в присутствии Pd/Al_2O_3 — катализатора (2,4 масс % Pd)

 $C_{_{CO}}^{^{\rm K}}$ = 300 мг/м³; ω = 1,67·10^{-2} л/мин; $d_{_3}$ = 1–2 мм; T = 293 K;

 $\phi_{\Gamma BC} = 70\%$; $m_k = 2$ r; U, cm/c: 1 — 8,4; 2 — 11,1; $m_k = 4$ r; U, cm/c: 3 — 2,9; 4 — 5,3; 5 — 9,8; $m_k = 7$ r; U, cm/c: 6 — 2,5; 7 — 4,4.

В табл. 1 обобщены данные по влиянию макрокинетических параметров на показатели процесса окисления СО. Видно, что с увеличением τ' от 0,20 до 0,75 с степень превращения СО возрастает и мало изменяется при U \geq 5,3 см/с, (m_к = 4,0 г),

Для образца массой 7,0 г степень превращения не зависит от линейной скорости ГВС. Анализ констант k_I для стационарного участка кинетической кривой подтверждает сделанный выше вывод.

Металлические, оксидные и металлокомплексные катализаторы

Рис. 1 б. Изменение W во времени при окислении CO кислородом в присутствии Pd/Al2O3- катализатора (2,4 масс. % Pd)

 $\begin{array}{l} C_{_{\rm C}}^{^{_{\rm H}}} = 300 \ \text{mg/m}^3; \ \omega = 1,67\cdot 10^{-2} \ \text{j/mh}; \ d_{_3} = 1-2 \ \text{mm}; \ T = 293 \ \text{K}; \\ \phi_{_{\Gamma BC}} = 70\%; \ m_{_k} = 2 \ \text{f}; \ \text{U}, \ \text{cm/c}: \ 1-8,4; \ 2-11,1; \ m_{_k} = 4 \ \text{f}; \ \text{U}, \ \text{cm/c}: \\ 3-2,9; \ 4-5,3; \ 5-9,8; \ m_{_k} = 7 \ \text{f}; \ \text{U}, \ \text{cm/c}: \ 6-2,5; \ 7-4,4. \end{array}$

Таблица 1

Влияние макрокинетических параметров на показатели процесса окисления СО кислородом в присутствии Pd/Al₂O₃-катализатора (2,4 масс. % Pd)

n. i	D, est y	1. e	W (10°, MOLTATIS) Dis (10)		C.60.	$\frac{k_1 c ^1}{\ln(2)}$	ղ,։"ս ոււՆլ
			- W.,	W ₂₀			
2.0	8.1	-0.20	8,9	7.1	7.5	7.1	70
2.0	11.1	0.20	V.2	6.5	981	6.0	70
- 4.0	2.9	10,41	4,h	4.0	4/0	4.8	87
4,0	5,1	0,42	4,h	11	14	7,4	- 95
4,0	9,8	0.42	4,6		12	7,7	-141
7,0	2.5	0.75	2.6	2.6	2	6.5	Ś
7.0	4.1	0.76	2.6	2.6	2	6.5	99

 $C_{\rm CO}^{\rm H} = 300 \; \text{mg/m}^3; \;\; \omega = 1,67 \cdot 10^{-2} \; \text{m/c}; \;\; d_{_3} = 1-2 \; \text{mm}; \;\; T = 293 \;\; \text{K}; \;\; \phi_{\text{TBC}} = 70 \; \% \; .$

Влияние C_{CO}^{H} . При разных навесках катализатора (m_к = 2,0; 4,0 и 7,0 г) начальную концентрацию СО варьировали от 100 до 300 мг/м³ (3,57·10⁻⁶; 7,14·10⁻⁶; 10,72·10⁻⁶ моль/л). Нами показано, что характерный вид кривых (см. рис. 1 *a*, *б*) сохраняется при всех указанных C_{CO}^{H} . На рис. 2 в качестве примера показано изменение W во времени

при $m_{_{\rm K}}=4,0$ г. Видно, что с увеличением $C_{\rm CO}^{\rm H}$ пропорционально возрастают $W_{_{\rm H}}$ и $W_{_{\rm CT}}$, что указывает на первый порядок реакции по CO.

Рис. 2. Изменение W во времени при окислении CO кислородом в присутствии Pd/Al_2O_3 — катализатора при разных C_{co}^{H} в ГВС C_{co}^{H} , мг/м³: 1 — 100; 2 — 200; 3 — 300; $\omega = 1,67\cdot 10^{-2}$ л/с; $d_3 = 1-2$ мм; T = 293 K; $\phi_{\text{ГВС}} = 70$ %; $m_k = 4$ г; $\tau' = 0,42$ с; U = 5,3 см/с.

В табл. 2 представлены обобщенные данные по влиянию C_{CO}^{H} на кинетические параметры реакции при разных m_{κ} .

Таблица 2

Влияние С^н_{со} на показатели реакции (W_н, W_{ст}, k₁ и η) окисления СО кислородом в присутствии Pd/Al₂O₃-катализатора при разных макрокинетических условиях

 $ω = 1,67 \cdot 10^{-2}$ π/c; d_a = 1-2 mm; T = 293 K; $φ_{\text{TBC}} = 70$ %

CH CO MEM ²	Weld", Mashared no (1) Wassi Wass		С <mark>К</mark> СОСОНИСКИ (стан. режим)	k ₀ .c ²¹ nor(2)	0 1, °• 03 (3)	Условия опыта
100	3.2	2.1	35	5,2	6.5	$m_{e} = -2.0$ s
200	5.9	3.3	64	5.7	68	 – 8.4 cm c
300	8.9	7.0	74	7.0	75	$\tau' = 0.2$ c
100	1.6	1.4	10	5.5	- yn	$m_{\rm e} = -4.0$ m
200	3.1	2.8	20	5.4	90	 5.3 cm/c
300	-1.6	- 4.4	14	7.4	- 95	$\tau^{\prime} = 0.42$ c
100	44	0,9	Ð	-	100	$m_{\rm c} = -7.0$ m
200	1.8	1.8	2	6.5	4)Q	V= 4.4 cm/c
.300	2.6	2.6	2	6,5	49	c' = 0.75 c

Металлические, оксидные и металлокомплексные катализаторы

Таким образом, показано, что промышленный катализатор AK-62 $(Pd/Al_2O_3, 2,4 \text{ масс. }\% Pd)$ обеспечивает очистку воздуха от CO до и ниже ПДК в области C_{CO}^{H} от 100 до 300 мг/м³ при условии $\tau' = 0,42$ с. При относительной влажности ГВС 67-70 % катализатор не отравляется парами воды (допустимое содержание адсорбированной воды не более 5,0 масс. % [3]).

3. Кинетика окисления СО кислородом в присутствии оксидного катализатора типа гопкалита

Несмотря на огромное количество работ в области создания низкотемпературных оксидных катализаторов для очистки воздуха от СО [1], катализаторы на основе оксидов марганца и меди (гопкалиты) являются довольно распространенными коммерческими катализаторами и в настоящее время производятся в значительных количествах для снаряжения СИЗОД [14].

На рис. З показаны выходные кривые C_{CO}^{κ} — τ , полученные для разных навесок гопкалита MnO_2 -CuO. Видно, что концентрация CO на выходе из реактора быстро нарастает и только при $m_{\kappa} > 5$ г катализатор обнаруживает защитные свойства. При этом $\tau_{\Pi \Lambda K}$ возрастает от 9 мин до 70 мин с увеличением m_{κ} от 10 до 25 г, соответственно. Во всех случаях достигается начальная концентрация CO.

Рис. 3. Изменение C_{co}^{κ} во времени при окислении СО кислородом в присутствии MnO_2 -CuO — катализатора при разной массе катализатора m_{κ} , г: 1 — 5,0; 2 — 10,0; 3 — 15,0; 4 — 20,0; 5 — 25,0; C_{co}^{H} = 300 мг/ м³; ω = 1,67·10⁻² л/с; T = 293 К; $\phi_{\Gamma BC}$ = 70 %; U = 4,4 см/с.

Потеря активности катализатора связана с отравлением его парами воды. После сушки катализатор восстанавливает свою активность, однако, не более 3 регенераций.

Таким образом, испытания гопкалита MnO_2 -CuO показали его неперспективность для дальнейших кинетических исследований при низких C_{co}^{H} и высокой влажности ГВС.

4. Кинетика окисления СО кислородом в присутствии закрепленного на трепеле металлокомплексного Pd(II)-Cu(II)-катализатора

Закрепленные на различных носителях металлокомплексные соединения совмещают лучшие свойства гомогенных и гетерогенных катализаторов; могут в широких пределах изменять свою активность благодаря варьированию соотношения наносимых компонентов, изменению природы лиганда и способа связывания центрального атома с функциональной группой носителя. Высокую активность и стабильность в реакциях низкотемпературного окисления СО как при высоких (6200–12000 мг/м³) так и при низких (100–300 мг/м³) его концентрациях обнаружили закрепленные на трепеле (ТЗК-М) галогенидные комплексы Pd(II) и Cu(II) [15, 16, 17].

В области низких концентраций CO от 100 до 300 мг/м³ установлен первый порядок реакции по CO [17] и сложные зависимости W от соотношения Pd(II) : Cu(II) : X⁻, где X⁻ = Cl⁻, Br⁻ или их совместное присутствие [18].

Влияние C_{PdCl_2} . Известно, что заметная скорость каталитического окисления СО кислородом наблюдается только при совместном присутствии Pd(II) и Cu(II) и зависит от природы ацидолигандов в их координационной сфере [15, 16]. В этой связи влияние C_{PdCl_2} на скорость реакции изучали в системах разного состава: PdCl₂-CuCl₂-NaBr-H₂O/T3K-M (I) и PdCl₂-Cu(NO₃)₂-NaBr-H₂O/T3K-M (II). На рис. 4 показано изменение C_{CO}^{κ} во времени при варьировании содержания PdCl₂ в катализаторе(I). Как видно из рис. 4, в отсутствие палладия(II) СО не окисляется кислородом и $C_{CO}^{H} = C_{CO}^{\kappa}$; с увеличением C_{PdCl_2} в составе катализатора быстро устанавливается стационарный режим реакции и C_{CO}^{κ} понижается, однако остается выше ПДК. Аналогичную серию по влиянию C_{PdCl_2} на скорость реакции выполнили для катализатора(II), в которой использовали в качестве исходной соли нитрат меди(II). Обобщенные данные по двум сериям представлены в табл. 3, на основании данных которой можно сделать такие выводы:

1) с увеличением C_{PdCl_2} возрастают W_{H} , W_{cr} , k_I , а также степень превращения СО в стационарном режиме;

2) резкое возрастание константы k_{I} и η_{cr} наблюдается при соотношении $C_{Pd(II)}/C_{Cu(II)} = 1$, если в качестве сокатализатора используется $Cu(NO_{3})_{2}$;

3) высокая активность Pd(II)-Cu(II)-катализатора проявляется, в отличие от металлических катализаторов, при низком содержании Pd(II);

4) с уменьшением суммарного содержания Cl^- -ионов (за счет замены $CuCl_2$ на $Cu(NO_3)_2$) и увеличением содержания Br^- -ионов активность катализатора(II) повышается.

Рис. 4. Изменение C_{co}^{κ} во времени при окислении СО кислородом при разном содержании Pd(II) в катализаторе PdCl₂ – CuCl₂ – NaBr – H₂O – T3K-M (II) $C_{PdCl_2} \cdot 10^5$, моль/г: 1–0; 2–0,68; 3–1,36; 4–2,40; 5–3,05; 6–4,40; 7–4,75; 8–5,65; $C_{CuCl_2} = 1,17 \cdot 10^{-4}$; $C_{NaBr} = 5,10 \cdot 10^{-5}$ моль/г; $C_{co}^{H} = 300$ мг/м³;

 $\omega = 1,67{\cdot}10^{-2} \; {\pi/c}; \; T = 293 \; \text{K}; \;\; m_{_{\rm H_2O}} {=}\; 0,1 \text{r/r} \; ; \; U = 4,4 \; \text{cm/c}.$

Влияние C_{NaBr} . Детально изучено влияние C_{NaBr} на активность катализатора состава $PdCl_2-Cu(NO_3)_2-NaBr-H_2O$ /ТЗК-М. На рис. 5 показано изменение C_{CO}^{K} во времени при разном содержании бромида натрия в составе катализатора(II). Видно, что как в отсутствие (кривая 1), так и в присутствии бромид-ионов, процесс за короткий промежуток времени выходит на стационарный режим, в котором с увеличением C_{Br-} до $10,2\cdot10^{-5}$ моль/г C_{CO}^{K} понижается, а при $C_{Br-} \ge 15,3\cdot10^{-5}$ моль/г повышается. Результаты обработки полученных данных представлены в табл. 4.

Таблица 3

Влияние С_{РdCl2} в составе катализаторов I и II на кинетические параметры реакции окисления СО кислородом

С _{КО,} 10 [°] . моли	արումերդու	C _{MML} Mace, ¹⁶ 6	8-10 ⁸ .) 110 110	stoaturie Hit R _a r	$\frac{k_{1},\phi^{\prime}}{(m+2)}$	С <mark>К</mark> СО мі (м)	η _{στ} . •α ποτ31			
Kara miarup (1): $C_{1.075_{2}} = 1.17(10^{14}; C_{ND} = 5.1(10^{11}; 0.000))$										
0,0	0.0	0.0	0.0	- 0,0	0.0	300	- 0			
0.68	0,08)	0.07	0.68	0.63	0.42	195	35			
1.36	0.12	0.14	1.02	0.87	0.64	155	48			
2,40	# 21	0.25	1.24	1,05	0,86	123	54			
3,05	0.26	0.32	1.38	1.27	1.20	88	71			
4,40	06.38	0.46	1.51	1.34	1.50	80	73			
4.75	41.41	(1,49	1.51	1,36	1.40	77	70			
5,05	0,48	0.53	1,50	1.38	1,42	70	77			
Катализатор (ПСС $_{108,0,0,0}$ = 2.90 10 ³ ; $C_{8,0,0}$ = 1.02-10 ³ молыт										
46430	1,11	0,0	- 10.40	11,11	- 0.0	300	11			
0.56	0 9	0.465	1 17	0,09	0.10	285	5			
1.36	0.47	0.14	1.62	0.54	0.30	210	30			
2.03	0.70	0.21	1.73	0.96	0,70	140	- 53			
3.405	1.465	(1,32	1,77	1,73	3,10	12	ան			
3.73	1.29	0,39	1,76	1.69	2,80	18	<u>1</u>			
4,75	1.64	(I. 49	1.75	1,76	3.60	8	٧7			

 $C_{\rm CO}^{\rm H}=300 \; \text{mg/m}^3; \; m_{\rm H_2O}=0,1 \; \text{g/r}; \; d_{_3}=0,5-1 \; \text{mm}; \; T=293 \; \text{K}; \; U=4,4 \; \text{cm/c}; \; \tau'=1,02 \; \text{c$

Таблица 4

Влияние С_{NaBr} в составе катализатора PdCl₂-Cu(NO₃)₂-NaBr-H₂O/T3K-M на кинетические параметры реакции окисления CO кислородом

 $C_{PdCl_2} = 3,10 \cdot 10^{-5}; \ C_{Cu(NO_3)_2} = 2,9 \cdot 10^{-5}$ (моль/г); $C_{Pd(II)}/C_{Cu(II)} = 1; \ C = 300 \ \text{mg/m}^3;$

$m_{\rm H_{2}0} = 0$	0,1 r/r; d ₂ =	0,5-1 MM; T = 293 K;	$U = 4,4 \text{ cm/c}; \tau' = 1,02 \text{ c}$
----------------------	---------------------------	----------------------	--

Стальс105. манявая	$C_{\rm fs} \circ C_{\rm Kem}$	W-10 ⁴ , M 107	editario) De	κ ρια ³¹ πα (2)	C^{h}_{CO}	η _{κη} . ^ο υ
		W	<i>K</i> ¹⁰		м., м²	na (j)
0	-	1.20	1.14	1.0	1.66	63
1,0	46.3	1,38	1.44	1,6	60	80
2.6	10,8	1,45	1,54	2,0	40	87
51	1.7	1.68	1.68	2.7	20	(V)
7,4	2.4	1.76	1.72	3,0	14	45
10.2	3.3	1,77	1,73	3.2	12	96
15.8	5.0	1.77	1,19	1.1	102	66
301, A	10,0	1.62	12.54	D,4	210	30

Рис. 5. Изменение C_{co}^{κ} во времени при окислении СО кислородом при разном содержании NaBr в катализаторе $PdCl_2 - Cu(NO_3)_2 - NaBr/T3K-M$ (II) C_{NaBr} ·10⁵, моль/г: 1-0; 2-1,02; 3-2,60; 4-5,10; 5-7,70; 6-10,2; 7-15,3; 8-30,6; C_{PdCl_2} =3,05·10⁻⁵ моль/г; $C_{cu(NO_3)_2}$ =5,10·10⁻⁵ моль/г; C_{co}^{μ} = 300 мг/м³; $\omega = 1,67 \cdot 10^{-2}$ л/с; T = 293 K; $m_{\mu,o} = 0,1r/r$; U = 4,4 см/с

Как видно из данных табл. 4, с увеличением содержания NaBr в катализаторе $W_{_{\rm H}}$ возрастает, а $W_{_{\rm cr}}$, $k_{_{\rm I}}$ и $\eta_{_{\rm cr}}$ проходят через максимум, когда $C_{_{\rm Br-}}/C_{_{\rm Pd(II)}} = 3,3$, а $C_{_{\rm Pd(II)}}/C_{_{\rm Cu(II)}} = 1$. Полученные данные указывают на то, что активными в реакции окисления СО кислородом являются биядерные Pd(II)-Cu(II)-комплексы с определенным числом бромид-ионов в координационной сфере.

Показано, что катализатор $PdCl_2$ -Cu(NO₃)₂-NaBr-H₂O/T3K-M обеспечивает очистку воздуха от CO ниже ПДК при содержании палладия 0,32 масс. %, что в 15 раз ниже, чем в промышленно выпускаемом Pd/Al_2O_3 катализаторе, и, в отличие от гопкалита, активируется парами воды.

Литература

- 1. Ракитская Т. Л., Эннан А. А., Паина В. Я. Катализаторы низкотемпературного окисления монооксида углерода. М.: ЦИНТИХимнефтемаш, 1991. 36 с.
- 2. Ракитская Т. Л., Эннан А. А., Паина В. Я. О низкотемпературном окислении окиси углерода в присутствии нанесенных металлокомплексных катализаторов // Изв. высш. учеб. завед. Химия и хим. технология. 1978. Т. 21, вып. 7. С. 1007–1010.
- Активные угли. Эластичные сорбенты. Катализаторы. Осушители. Химические поглотители. Каталог. — Черкассы: НИТЭХИМ, 1996. — 124 с.

- 4. Kinetics and mechanism of low-temperature ozone decomposition by Co-ions adsorbed on silica / T. L. Rakitskaya, A. A. Ennan, I. V. Granatyuk, A. Yu. Bandurko, G. G. A. Balavoine, Y. V. Geletii, V. Ya. Paina // Catal. Today. 1999. Vol. 53, N 4. P. 715-723.
- 5. Заявка 59-26334 Япония, 1984. Катализатор для обработки воздуха, содержащего оксид углерода / Ниппон энгэрухарудо К. К.
- Заявка 59-26335 Япония, 1984. Катализатор окисления с металлом платиновой группы и способ получения / Никки Юнибасару К. К.
- 7. *Катализатор* окисления окиси углерода / С. Н. Павлова, В. А. Сазонов, В. В. Поповский и др. // Каталит. очистка газов: Матер. 4 Всесоюз. конф. Алма-Ата, 1985. Ч. 1. С. 32–36.
- 8. *Ham.* 3758666 CIIIA, 1973. Removal of carbon monoxide from air / L. K. Prevel, L. J. Kressey; The Dow Chemical Co.
- 9. Investigation of low temperature carbon monoxide oxidation catalysts / R. B. Jagow, R. A. Lamparter, T. Katan, C. D. Ray // Am. Soc. Mech. Eng. — 1977. — (77-ENAs-28). — Rep. — 16 pp.
- Thompson D. T. Perspective on industrial and scientific aspects of gold catalysis // Appl. Catal. A: Gen. — 2003. — Vol. 243, N 3. — P. 201-205.
- Cameron D., Holliday R., Thompson D. Gold's future role in fuel cell systems // J. Power Sources. — 2003. — Vol. 118, N 2. — P. 298-303.
- Lin J.-N., Wan B.-Z. Effects of preparation conditions on gold / Y-type zeolite for CO oxidation // Appl. Catal. B: Environ. — 2003. — Vol. 41, N 1. — P. 83-95.
- Mallick K., Scurrell M. S. CO oxidation over gold nanoparticles supported on TiO₂ and TiO₂-ZnO: catalytic activity effect due to surface modification of TiO₂ with ZnO // Appl. Catal. A: Gen. — 2003. — Vol. 253, N 4. — P. 527–536.
- 14. Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na⁺ acting as catalyst poison / A. A. Mirzaei, H. R. Shaterian, R. W. Joyner, M. Stockenhuber, S. H. Taylor, G. J. Hutchings // Catal. Commun. — 2003. — Vol. 4, N 1. — P. 17-20.
- 15. Ракитская Т. Л., Паина В. Я., Эннан А. А. Состав и каталитическая активность гидроксобромидных комплексов палладия(II) в реакциях окисления монооксида углерода // Координац. химия. — 1987. — Т. 13, вып. 10. — С. 1393–1397.
- 16. Ракитская Т. Л., Паина В. Я. Влияние содержания воды на каталитическую активность нанесенных комплексов Pd(II) и Cu(II) в реакции окисления монооксида углерода кислородом // Кинетика и катализ. — 1990. — Т. 31, вып. 2. — С. 371–375.
- 17. Ракитська Т. Л., Кіосе Т. О., Волкова В. Я. Окиснення монооксиду вуглецю кис-нем в присутності Pd(II)-Cu(II)-каталізатора, нанесеного на діатомітовий носій // Вісн. Одеськ. нац. ун-ту. Хімія. 2003. Т. 8, вип. 8. С. 153–158.
- 18. Киосе Т. А. Нанесенные на трепел хлоробромидные комплексы Pd(II) и Cu(II) катализаторы низкотемпературного окисления монооксида углерода кислородом // Міжнар. конф. студентів та аспірантів, присвяч. 75-річчю з дня народження академіка О. В. Богатського "Сучасні напрямки розвитку хімії": Тези доп. — Одеса: Астропринт, 2004. — С. 38.

Т. Л. Ракитська ¹, Т. О. Кіосе ¹, В. Я. Волкова ² ¹ Одеський національний університет ім. І. І. Мечникова, кафедра неорганічної хімії і хімічної екології, вул. Дворянська, 2, Одеса, 65026, Україна.

² Фізико-хімічний інститут захисту навколишнього середовища і людини МОН і НАН України,

вул. Преображенська, 3, Одеса, 65026, Україна.

Металлические, оксидные и металлокомплексные катализаторы

МЕТАЛЕВІ, ОКСИДНІ І МЕТАЛОКОМПЛЕКСНІ КАТАЛІЗАТОРИ НИЗЬКОТЕМПЕРАТУРНОГО ОКИСНЮВАННЯ МОНООКСИДУ ВУГЛЕЦЮ КИСНЕМ

Резюме

Наведено дані порівняльних досліджень окиснювання CO киснем у присутності каталізаторів: металевого Pd/Al_2O_3 , гопкаліту MnO_2 -CuO і закріплених на трепелі гало-генідних комплексів Pd(II) і Cu(II) (Pd(II)-Cu(II)/T3K-M). Показано, що закріплений на носії металокомплексний каталізатор активний і стабільний при низькому змісті палладія і високої вологості газоповітряної суміші.

Ключові слова: монооксид вуглецю, окиснювання, гопкаліт, закріплений металевий каталізатор, нанесений металокомплексний каталізатор.

T. L. Rakitskaya¹, T. A. Kiose¹, V. Ya. Volkova²

¹ Odessa I. I. Mechnikov National University, Department of Inorganic Chemistry and Chemical Ecology,

Dvoryanskaya St., 2, Odessa, 65026, Ukraine

² Physico-Chemical Institute of Environment and Human Being Protection, Preobrazhenskaya St., **3**, Odessa, **65026**, Ukraine

METAL, OXIDE, AND METAL-COMPLEX CATALYSTS FOR LOW-TEMPERATUR CARBON MONOXIDE OXIDATION BY DIOXYGEN

Summary

Results of comparative study of CO oxidation by dioxygen over three catalysts: metal Pd/Al_2O_3 , MnO_2 -CuO hopcalite, and tripoli-supported halogenide complexes of Pd(II) and Cu(II) (Pd(II)-Cu(II)/TZK-M) are presented. As is shown, the support-anchored metal-complex catalyst is active and stable at a low palladium content and at a high value of humidity of gas-air mixture.

Keywords: carbon monoxide, oxidation, hopcalite, anchored metal catalyst, supported metal-complex catalyst.