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Abstract

The author previously proposed a neural network model neocognitron for robust visual pattern
recognition. This paper proposes an improved version of the neocognitron and demonstrates its
ability using a large database of handwritten digits (ETL1).

To improve the recognition rate of the neocognitron, several modi0cations have been applied:
such as, the inhibitory surround in the connections from S-cells to C-cells, contrast-extracting
layer between input and edge-extracting layers, self-organization of line-extracting cells, super-
vised competitive learning at the highest stage, staggered arrangement of S- and C-cells, and
so on. These modi0cations allowed the removal of accessory circuits that were appended to the
previous versions, resulting in an improvement of recognition rate as well as simpli0cation of
the network architecture.

The recognition rate varies depending on the number of training patterns. When we used 3000
digits (300 patterns for each digit) for the learning, for example, the recognition rate was 98.6%
for a blind test set (3000 digits), and 100% for the training set.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The author previously proposed a neural network model neocognitron for robust
visual pattern recognition [4,5]. It acquires the ability to recognize robustly visual pat-
terns through learning. This paper proposes an improved version of the neocognitron
and demonstrates its ability using a large database of handwritten digits.
The neocognitron was initially proposed as a neural network model of the

visual system that has a hierarchical multilayered architecture similar to the classical
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hypothesis of Hubel and Wiesel [12,13]. They hypothesized a hierarchical structure in
the visual cortex: simple cells → complex cells → lower-order hypercomplex cells →
higher-order hypercomplex cells. They also suggested that the relation between simple
and complex cells resembles that between lower- and higher-order hypercomplex cells.
Although physiologists do not use recently the classi0cation of lower- and higher-order
hypercomplex cells, hierarchical repetition of similar anatomical and functional archi-
tectures in the visual system still seems to be plausible from various physiological
experiments.
The architecture of the neocognitron was initially suggested by these physiological

0ndings. The neocognitron consists of layers of S-cells, which resemble simple cells,
and layers of C-cells, which resemble complex cells. These layers of S- and C-cells are
arranged alternately in a hierarchical manner. In other words, a number of modules,
each of which consists of an S- and a C-cell layer, are connected in a cascade in the
network.
S-cells are feature-extracting cells, whose input connections are variable and are

modi0ed through learning. C-cells, whose input connections are 0xed and unmodi0ed,
exhibit an approximate invariance to the position of the stimuli presented within their
receptive 0elds.
The C-cells in the highest stage work as recognition cells, which indicates the result

of the pattern recognition. After learning, the neocognitron can recognize input patterns
robustly, with little eFect from deformation, change in size, or shift in position.
Varieties of modi0cations, extensions and applications of the neocognitron and re-

lated networks have been reported elsewhere [1,2,10,11,14,16–27].
This paper proposes a neocognitron of a new version, which shows a further im-

proved performance. The new neocognitron also has a network architecture similar to
that of the conventional neocognitron, but several new ideas have been introduced: such
as, the inhibitory surround in the connections from S- to C-cells, a contrast-extracting
layer followed by an edge-extracting layer, self-organization of line-extracting cells,
supervised competitive learning at the highest stage, staggered arrangement of S- and
C-cells, and so on.
This paper shows that these modi0cations allow the removal of accessory circuits

appended to the neocognitron of recent versions [8], resulting in an improvement of
recognition rate as well as simpli0cation of the network architecture.

2. Architecture of the network

2.1. Outline of the network

Fig. 1 shows the architecture of the proposed network. (See also Fig. 6, which shows
a typical response of the network.) As can be seen from the 0gure, the network has
4 stages of S- and C-cell layers: U0 → UG → US1 → UC1 → US2 → UC2 → US3 →
UC3 → US4 → UC4.
The stimulus pattern is presented to the input layer (photoreceptor layer) U0.
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Fig. 1. The architecture of the proposed neocognitron.

A layer of contrast-extracting cells (UG), which correspond to retinal ganglion cells
or lateral geniculate nucleus cells, follows layer U0. The contrast-extracting layer UG

consists of two cell-planes: one cell-plane consisting of cells with concentric on-center
receptive 0elds, and one cell-plane consisting of cells with oF-center receptive 0elds.
The former cells extract positive contrast in brightness, whereas the latter extract neg-
ative contrast from the images presented to the input layer.
The output of layer UG is sent to the S-cell layer of the 0rst stage (US1). The S-cells

of layer US1 correspond to simple cells in the primary visual cortex. They have been
trained using supervised learning [4] to extract edge components of various orientations
from the input image.
The present model has four stages of S- and C-cell layers. The output of layer USl

(S-cell layer of the lth stage) is fed to layer UCl, where a blurred version of the
response of layer USl is generated. The connections from S- to C-cell layers will be
discussed in detail in Sections 2.4 and 2.5. The density of the cells in each cell-plane
is reduced between layers USl and UCl.
The S-cells of the intermediate stages (US2 and US3) are self-organized using unsu-

pervised competitive learning similar to the method used by the conventional neocog-
nitron. The learning method will be discussed later in Section 2.7.
Layer UC4, which is the highest stage of the network, is the recognition layer,

whose response shows the 0nal result of pattern recognition by the network. Layer
US4 is trained to recognize all training patterns correctly through supervised competitive
learning, which will be discussed in Section 2.8.

2.2. Contrast extraction

Let the output of a photoreceptor cell of input layer U0 be u0(n), where n represent
the location of the cell. The output of a contrast-extracting cell of layer UG, whose
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receptive 0eld center is located at n, is given by

uG(n; k) = ’


(−1)k

∑
|�|¡AG

aG(�)u0(n + �)


 (k = 1; 2); (1)

where ’[ ] is a function de0ned by ’[x] = max(x; 0). Parameter aG(�) represents the
strength of 0xed connections to the cell and takes the shape of a Mexican hat. Layer
UG has two cell-planes: one consisting of on-center cells (k =2) and one of oF-center
cells (k=1). AG denotes the radius of summation range of �, that is, the size of spatial
spread of the input connections to a cell.
The input connections to a single cell of layer UG are designed in such a way that

their total sum is equal to zero. In other words, the connection aG(�) is designed so
as to satisfy∑

|�|¡AG

aG(�) = 0: (2)

This means that the dc component of spatial frequency of the input pattern is eliminated
in the contrast-extracting layer UG. As a result, the output from layer UG is zero in
the area where the brightness of the input pattern is Jat.

2.3. S-cell layers

We will 0rst explain the characteristics commonly applied to all S-cell layers in
the network. The characteristics that are speci0c to individual layers, especially the
learning methods, will be discussed in later sections.

2.3.1. Response of an S-cell
Let uSl(n; k) and uCl(n; k) be the output of S- and C-cells of the kth cell-plane of

the lth stage, respectively, where n represents the location of the receptive 0eld center
of the cells. Layer USl contains not only S-cells but also V-cells, whose output is
represented by vl(n). The outputs of S- and V-cells are given by

uSl(n; k) =

l

1− 
l
’

[
1 +

∑KCl−1
�=1

∑
|�|¡ASl

aSl(�; �; k)uCl−1(n + �; �)

1 + 
lbSl(k)vl(n)
− 1

]
; (3)

vl(n) =

√√√√√KCl−1∑
�=1

∑
|�|¡ASl

cSl(�){uCl−1(n + �; �)}2: (4)

Parameter aSl(�; �; k) (¿ 0) is the strength of variable excitatory connection coming
from C-cell uCl−1(n+�; �) of the preceding stage. It should be noted here that all cells
in a cell-plane share the same set of input connections, hence al(�; �; k) is independent
of n. ASl denotes the radius of summation range of �, that is, the size of spatial
spread of input connections to a particular S-cell. Parameter bl(k) (¿ 0) is the strength
of variable inhibitory connection coming from the V-cell. Parameter csl(�) represents
the strength of the 0xed excitatory connections to the V-cell, and is a monotonically
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decreasing function of |�|. The positive constant 
l is the threshold of the S-cell and
determines the selectivity in extracting features.
In (3) and (4) for l= 1, uCl−1(n; k) stands for uG(n; k), and we have KCl−1 = 2.
It should be noted here that, although the pitch of cells in a cell-plane is the same

for S- and C-cells, the locations of S- and C-cells are not necessarily exactly aligned.
In some stages, they are staggered by half a pitch, as will be discussed in Section 2.4
and shown in Fig. 5 later. In these stages, if S-cells are located on an integer grid n,
the locations � of C-cells relative to an S-cell are at the centers of the meshes of the
grid. More speci0cally, if we write � = (�x; �y) in Eqs. (3) and (4), �x and �y do not
take integer values but take integers plus 0.5. In the stage where S- and C-cells are
exactly aligned, �x and �y take integer values.

2.3.2. Input connections to an S-cell
Training of the network is performed from the lower stages to the higher stages:

after the training of a lower stage has been completely 0nished, the training of the
succeeding stage begins. The same set of training patterns is used for the training of
all stages except layer US1.
Although the method for selecting seed cells during learning is slightly diFerent

between layers, the rule for strengthening variable connections al(�; �; k) and bl(k) is
the same for all layers, once the seed cells have been determined. They are strengthened
depending on the responses of the presynaptic cells. The method of selecting seed
cells will be discussed later. Let cell uSl(n̂; k̂) be selected as a seed cell at a certain
time, the variable connections al(�; �; k̂) to this seed cell, and consequently to all
the S-cells in the same cell-plane as the seed cell, are increased by the following
amount:

LaSl(�; �; k̂) = qlcSl(�)uCl−1(n̂ + �; �); (5)

where ql is a positive constant determining the learning speed. Although several meth-
ods have been proposed for determining the inhibitory connection bl(k̂), we use a
method by which bl(k̂) is determined directly from the values of the excitatory con-
nections al(�; �; k̂) [6]. That is,

bSl(k̂) =

√√√√√KCl−1∑
�=1

∑
|�|¡ASl

{aSl(�; �; k̂)}2
cSl(�)

: (6)

2.3.3. Vector notation
Now, let us represent the response of an S-cell uSl(n; k) using a vector notation. Let

x be the vector representing input signals to the S-cell. In other words, the responses
of the preceding C-cells uCl−1(n + �; �) for (|�|¡ASl) are the elements x(�) of the
vector x.
Similarly, let x(i) be the ith training vector to the S-cell. To be more exact, x(i) be

the training vector to the ith seed cell of the cell-plane to which the S-cell belongs.



166 K. Fukushima /Neurocomputing 51 (2003) 161–180

Let X be the total sum of all training vectors to the cell-plane:

X =
∑

i

x(i): (7)

We will call X the reference vector of the S-cell (or the cell-plane).
We de0ne a weighted inner product of two vectors X and x by

(X ; x) =
∑

|�|¡ASl

cSl(�)X (�)x(�); (8)

using cSl(�), which represents the strength of 0xed excitatory connections to a V-cell
(see (4) and (5)). We also de0ne the norm of a vector by ‖x‖=√

(x; x).
Substituting (4), (5) and (6) in (3), and using the vector notation de0ned above, we

have

uSl(n; k) =
�

1− 
l
’(s− 
l); (9)

where

s=
(X ; x)

‖X‖ · ‖x‖ (10)

is the similarity between the reference vector X and the test vector x. It can also
be expressed as the cosine of the angle between two vectors in the multi-dimensional
vector space. The variable �, which is de0ned by

�=

lbSl(k)vl(n)

1 + 
lbSl(k)vl(n)
; (11)

takes value � ≈ 1, if vl(n) = ‖x‖ 	=0 after 0nishing learning where bSl(k) is large
enough.
Therefore, we approximately have

uSl(n; k) ≈ ’(s− 
l)
1− 
l

: (12)

This means that the response of an S-cell takes a maximum value approximately equal
to 1 when the test vector is identical to the reference vector, and becomes 0 if the
similarity s is less than the threshold 
l of the cell.
In the multi-dimensional feature space, the area that satis0es s¡
l becomes

the tolerance area in feature extraction by the S-cell, and the threshold 
l determines the
radius of the tolerance area. The selectivity of an S-cell to its preferred feature (or the
reference vector) can thus be controlled by the threshold 
l.
If the threshold is low, the radius of the tolerance area becomes large, and the S-cell

responds even to features largely deformed from the reference vector. This makes
a situation like a population coding of features rather than grandmother cell theory:
many S-cells respond to a single feature if the response of an entire layer is observed.
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Fig. 2. EFect of thinning-out for two diFerent arrangements of cells. S- and C-cells are staggered by half a
pitch in (a)–(c), while they are exactly aligned in (d)–(f).

Empirically, this situation of low threshold produces a better recognition rate of the
neocognitron.

2.4. Thinning-out of cells

The response of an S-cell layer USl is spatially blurred in the succeeding C-cell
layer UCl, and the density of the cells in each cell-plane is reduced. The reduction
of the density is made by a thinning-out of the cells. In our system, we make 2:1
thinning-out in both horizontal and vertical directions. Since there are several kinds of
possible thinning-out methods, we will pick up two of them and compare the merits
and demerits. To simplify the discussion, Fig. 2 illustrates a one-dimensional case
where the number of connections are reduced than in the actual network used for the
simulation. In Method 1, the locations of S- and C-cells are staggered by half a pitch
as illustrated in (a)–(c) in Fig. 2. In Method 2, S- and C-cells are exactly aligned
as shown in (d)–(f). Suppose the number of input connections of each cell be 4 in
Method 1, and 5 in Method 2.
Let cell a is active in layer USl as shown in (a). The output of this S-cell is fed to

two C-cells of the succeeding layer UCl. If the network has already 0nished learning,
one S-cell in layer USl+1, say cell A, will responds to this stimulus. Even if the input
stimulus is shifted by 1 pixel and cell b is active instead of a as shown in (b), still
the same C-cells will be active, and hence the same S-cell A will responds. Now let
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the stimulus be shifted by 2 pixels from (a), and cell c be active as shown in (c). The
active C-cells will now be shifted by one pitch of C-cells. Since all the S-cells in a
cell-plane share the same set of input connections, the response of S-cells will also be
shifted in layer USl+1, and cell B will be active. We can see that Method 1 causes no
problem for this kind of shift.
Now we will consider Method 2. Let cell a is active in layer USl as shown in (d).

The output of cell a is fed to two C-cells, and cell A will be active in layer USl+1.
This situation resembles the case (a). If the input stimulus is shifted by 1 pixel and
cell b is active, however, the signal will now be sent to three C-cells as shown in (e).
To ensure the shift-invariance of the neocognitron, the same S-cell A has to respond to
this shifted stimulus. In other words, the threshold of S-cells must be set low enough
to allow S-cell A respond to both (d) and (e). If the stimulus be shifted by 2 pixels
from (d), we can simply have a shifted response from cell B as shown in (f), and
there is no problem as in the case of Method 1.
From these discussions, it might seem that Method 1 is always superior to Method

2. If two adjoining cells are active in layer USl, however, Method 2 will produces a
better result. Let cells a and b be active simultaneously. Two C-cells will be active
by Method 1, and three by Method 2. When cells b and c are active together, three
C-cells will be active by both Methods 1 and 2. We can see that the number of active
C-cells now changes by Method 1, but not by Method 2.
Although each method has thus merits and demerits, we decide to adopt Method 1

in this paper, because a single feature seems to have a larger chance of eliciting a
large response from one isolated S-cell than from two adjoining S-cells. Incidentally,
in most of the neocognitrons of previous versions, Method 2 was used.
Relative arrangement of cells between UCl and USl+1, however, makes little diFer-

ence, even if they are staggered or exactly aligned. In the simulation discussed later,
they are staggered in layers up to US3, and exactly aligned between UC3 and US4.

2.5. Inhibitory surround in the connections to C-cells

The response of an S-cell layer USl is spatially blurred in the succeeding C-cell layer
UCl. Mathematically, the response of a C-cell of UCl, excluding those in the highest
stage UC4, is given by

uCl(n; k) =  


 ∑
|�|¡ACl

aCl(�)uSl(n + �; k)


 ; (13)

where  [x] = ’[x]=(1 + ’[x]). Parameter aCl(�) represents the strength of the 0xed
excitatory connections converging from a group of S-cells, which spread within a
radius of ACl.
In the conventional neocognitron, the input connections of a C-cell, namely aCl(�),

consisted of only excitatory components of a circular spatial distribution.
An inhibitory surround is newly introduced around the excitatory connections. The

concentric inhibitory surround endows the C-cells with the characteristics of end-stopped
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(A) Response like an end-stopped cell. Stimulus (a) produces a larger response than (b).

(B) Separation of the blurred responses produced by two independent features.

(a) No inhibitory surround (conventional)

(b) Inhibitory surround (proposed)

Fig. 3. The eFect of inhibitory surround in the input connections to a C-cell.

cells, and C-cells behave like hypercomplex cells in the visual cortex (Fig. 3(A)). In
other words, an end of a line elicits a larger response from a C-cell than a middle
point of the line.
Bend points and end points of lines are important features for pattern recognition. In

the network of previous versions (e.g. [8]), an extra S-cell layer, which was called
a bend-extracting layer, was placed after the line-extracting stage to extract these
feature points. In the proposed network, C-cells, whose input connections have in-
hibitory surrounds, participate in extraction of bend points and end points of lines
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while they are making a blurring operation. This allows the removal of accessory layer
of bend-extracting cells, resulting in a simpli0cation of the network architecture and
an increased recognition rate as well.
The inhibitory surrounds in the connections also have another bene0t. The blurring

operation by C-cells, which usually is eFective for improving robustness against de-
formation of input patterns, sometimes makes it diMcult to detect whether a lump of
blurred response is generated by a single feature or by two independent features of the
same kind. For example, a single line and a pair of parallel lines of a very narrow
separation generate a similar response when they are blurred. The inhibitory surround
in the connections to C-cells creates a non-responding zone between the two lumps
of blurred responses (Fig. 3(B)). This silent zone makes the S-cells of the next stage
easily detect the number of original features even after blurring.
Incidentally, the inhibitory surround has also an eFect like lateral inhibition and

increases the selectivity to features in the response of C-cells. As a result, the threshold
of preceding S-cells has to be slightly lowered to keep the same selectivity in the
response of the C-cell layer. In other words, the best threshold of the preceding S-cells
becomes lower when inhibitory surround is introduced in the input connections of
C-cells.
The inhibitory surround in the input connections, however, is introduced for layers

UC1 and UC2, but not for layers UC3 and higher. In these higher layers, an inhibitory
surround seems to have little chance to display its real ability because of two reasons.
(1) Since there is a little probability that a single input pattern has two identical global
features at diFerent locations, discrimination between one and two features is scarcely
required. (2) Since spatial spread of the connections to a single cell becomes large
enough to cover a great part of the preceding S-cell layer, most of the surrounding
inputs come from outside of the boundary of a cell-plane and are treated as zero in
the calculation.

2.6. Edge-extracting layer

Layer US1, namely, the S-cell layer of the 0rst stage, is an edge-extracting layer.
It has 16 cell-planes, each of which consists of edge-extracting cells of a particular
preferred orientation. Preferred orientations of the cell-planes, namely, the orientations
of the training patterns, are chosen at an interval of 22:5◦. The threshold of the S-cells,
which determines the selectivity in extracting features, is set low enough to accept
edges of slightly diFerent orientations.
The S-cells of this layer have been trained using supervised learning [4]. To train

a cell-plane, the “teacher” presents a training pattern, namely a straight edge of a
particular orientation, to the input layer of the network. The teacher then points out the
location of the feature, which, in this particular case, can be an arbitrary point on the
edge. The cell whose receptive 0eld center coincides with the location of the feature
takes the place of the seed cell of the cell-plane, and the process of reinforcement
occurs automatically. It should be noted here that the process of supervised learning
is identical to that of the unsupervised learning except the process of choosing seed
cells.
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The speed of reinforcement of variable input connections of a cell [i.e. the value of
ql in (5)] is set so large that the training of a seed cell (and hence the cell-plane) is
completed by only a single presentation of each training pattern.
The optimal value of threshold 
1 can be determined as follows. A low threshold


1 reduces the orientation selectivity of the S-cells and increases the tolerance for
rotation of edges to be extracted. Computer simulation shows that a lower threshold
usually produces a greater robustness against deformation of the input patterns. (Some
discussions on the merit of low threshold appear also in [7].) If the threshold becomes
too low, however, S-cells of this layer come to yield spurious outputs, responding to
features other than desired edges. For example, an S-cell responds even to an edge of
180◦ apart from the preferred orientation, when the threshold is too low. Such spurious
responses usually reduce the recognition rate of the neocognitron. Hence it can be
concluded that the optimal value of the threshold 
1 is the lower limit of the value
that does not generate spurious responses from the cells.
The optimal threshold value, however, changes depending whether an inhibitory sur-

round is introduced in the connections to the C-cells or not. The inhibitory surround
produces an eFect like a lateral inhibition, and small spurious responses generated
in layer US1 can be suppressed in layer UC1. Hence the threshold 
1 can be low-
ered down to the value by which no spurious responses are observed, not in US1, but
in UC1.

2.7. Competitive learning for intermediate layers

The S-cells of intermediate stages (US2 and US3) are self-organized using unsuper-
vised competitive learning similar to the method used in the conventional neocognitron
[4,5]. Seed cells are determined by a kind of winner-take-all process. Every time a
training pattern is presented to the input layer, each S-cell competes with the other
cells in its vicinity, which is called the competition area and has the shape of a hy-
percolumn. If and only if the output of the cell is larger than any other cells in the
competition area, the cell is selected as the seed cell. As can be seen from Eq. (5),
each input connection to a seed cell is increased by an amount proportional to the re-
sponse of the cell from which the connection leads. Because of the shared connections
within each cell-plane, all cells in the cell-plane come to have the same set of input
connections as the seed cell.
Line-extracting S-cells, which were created by supervised learning in the previous

version [8], are now automatically generated (or, self-organized) together with cells
extracting other features in the second stage (US2). The cells in this stage extract
features using information of edges that are extracted in the preceding stage.
The neural networks’ ability to recognize patterns robustly is inJuenced by the se-

lectivity of feature-extracting cells, which is controlled by the threshold of the cells.
Fukushima and Tanigawa [7] have proposed the use of higher threshold values for
feature-extracting cells in the learning phase than in the recognition phase, when unsu-
pervised learning with a winner-take-all process is used to train neural
networks.
This method of dual threshold is used for the learning of layers US2 and US3.
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2.8. Learning method for the highest stage

S-cells of the highest stage (US4) are trained using a supervised competitive learn-
ing. 1 The learning rule resembles the competitive learning used to train US2 and US3,
but the class names of the training patterns are also utilized for the learning. When
the network learns varieties of deformed training patterns through competitive learning,
more than one cell-plane for one class is usually generated in US4. Therefore, when
each cell-plane 0rst learns a training pattern, the class name of the training pattern is
assigned to the cell-plane. Thus, each cell-plane of US4 has a label indicating one of
the 10 digits.
Every time a training pattern is presented, competition occurs among all S-cells in

the layer. (In other words, the competition area for layer US4 is large enough to cover
all cells of the layer.) If the winner of the competition has the same label as the
training pattern, the winner becomes the seed cell and learns the training pattern in the
same way as the seed cells of the lower stages. If the winner has a wrong label (or if
all S-cells are silent), however, a new cell-plane is generated and is put a label of the
class name of the training pattern.
During the recognition phase, the label of the maximum-output S-cell of US4 deter-

mines the 0nal result of recognition. We can also express this process of recognition
as follows. Recognition layer UC4 has 10 C-cells corresponding to the 10 digits to
be recognized. Every time a new cell-plane is generated in layer US4 in the learning
phase, excitatory connections are created from all S-cells of the cell-plane to the C-cell
of that class name. Competition among S-cells occur also in the recognition phase, and
only one maximum output S-cell within the whole layer US4 can transmit its output
to UC4.
In the recognition phase, the threshold (
R4 ) of US4 is chosen so low that any input

pattern usually elicits responses from several S-cells. Hence the process of 0nding the
largest-output S-cell is equivalent to the process of 0nding the nearest reference vector
in the multi-dimensional feature space. Each reference vector has its own territory
determined by the Voronoi partition of the feature space. The recognition process in
the highest stage resembles the vector quantization [9,15] in this sense.
To get a good recognition rate, the threshold in the learning phase, 
L4 , can be set

either very high or equal to 
R4 , which is low. The behavior of the network diFers,
however, depending on whether 
L4�
R4 or 
L4 = 
R4 .

If we take 
L4�
R4 , the learning time can be shorter, but a larger number of cell-planes
KS4 are generated in the learning, resulting in a longer recognition time. Since the high
threshold 
L4 produces a small tolerance area around each reference vector, there is
little chance that training vectors of diFerent classes drop in the same tolerance area.
It should be noted here that a training vector outside the tolerance area does not elicit
any response from the cell. If a training vector drops in the territory of a reference
vector, which does not extend outside its small tolerance area, and if the reference
vector has the same class name as the training vector, the training vector is added

1 Although the learning rule used in a previous version [6] was also called a supervised competitive
learning, it is slightly diFerent from the one discussed in this paper.
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decision border

reference vector
of class A

reference vector
of class B

training vector
of class B

training vector
of class A

tolerance area of
a reference vector

(a)

(b)

Fig. 4. Distribution of training and reference vectors in a multi-dimensional feature space. (a) A high
threshold in the learning (
L4�
R4 ). (b) A low threshold in the learning (
L4 = 
R4 ).

to the reference vector. Since the reference vector is the vector sum of all training
vectors presented in its territory, the territory gradually changes during the progress
of learning, but the change is not so large in the case of a high threshold value. If
the training vector does not drop within tolerance areas of any cells, a new reference
vector (or cell-plane) is generated. Hence reference vectors will be distributed almost
uniformly in the multi-dimensional feature space independent of the distance from the
borders between classes (Fig. 4(a)). One presentation of each training vector is almost
enough to 0nish the learning, but a large number of reference vectors (or cell-planes)
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are generated because the average distance between adjacent reference vectors becomes
of the order of the radius of the small tolerance area.
On the other hand, if we take 
L4 = 
R4 , namely, a low threshold, the size of tol-

erance area of each reference vector become very large in the learning phase. As a
result, training vectors that are distant from class borders can be represented by a
small number of reference vectors. Training vectors that are misclassi0ed in the learn-
ing phase usually come from near class borders. Suppose a particular training vector
is misclassi0ed in the learning. The reference vector of the winner, which caused a
wrong recognition for this training vector, is not modi0ed this time. A new cell-plane
is generated instead, and the misclassi0ed training vector is adopted as the reference
vector of the new cell-plane. Generation of a new reference vector causes a shift of
decision borders in the feature space, and some of the training vectors, which have
been recognized correctly before, are now misclassi0ed and additional reference vectors
have to be generated again to readjust the borders. Hence a repeated presentation of
the same set of training vectors is required before the learning converges. Thus, the
decision borders are gradually adjusted to 0t the real borders between classes. During
this learning process, reference vectors come to be distributed more densely near the
class borders. Since the density of the reference vectors is much lower in the locations
distant from class borders, the number of reference vectors (or cell-planes) generated
is smaller than in the case of 
L4�
R4 , although some of the reference vectors are still
redundant.
Although a repeated presentation of a training pattern set is required before the

learning converges when a low threshold is used, the required number of repetition is
not so large in usual cases. In the computer simulation discussed below in the next
section, only four rounds of presentation of the training set was enough. Every time
when each round of presentation has 0nished in the learning phase, the number of newly
generated cell-planes during that round, which is equal to the number of erroneously
recognized patterns, is counted. If it reaches zero, the learning process ends.
This does not always guarantee that all training patterns will be recognized correctly

after 0nishing the learning, because reference vectors drift slightly even during the last
round of the presentation of the training set, where each training vector is summed
to the reference vector of the winner. Erroneous recognition for the training patterns,
however, occurs very seldom after 0nishing the learning. In usual situations, like the
computer simulation shown in the next section, the recognition rate for the training set
is 100%.
The recognition rate for unlearned patterns (blind test patterns) does not diFer so

much whether a very high or very low threshold is used in the learning. An interme-
diate value between them, however, usually produces a worse recognition rate. In the
simulation discussed below in Section 3, we chose a low threshold (
L4 = 
R4 ) to get a
smaller scale of the network and a shorter recognition time.
Another merit in choosing a low threshold is that, when designing the network, we

need not be serious in determining the exact threshold value, which can be any small
value. If the size of tolerance areas, which is already large enough, is increased by
lowering the threshold value, a larger number of reference vectors will participate in the
competition. The learning process, however, is scarcely aFected by the change in the
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threshold, because reference vectors distant from the training vector does not inJuence
the result of competition.

3. Computer simulation

3.1. Scale of the network

The arrangement of cells in each layer of the network is illustrated in Fig. 5, which
shows a one-dimensional cross-section of connections between cell-planes. The reduc-
tion in density of cells in cell-planes, namely the thinning-out of the cells, is made
from a S-cell layer to the C-cell layer of the same stage: The ratio of the thinning-out
from USl to UCl is 2:1 (in both horizontal and vertical directions) in all stages except
UC4. The pitch of cells in a cell-plane is the same between layers UCl−1 and USl, but
the locations of C- and S-cells are staggered by half a pitch for l6 3.

The total number of cells (not counting inhibitory V-cells) in each layer is also shown
in Fig. 5. Although the number of cells in each cell-plane has been pre-determined for
all layers, the number of cell-planes in an S-cell layer (KSl) is determined automatically
in the learning phase depending on the training set. In each stage except the highest

U0:  65×65

UG:  71× 71×2

US1:  68×68×16

UC1:  37×37×16

US2:  38×38×KS2

UC2:  21×21×KC2

US3:  22×22×KS3

UC3:  13×13×KC3

US4:  5×5×KS4

UC4: 1×1×10

aG:  7×7

aS1 :  6×6

aC1 :  6×6 (18×18)

aS2 :  6×6

aC2 :  6×6 (14×14)

aS3 :  6×6

aC3 :  8×8

aS4 :  9×9

aC4 :  5×5

Fig. 5. Arrangement of cells and connections in the network. A one-dimensional cross-section of connec-
tions between cell-planes is drawn. Since the spatial spread of connections converging to a cell is not
square but actually is circular, only approximate numbers of connections are shown in the 0gure. Only
positive connections are drawn for aC1 and aC2. To clearly show the input connections converging to a
single cell, a cell is arbitrarily chosen from each layer, and its input connections are drawn with heavy
lines.
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one, the number of cell-planes of the C-cell layer (KCl) is the same as KSl. The
recognition layer UC4 has only KC4 = 10 cell-planes, and each cell-plane contains only
one C-cell.
The sizes of connections converging to single cells (namely, radii AG, ASl, ACl, etc.)

are determined as follows, where the pitch of cells in the cell-plane of the preceding
layer is taken as the unit of length. 2 In the contrast-extracting layer UG, the radius
of input connections aG(�), namely AG in (1), is 3.3, and the positive center of the
Mexican-hat is 1.2 in radius. For S-cell layers, the radius of input connections ASl is
3.4 for l=1; 2; 3, and 4.9 for l=4. As for C-cell layers, AC1=9:4, AC2=7:4, AC3=4:4
and AC4 =∞ (AC4 =∞ means that each C-cell of UC4 receive input connections from
all S-cells of US4). The excitatory center of the connections aCl(�) is 3.4 in radius for
the lower layers (l=1; 2). For the higher layers (UC3 and UC4), connections aCl(�) do
not have inhibitory surrounds and consist of only excitatory components.
The radius of the hypercolumn used for the competition area in the learning is 3.1

for US2 and US3, and ∞ for US4 where competition is made among all cells in the
layer.

3.2. Recognition rate

We tested the behavior of the proposed network by computer simulation using hand-
written digits (free writing) randomly sampled from the ETL1 database. Incidentally,
the ETL1 is a database of segmented handwritten characters and is distributed by
Electrotechnical Laboratory, Tsukuba, Japan [3].
For S-cells of layers US2 and US3, the method of dual thresholds is used for the

learning and recognition phases, as mentioned in Section 2.7. Each training pattern of
the training set was presented once for the learning of layers US2 and US3.

For the learning of layer US4 at the highest stage, the same training set was presented
repeatedly until all the patterns in the training set were recognized correctly. Although
the required number of repetition changes depending on the training set, it usually is
not so large. In the particular case shown below, it was only 4.
We searched the optimal thresholds that produce the best recognition rate. Since

there are a large number of combinations in the threshold values of four layers, a
complete search for all combinations has not been 0nished yet. We show here a result
with a set of threshold values that seems to be nearly optimal.
The recognition rate varies depending on the number of training patterns. When we

used 3000 patterns (300 patterns for each digit) for the learning, for example, the
recognition rate was 98.6% for a blind test sample (3000 patterns), and 100% for
the training set. The thresholds of S-cells used in this case were as follows. For the
edge-extracting layer US1, we chose 
1 =0:55. For the higher layers US2, US3 and US4,
the thresholds in the recognition phase were 
 R

2 = 0:51, 
 R
3 = 0:58 and 
 R

4 = 0:30.

2 It should be noted here that, if two layers have the same radius based on the pitch of the cells in their
respective layers, the actual size of the connections measured with the scale of the input layer is larger in
the higher stage, because the density of cells is lower in the higher stage.
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Fig. 6. An example of the response of the neocognitron. The input pattern is recognized correctly as ‘8’.

Those in the learning phase were: 
 L
2 = 0:66, 
 L

3 = 0:67 and 
 L
4 = 0:30. The numbers

of cell-planes generated by this training set with these threshold values were KS2 =39,
KS3 = 110 and KS4 = 103.
Fig. 6 shows a typical response of the network that has 0nished the learning. The

responses of layers U0, UG and layers of C-cells of all stages are displayed in series
from left to right. The rightmost layer, UC4, is the recognition layer, whose response
shows the 0nal result of recognition. The responses of S-cell layers are omitted from
the 0gure but can be estimated from the responses of C-cell layers: a blurred version
of the response of an S-cell layer appears in the corresponding C-cell layer, although
it is slightly modi0ed by the inhibitory surround in the connections.
Incidentally, we measured how the recognition rate changes depending on the size

of the training set, using the same threshold values (optimal values that produced the
recognition rate of 98.6% for the 3000 blind test set). The recognition rates for the same
blind test sample (3000 patterns) were 92.8%, 94.8%, 97.0% and 98.0%, for 200, 500,
1000 and 2000 training patterns, respectively. The numbers of cell-planes generated
by these training sets were: (KS2; KS3; KS4) = (21; 50; 22), (27; 74; 45), (33; 89; 63) and
(38; 109; 114), respectively.

4. Discussions

To improve the recognition rate of the neocognitron, several modi0cations have
been applied: such as, the inhibitory surround in the connections from S- to C-cells,
contrast-extracting layer followed by edge-extracting cells, self-organization of line-
extracting cells, supervised competitive learning at the highest stage, staggered
arrangement of S- and C-cells, and so on. These modi0cations allowed the removal of
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accessory circuits appended in the previous versions, resulting in an improvement of
recognition rate as well as simpli0cation of the network architecture.
Some people claim that a neocognitron is a complex network, but it is not correct.

The mathematical operation between adjacent cell-planes can be interpreted as a kind
of two-dimensional 0ltering operation because of shared connections. If we count the
number of processes performed in the network, assuming that one 0ltering operation
corresponds to one process, the neocognitron is a very simple network compared to
other arti0cial neural networks. The required number of repeated presentation of a
training set is much smaller for the neocognitron than for the network trained by
backpropagation. In the computer simulation shown in this paper, for example, only 6
times of presentation was enough for the learning of the whole network (that is, 1 for
US2, 1 for US3, and 4 for US4).

Although the phenomenon of overlearning (or overtraining) has not been observed
in the simulation shown in this paper, the possibility cannot be completely excluded.
If some patterns in a training set had wrong class names, the learning of the highest
stage might be aFected by the erroneous data. A serious overlearning, however, does
not seem to occur in the intermediate stages, if the thresholds for the learning phase
are properly chosen. Since the selectivity (or the size of the tolerance area) of a cell is
determined by a 0xed threshold value and does not change, all training patterns within
the tolerance area of the winner cell contribute to the learning of the cell, and not for
the generation of new cell-planes. In other words, an excessive presentation of training
patterns does not necessarily induce the generation of new cell-planes. Although a
repeated presentation of similar training patterns to a cell increases the values of the
connections to the cell, the behavior of the cell almost stops changing after having
0nished some degrees of learning. This is because the response of the cell, which
receives a shunting inhibition, is determined by the ratio, not by the diFerence, of
excitatory and inhibitory inputs, if the connections have already been large enough
(see the discussions in Section 2.3.3).
The neocognitron has several parameters that have to be predetermined before learn-

ing. Among them, parameters that critically aFect the performance of the network
are thresholds of S-cell, that is, 
1, 
 R

2 , 
 L
2 , 
 R

3 , 
 L
3 , 
 R

4 and 
 L
4 . Threshold 
1 of

the edge-extracting layer can be determined by the method discussed in Section 2.6.
Thresholds 
 R

4 = 
 L
4 for the highest stage can take an arbitrary small value, as was

discussed in Section 2.8. However, a good method for determining the thresholds of
the intermediate stages, 
 R

2 , 
 L
2 , 


R
3 and 
 L

3 , has not been fully established yet. Their
optimal values vary depending on the characteristics of the pattern set to be recognized.
We need to search optimal thresholds by experiments. To 0nd out a good method for
determining these thresholds is a problem left to be solved in the future.
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