
Neural Networks 20 (2007) 904–916
www.elsevier.com/locate/neunet
Interpolating vectors for robust pattern recognition

Kunihiko Fukushima

Kansai University, Takatsuki, Osaka 569-1095, Japan

Received 15 January 2007; received in revised form 1 June 2007; accepted 1 June 2007

Abstract

This paper proposes a powerful algorithm for pattern recognition, which uses interpolating vectors for classifying patterns. Labeled reference
vectors in a multi-dimensional feature space are first produced by a kind of competitive learning. We then assume a situation where virtual
vectors, called interpolating vectors, are densely placed along line segments connecting all pairs of reference vectors of the same label. From
these interpolating vectors, we choose the one that has the largest similarity to the test vector. Its label shows the result of pattern recognition. In
practice, we can get the same result with a simpler process.

We applied this method to the neocognitron for handwritten digit recognition and reduced the error rate from 1.52% to 1.02% for a blind test
set of 5000 digits.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Pattern recognition; Interpolating vector; Labeled competitive learning; Neocognitron
1. Introduction

This paper proposes a powerful algorithm for pattern
recognition, which uses interpolating vectors for classifying
patterns in a multi-dimensional feature space.

Most of the visual pattern recognition systems extract
features from input patterns first and then try to classify input
pattern based on the extracted features. The features of a pattern
can be represented by a vector in a multi-dimensional feature
space. Various methods for classifying feature vectors have
been proposed so far (Burges, 1998; Cover & Hart, 1968;
Gray, 1984; Kohonen, 1995; Schölkoph et al., 1997). Many
of them try to classify input patterns based on some kinds
of similarities between test vectors (or input patterns) and
labeled reference vectors (or code vectors), which have been
produced from training vectors. A variety of techniques have
been proposed, for generating labeled reference vectors and/or
finding a reference vector that has the largest similarity to the
test vector.

In the method proposed in this paper, labeled reference
vectors are first produced by a kind of competitive learning.
Different from conventional methods, however, we do not
simply search for a reference vector that has the largest
E-mail address: fukushima@m.ieice.org.

0893-6080/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2007.06.003
similarity to the test vector. We assume a situation where virtual
vectors, called “interpolating vectors”, are densely placed along
the line segments connecting every pair of reference vectors of
the same label. From these interpolating vectors, we choose the
one that has the largest similarity to the test vector. The label
(or the class name) of the chosen vector is taken as the result of
pattern recognition.

Actually, we do not need to generate infinite number of
interpolating vectors. We just assume line segments connecting
every pair of reference vectors of the same label. The line
segments have the same labels as the reference vectors on both
sides. We then measure distances (based on similarity) to these
line segments from the test vector, and choose the nearest line
segment. The label of the line segment shows the result of
pattern recognition.

If some parts of borders between other classes are concave in
the multi-dimensional feature space, some of the line segments
might cross the concave borders and invade into the territory
of other classes. To find out and eliminate such line segments,
we have an adjusting phase after having generated reference
vectors in the learning. During the adjusting phase, we test how
the training vectors, which have been used to generate reference
vectors, are classified. If a training vector is erroneously
classified, line segments that cause erroneous classification
of this training vector are all eliminated, because they are
suspicious of crossing class borders.

http://www.elsevier.com/locate/neunet
mailto:fukushima@m.ieice.org
http://dx.doi.org/10.1016/j.neunet.2007.06.003

K. Fukushima / Neural Networks 20 (2007) 904–916 905
To demonstrate the ability of this algorithm, we apply it
to the neocognitron and show that the recognition rate can be
increased further than that of the conventional neocognitron.
Incidentally, the neocognitron, which the author proposed
previously, is a neural network model for robust visual pattern
recognition (Fukushima, 1980, 1988, 2003).

In the case of a neocognitron, the sets of input connections
to individual S-cells of the highest stage, which correspond
to labeled reference vectors, are first produced by a kind
of competitive learning. After having finished the learning,
the response of an S-cell can be interpreted as representing
similarity between a test vector and the reference vector in a
multi-dimensional feature space.

In the conventional neocognitron, the label (or the class
name) of the largest-output S-cell, namely, the label of the
reference vector that has the largest similarity to the test vector,
is the result of pattern recognition. On the other hand, our
proposed algorithm analyzes the response of the S-cells using
interpolating vectors and largely reduces the error rate.

We first discuss, in Section 2, the use of interpolating
vectors for pattern recognition in general. In Section 3, we
briefly explain the neocognitron and discuss how to apply
the interpolating vectors to the neocognitron. A more detailed
description of the neocognitron used for the present experiment
appears in Appendix. In Section 4, we demonstrate by computer
simulation that the error rate of the neocognitron, which is used
for handwritten digit recognition, is largely reduced by the use
of interpolating vectors. Finally in Section 5, we make some
discussions on the method of interpolating vectors.

2. Interpolating vectors

2.1. Multi-dimensional feature space

In visual pattern recognition, we assume a situation where
the process of feature extraction has already been finished. Each
input pattern, either training or test pattern, can be represented
by a vector in a multi-dimensional feature space.

We define similarity s between arbitrary two vectors x and
y, using inner product (x, y) and norm ‖x‖ =

√
(x, x) of the

vectors, by

s =
(x, y)

‖x‖ · ‖y‖
. (1)

It is equal to the cosine of the angle between two vectors. If all
elements of the vectors take non-negative values, like in the case
of the neocognitron, s takes a value in the range of 0 ≤ s ≤ 1.

2.2. Reference vectors

Each training vector has a label indicating the class to which
the vector belongs. From a set of training vectors, we produce
reference vectors for each class. Each reference vector has
a label of the class name. A single reference vector usually
represents a number of training vectors of a class. There can
be more than one reference vectors for each class.
The reference vectors are created in such a way that a large
number of training sets can be represented correctly by only
a small number of reference vectors. This can greatly reduce
the computational cost, which will be required by the use of
interpolating vectors.

The learning progresses in two steps: an initial learning and
an adjusting phase. In the initial learning, we produce reference
vectors in such a way that each training vector of a class
comes to have a largest similarity to a reference vector of the
class. The generation of reference vectors is made by a kind
of competitive learning, which was used to train the highest
stage of the conventional neocognitron (Fukushima, 2003) (see
Section 3.3).

The learning starts from a state where there is no reference
vector. When a training vector of a class is presented at first, it
is adopted as a reference vector and is assigned a label of the
class name. If another training vector is presented afterward,
similarities of the training vector to all reference vectors are
measured. The reference vector that has the largest similarity to
the training vector is taken as a winner of the competition.

If the label of the winner is the same as the class name of
the training vector, the training vector is added to the reference
vector of the winner, resulting in a modification of the reference
vector. In other words, a reference vector X is produced by the
total sum of all training vectors that have made X a winner:

X =

∑
m

x(m), (2)

where x(m) is the mth training vector that have made X a winner.
If the label of the winner is different from that of the training

vector, however, the reference vector, which became the winner
and caused a wrong classification of this training vector, is not
modified this time. A new reference vector is generated instead:
the training vector itself is adopted as the new reference vector
and is assigned a label of the class name of the training vector.

The process of finding the winner is equivalent to the process
of finding the nearest reference vector in a space where distance
is defined based on similarity. Each reference vector has its
own territory determined by the Voronoi partition of the feature
space. This process resembles the vector quantization (Gray,
1984; Kohonen, 1995) in this sense.

Generation of a new reference vector causes a shift of
decision borders in the feature space, and some of the training
vectors of other classes, which have been classified correctly
before, might be misclassified now. If this situation occurs,
additional reference vectors have to be generated again to
readjust the decision borders. Thus, the decision borders are
gradually adjusted to fit the real borders between classes.

Since training vectors that are located near the center of the
territory of a class have a large tendency of being correctly
classified, a single reference vector that is distant from its class
border usually represents a large number of training vectors.
As a result, the number of reference vectors generated is
much smaller than the number of training vectors. Training
vectors that are misclassified in the learning phase often come
from near class borders. Hence reference vectors come to be

906 K. Fukushima / Neural Networks 20 (2007) 904–916
Fig. 1. Distribution of training and reference vectors in a multi-dimensional
feature space.

distributed more densely near class borders as illustrated in
Fig. 1.

We repeat this process until the generation of new reference
vectors stops. Namely, every time when each round of
presentation of a training set has finished in the initial learning
phase, the number of newly generated reference vectors during
that round, which is equal to the number of erroneously
classified training vectors, is counted. If it reaches zero, the
initial learning process ends.

Although a repeated presentation of a training vector set
is required before the initial learning converges, the required
number of repetition is not so large in usual cases. When this
process was applied to a neocognitron, which is discussed later
in Section 4, only six rounds of presentation of the training set
was enough.

2.3. Interpolating vectors

After having finished the initial learning, by which all
reference vectors have been produced, we use the method of
interpolating vectors to recognize patterns more robustly. Each
pattern that is to be classified is called a test vector in the feature
space.

The basic idea of the method of interpolating vectors is as
follows. We assume a situation where virtual vectors, which are
named interpolating vectors, are densely placed along the line
segments connecting every pair of reference vectors of the same
label. From these interpolating vectors, we choose the one that
has the largest similarity to the test vector. The label (or the
class name) of the chosen vector is taken as the result of pattern
recognition.

Actually, we do not need to generate infinite number of
interpolating vectors. We just assume line segments connecting
every pair of reference vectors of the same label. The line
segments are assigned the same labels as the reference vectors
on both sides. We then measure distances (based on similarity)
to these line segments from the test vector, and choose the
nearest line segment. The label of the line segment shows the
result of pattern recognition.

Mathematically, this process can be expressed as follows.
Let Xi and X j be two reference vectors of the same label. An
interpolating vector ξ for this pair of reference vectors is given
Fig. 2. Largest similarity smax between test vector x and the line segment
connecting a pair of reference vectors Xi and X j of the same label.

by a linear combination of them:

ξ = p
Xi

‖Xi‖
+ q

X j

‖X j‖
. (3)

Similarity s between the interpolating vector ξ and a test vector
x is

s =
(ξ , x)

‖ξ‖ · ‖x‖
=

psi + qs j√
p2 + 2pqsi j + q2

, (4)

where

si =
(Xi , x)

‖Xi‖ · ‖x‖
, s j =

(X j , x)
‖X j‖ · ‖x‖

,

si j =
(Xi ,X j)

‖Xi‖ · ‖X j‖
. (5)

Among various combinations of p and q, similarity s takes
a maximum value

smax =

√√√√ s2
i − 2si s j si j + s2

j

1 − s2
i j

. (6)

The ratio of p and q that gives this maximum value is

p : q = (si − s j si j) : (s j − si si j). (7)

It should be noted here that similarity s defined by (4) is affected
only by the ratio of p and q, and not by their absolute values,
because ξ is normalized by its norm in the calculation of s.

We can interpret that smax represents similarity between test
vector x and the line segment that connects a pair of reference
vectors Xi and X j (Fig. 2(a)). Among all line segments that
connect every pair of reference vectors of the same label, we
choose the one that has the largest similarity to the test vector.
The label (or the class name) of the chosen line segment is taken
as the result of pattern recognition.

In the search for the largest similarity here, we allow p or
q to take a negative value, because better results are obtained
usually in the computer simulation of the neocognitron. This
means that line segments can extend beyond the reference
vectors on both sides (Fig. 2(b)), and that the search is made
among interpolating and extrapolating vectors (see Section 5
for further discussions).

2.4. Adjusting phase

If some parts of the border of a class are concave in the
multi-dimensional feature space, however, some of the line

K. Fukushima / Neural Networks 20 (2007) 904–916 907
Fig. 3. Elimination of a line segment that crosses the concave border between
classes. The training vector of class B (×) is nearer to the line segment of class
A (dotted line) than to line segments of class B.

segments might cross the concave parts of the border and invade
into the territory of other classes. Such line segments, whose
example is illustrated by a dotted line in Fig. 3, will cause
misclassification of the test vector. To find out and eliminate
such line segments that are suspected of crossing class borders,
we have an adjusting phase after having created reference
vectors in the initial learning.

During the adjusting phase, we test how the training vectors,
which have been used to generate reference vectors, are
classified. If a training vector is erroneously classified, we
suspect that the line segment nearest to the training vector
crosses the class border. We then eliminate the line segment.
Sometimes, more than one line segments might be eliminated
by a single training vector. Thus, line segments that cause
erroneous classification of training vectors are all eliminated in
the adjusting phase of the learning.

Incidentally, if reference vectors have already been created
in such a way that all training vectors can be classified correctly
without using interpolating vectors (that is, by measuring only
similarity to reference vectors), all training vectors will come to
be classified correctly after having finished this adjusting phase.

3. Use of interpolating vectors for the neocognitron

3.1. Outline of the neocognitron

The neocognitron is a neural network model for robust visual
pattern recognition (Fukushima, 1988, 2003). This section
discusses how to apply the method of interpolating vectors to
the neocognitron to improve the recognition rate further.

The neocognitron to which the method of interpolating
vectors is applied is almost the same as the conventional
neocognitron (Fukushima, 2003), except the highest stage of
the hierarchical network. A more detailed description of the
neocognitron, including mathematical expressions, is found in
Appendix.

As illustrated in Fig. 4, the network consists of 4 stages of
S- and C-cell layers: U0 → UG → US1 → UC1 → US2 →

UC2 → US3 → UC3 → US4 → UC4. The stimulus pattern is
presented to input layer U0, and the result of pattern recognition
appears in layer UC4.

There are retinotopically ordered connections between cells
of adjoining layers in the hierarchical network. Each cell
Fig. 4. The architecture of the neocognitron.

receives input connections that lead from cells situated in a
limited area on the preceding layer.

Cells of layer UG resemble retinal ganglion cells and have
either on-center or off-center receptive fields. The on-center
cells extract positive contrast in brightness, and the off-center
cells extract negative contrast from the image presented to the
input layer U0.

S-cells have modifiable input connections, which are
determined by learning. They work as feature-extracting cells
after having finished the learning. Namely, after having finished
learning, each S-cell comes to respond selectively to a particular
feature presented in its receptive field.

The S-cells of the first stage (US1) resemble simple cells
in the primary visual cortex. They have been trained with
supervised learning to extract edge components of various
orientations from input images. More global features, such
as parts of training patterns, are extracted in higher stages
(US2 and US3), which are self-organized using unsupervised
competitive learning.

C-cells, which resemble complex cells in the visual cortex,
are inserted in the network to allow for positional errors in
the features of the stimulus. The input connections of C-cells,
which come from S-cells of the preceding layer, are fixed and
unmodifiable. Each C-cell receives excitatory input connections
from a group of S-cells that extract the same feature, but from
slightly different positions. The C-cell responds if at least one of
these S-cells yields an output. Even if the stimulus feature shifts
in position and another S-cell comes to respond instead of the
first one, the same C-cell keeps responding. Thus, the C-cell’s
response is less sensitive to shift in position of the input pattern.
We can also express that C-cells make a blurring operation,
because the response of a layer of S-cells is spatially blurred
in the response of the succeeding layer of C-cells.

In the whole network, with its alternate layers of S- and C-
cells, feature extraction by S-cells and toleration of positional
shift by C-cells are repeated. During this process, local features
extracted in lower stages are gradually integrated into more
global features. Since small amounts of positional errors of
local features are absorbed, an S-cell in a higher stage comes
to respond robustly to a specific feature even if the feature is
slightly deformed or shifted.

908 K. Fukushima / Neural Networks 20 (2007) 904–916
Fig. 5. Connections converging to an S-cell in the learning phase.

Each layer is divided into sub-layers, called cell-planes,
according to the features to which the cells responds. The
cells in each cell-plane are arranged retinotopically in a two-
dimensional array and share the same set of input connections.
In other words, the connections to a cell-plane have a
translational symmetry. As a result, all the cells in a cell-
plane have receptive fields of an identical characteristic, but
the locations of the receptive fields differ from cell to cell.
The modification of variable connections during the learning
progresses under the restriction of shared connections.

Since cells in higher stages come to have larger receptive
fields, the density of cells in each layer is designed to decrease
with the order of the stage.

This neocognitron is initially trained to recognize patterns
in an identical manner as for the conventional neocogni-
tron (Fukushima, 2003). After having finished the conventional
learning, we use interpolating vectors to analyze the response
of US4 and obtain a better recognition rate.

3.2. S-cells of the highest stage

Since the difference from the conventional neocogni-
tron (Fukushima, 2003) mainly resides in the highest stage, we
discuss here the characteristics of layer USL (L = 4) at the
highest stage.

Let uSL(n, k) be the output of S-cells of the kth cell-plane
of the highest stage, where n represents the location of the
receptive field center of the cells. Layer USL , like layers in
other stages, contains not only S-cells but also V-cells, whose
output is represented by vL(n). Fig. 5 illustrates the connections
converging to an S-cell. The outputs of an S-cell and the V-cell,
which is sending an inhibitory signal to the S-cell, are given by

uSL(n, k) =

KC L−1∑
κ=1

∑
|ν|<ASL

aSL(ν, κ, k) · uC L−1(n + ν, κ)

bSL(k) · vL(n)
, (8)

vL(n) =

√√√√KC L−1∑
κ=1

∑
|ν|<ASL

cSL(ν) · {uC L−1(n + ν, κ)}2, (9)

where aSL(ν, κ, k) (≥0) is the strength of variable excitatory
connection that the S-cell receives from C-cell uC L−1(n+ν, κ)

of the preceding stage. It should be noted here that all cells
in a cell-plane share the same set of input connections, hence
aSL(ν, κ, k) is independent of n. ASL denotes the radius of
summation range of ν, that is, the size of spatial spread of
input connections to a single S-cell. Parameter bSL(k) (≥0) is
the strength of variable inhibitory connection coming from the
V-cell. Parameter cSL(ν) represents the strength of the fixed
excitatory connections to the V-cell, and is a monotonically
decreasing function of |ν|.

3.3. Initial learning of the highest stage

Before applying the method of interpolating vectors, we
first train the S-cells of the highest stage (USL) using the
same method as for the conventional neocognitron (Fukushima,
2003).

As can be seen from the discussions below, the process of
the initial learning of the highest stage of the neocognitron is
the same as the process of creating reference vectors, which
was discussed in Section 2.2.

The initial learning of the highest stage USL begins, after
the training of lower stages (US2 and US3) has been completely
finished. The training pattern set is the same as that for the
lower stages. The training set is presented repeatedly until the
generation of new cell-planes stops. Namely, every time when
each round of presentation of the training set has finished,
the number of newly generated cell-planes during that round,
which is equal to the number of erroneously classified training
patterns, is counted. If it reaches zero, the initial learning
process ends.

Every time when a training pattern is presented, competition
occurs among all S-cells in the layer. The maximum-output S-
cell is taken as a winner of the competition. If the winner of
the competition has the same label as the training pattern, the
winner becomes the seed cell and learns the training pattern
(Fukushima, 2003) (see Appendix A.4.1 for the meaning of a
seed cell).

If the winner has a wrong label (or if all S-cells are silent),
however, a new cell-plane is generated and is assigned a label
of the class name of the training pattern.

Let cell uSL(n̂, k̂) be selected as a seed cell at a certain time.
The variable connections aSL(ν, κ, k̂) to this seed cell, and,
as a consequence of shared connections, to all S-cells in the
same cell-plane as the seed cell, are increased by the following
amount:

∆aSL(ν, κ, k̂) = cSL(ν) · uC L−1(n̂ + ν, κ). (10)

The inhibitory connection bL(k̂) is determined directly from the
values of the excitatory connections aSL(ν, κ, k̂). That is,

bSL(k̂) =

√√√√KC L−1∑
κ=1

∑
|ν|<ASL

{aSL(ν, κ, k̂)}2

cSL(ν)
. (11)

3.4. Application of interpolating vectors to the neocognitron

After having finished the conventional learning (Fukushima,
2003), we use interpolating vectors to analyze the response of
USL and obtain a better recognition rate.

K. Fukushima / Neural Networks 20 (2007) 904–916 909
We define a weighted inner product of arbitrary two vectors
x and y by

(x, y) =

∑
|ν|<ASL

cSL(ν)x(ν)y(ν), (12)

using cSL(ν) (>0), which represents the strength of fixed
excitatory connections to a V-cell (see (9) and (10)), as the
weight. We use this weighted inner product in the definition of
similarity by Eq. (1).

Let x be the vector representing input signals to an S-cell
uSL(n, k). In other words, the response of a preceding C-cell
uC L−1(n + ν, κ) is the νth element of vector x.

Similarly, let x(m) be the mth training vector to the S-cell. (To
be more exact, x(m) is the training vector to the mth seed cell of
the cell-plane to which the S-cell belongs.) Let X be the total
sum of all training vectors to the S-cell, which can be expressed
by the same equation as (2).

Substituting (9)–(11) in (8), we have

uSL(n, k) =
(X, x)

‖X‖ · ‖x‖
= s. (13)

We can interpret that the set of input connections to an S-cell
(or a cell-plane) represents the reference vector. The response
of the S-cell shows the similarity s between the test vector x and
the reference vector X. Thus, the process of the initial learning
of the neocognitron is the same as the process of creating
reference vectors in the multi-dimensional feature space: If a
training vector is correctly classified in the initial learning, it
is added up to the reference vector (or the input connections)
of the winner. If a training vector is misclassified, however,
the reference vector (or the input connections) of the winner,
which caused a wrong recognition for this training vector, is
not modified this time. A new cell-plane is generated instead,
and the training vector is adopted as the reference vector of the
new cell-plane.

Now, let two S-cells, uSL(n, ki) and uSL(n, k j), have the
same label (or are assigned the same class name). Their
responses correspond to si and s j in Eq. (5).

Similarity si j between the ki th and the k j th reference
vectors, namely between the ki th and the k j th cell-planes, is
given by

si j =
1

bSL(ki) · bSL(k j)

×

KC L−1∑
κ=1

∑
|ν|<ASL

aSL(ν, κ, ki) · aSL(ν, κ, k j)

cSL(ν)
. (14)

We calculate si j for every pair of cell-planes (or reference
vectors) of the same label in advance, and store the values. We
also put a mark, in the adjusting phase of the learning, to the
pairs if the line segments connecting the pairs have caused a
wrong classification for any training vectors and are suspected
of crossing class borders.

Since si j have thus been stored, we can easily calculate smax
from (6). Among all pairs of S-cells that have the same label,
we search for the pair that gives the largest value of smax. The
Fig. 6. Recognition errors under various conditions.

search is made, not at a single location n, but from all S-cells
that have receptive fields at different locations n. The label of
the pair of S-cells thus selected represents the final result of
pattern recognition. In this search, however, we omit the pairs
of S-cells, or the line segments, that are marked as suspicious
of crossing borders.

4. Computer simulation

We simulated a neocognitron with interpolating vectors
on a computer. We tested its ability to recognize patterns,
using handwritten digits (free writing) randomly sampled
from the ETL1 database, which was published by former
Electrotechnical Laboratory, Tsukuba, Japan. The scales and
parameters of the network, and the method of learning for the
lower stages of the network, are almost the same as those for the
conventional neocognitron (Fukushima, 2003) (see Appendix).

We show here the results of an experiment, where we used
a training set randomly sampled 5000 patterns (500 patterns
for each digit). The error rate of the recognition after having
finished the learning was measured by a blind test set, which
was another set of randomly sampled 5000 patterns that were
not used for the learning. Fig. 6 summarizes the recognition
errors of the neocognitron under various conditions, which are
discussed below.

When the method of interpolating vectors was used, the error
rate was 1.02% (51/5000) with no rejection, for a blind test set
of randomly sampled 5000 patterns, and 0% for the training set.
Incidentally, the number of cell-planes (or reference vectors)
generated in US4 was 160, which was much smaller than
the number of training patterns. Only six times of repeated
presentation of the training set was enough before finishing
the initial learning. The number of line segments was also
reasonably small: it was 1294 after having finished the adjusting
phase. The line segments eliminated during the adjusting phase
were 16.

Fig. 7 shows a typical response of the network that has
finished the learning. The leftmost side of the figure is the
input layer U0, and the rightmost is the recognition layer UC4.
Each square in a layer represent a cell-plane. The responses of

910 K. Fukushima / Neural Networks 20 (2007) 904–916
Fig. 7. An example of the response of the neocognitron with interpolating vectors. The input pattern (U0) is recognized correctly as ‘4’ (UC4).

Fig. 8. Some examples of the test patterns (upper row) that were recognized, erroneously by the conventional neocognitron (middle row), but correctly by the use
of interpolating vectors (bottom row).
US1, US2 and US3 are omitted from the figure, because they
can be easily estimated from the responses of C-cell layers: a
blurred version of the response of an S-cell layer appears in
the corresponding C-cell layer, although it is slightly modified
by the inhibitory surround in the connections. The cell-planes
of US4 in the display are not arranged in the order of their
generation, but are rearranged in such a way that cell-planes of
the same label are clustered. The digit written in each cell-plane
of US4 is its label (or the class name).

If the method of interpolating vectors was not used and
the response of US4 was analyzed by the method for the
conventional neocognitron, the error rate was 1.52% (76/5000)
for the blind test set, and 0.02% (1/5000) for the training
set.1 This means that, by the use of interpolating vectors, the
erroneously recognized pattern decreased from 76 to 51.

Fig. 8 shows some examples of the test patterns that were
recognized, erroneously by the conventional neocognitron,
1 The reason why the error rate for the training set is not completely zero can
be explained as follows. As was mentioned in Section 2.2, the initial learning
is continued until the number of newly generated reference vectors, which is
equal to the number of erroneously classified training vectors, reaches zero
during the last round of presentation of the training set. This usually, but not
always, guarantees that all training vectors will be recognized correctly after
having finished the initial learning, because reference vectors drift slightly even
during the last round of presentation of the training set, where each training
vector is added up to the reference vector of the winner.
but correctly by the use of interpolating vectors. The figure
shows which reference vectors (middle row: conventional
neocognitron), and which line segments (bottom row:
interpolating vectors), exhibited the largest similarity to the test
patterns (top row): In each column of the display, although the
test vector had a large similarity to the reference vector of a
wrong class (shown in the middle row), it had a larger similarity
to the line segment connecting the pair of reference vectors of
the correct class (shown in the bottom row).

In this display, each reference vector is represented
expediently by a training pattern that elicits the largest response
from it (namely, the cell-plane of US4). It should be noted here
that it is not possible to express accurately the input pattern
that each reference vector really represent, because reference
vectors are usually created by a linear combination of a number
of training vectors. In other words, each reference vector is
created, not by a direct linear combination of the training
patterns presented to U0, but by a linear combination of the
responses of UC3.

Incidentally, if the adjusting phase, which eliminates
suspicious line segments, was omitted, the error rate was
1.06% (53/5000) for the blind test set, and 0.12% (6/5000)
for the training set. It is seen that, even if adjusting phase is
abbreviated, the error rate does not increase so much for the
blind test patterns, but increases largely for the training patterns.

K. Fukushima / Neural Networks 20 (2007) 904–916 911
Fig. 9. The line segments eliminated during the adjusting phase. In each column, a pair of reference vectors on both sides of the eliminated line segments is enclosed
by thick squares, and the training pattern that caused the elimination is enclosed by a thin square.
Fig. 9 shows the line segments eliminated during the
adjusting phase. In each column in the figure, a pair of reference
vectors on both sides of an eliminated line segment is enclosed
by thick squares (the top and the middle patterns in the column),
and the training pattern that caused the elimination is enclosed
by a thin square (the bottom pattern). In some cases (six
columns shown to the left side of the upper and the lower
rows in the figure), one training vector eliminates a number of
line segments, and all line segments eliminated by the training
vector share the same reference vector on one side.

To see how the recognition rate is affected by the sampling of
training and test patterns, we tried to exchange the training and
the test sets. When the training and the test sets were exchanged,
the error rate for the test set was 1.04% (52/5000), and 0% for
the training set, if the method of interpolating vectors was used.
The effect of the exchange was very little.

For comparison, we tried the nearest-neighbor method.
It can be realized by the conventional neocognitron, if the
learning method for US4 is slightly modified. Namely, during
the learning phase, a new cell-plane is always generated in US4
for each training pattern. When the training set of 5000 patterns
is used, 5000 cell-planes are generated, and an extremely large
computational cost is required. The error rate for the blind
test set was 1.22% (61/5000), which was worse than that by
the interpolating vectors. Incidentally, we also tried k-nearest-
neighbor methods (k ≥ 3), but we were not able to get a better
recognition than the 1-nearest-neighbor method. The error rate
was 1.32% by the 3-nearest, and 1.42% by the 5-nearest-
neighbor method. This means that the method of interpolating
vectors yields a higher recognition rate with a much smaller
computational cost than the nearest-neighbor method.

We also tested another type of k-nearest-neighbor method,
where we searched k-nearest reference-vectors. In the
conventional neocognitron, the label of the reference vector that
has the largest similarity to the test vector shows the result
of pattern recognition. This can be interpreted as a process
of finding the 1-nearest reference-vector. We tried to extend
the search to k-nearest reference-vectors, but the results were
very bad. The error rate for the blind test set was 2.76% by
the 3-nearest, and 3.56% by the 5-nearest reference-vectors. A
reason for such bad error rates might be a mismatch between
the process of k-nearest reference-vectors and the method
of generating reference vectors. As has been discussed in
Section 2.2, the reference vectors are generated in such a way
that the 1-nearest reference-vector comes from the correct class
for each training vector, but it is not regarded whether other
reference vectors, such as the 2nd and the 3rd-nearest reference-
vectors, come from the correct class or not. Since reference
vectors are mainly generated near class borders rather than
within the territories of individual classes, reference vectors
of wrong classes, as well as the ones of the correct class, are
distributed densely near class borders.

We also tried to apply the k-nearest-neighbor method, not to
the analysis of the responses of UC3, but to the direct analysis
of input patterns U0 themselves. The error rate for the blind test
set was, of course, much worse. It was 16.40% by the 1-nearest,
15.48% by the 3-nearest, and 14.98% by the 5-nearest-neighbor
method, respectively.

5. Discussions

This paper proposed the use of interpolating vectors for
robust pattern recognition. To demonstrate its ability, we
applied it to the neocognitron for handwritten digit recognition,
and showed that the error rate is reduced from 1.52% to 1.02%
for a blind test set of 5000 digits. The increase in computational
cost by the use of interpolating vectors is very small, because
the number of reference vectors (or cell-planes) generated in the
learning is much smaller than the number of training vectors (or
training patterns).

912 K. Fukushima / Neural Networks 20 (2007) 904–916
The error rate of the neocognitron is affected a little by
various conditions, such as the size of the training set, threshold
values of S-cells of lower stages, scale of the network, and so
on. Decrease in error rate by the use of interpolating vectors,
however, was observed always under all conditions ever tested.

Incidentally, the error rate of the neocognitron with
interpolating vectors can be decreased further, if the method
of creating reference vectors in the initial learning is slightly
modified. In the conventional method for creating reference
vectors, which was discussed in Section 2.2 and used in the
computer simulation in Section 4, competition was allowed to
occur among all reference vectors every time when a training
vector was presented. In the modified method, the competition
is restricted among reference vectors whose similarities to the
training vector are larger than a certain threshold value, θL . In
other words, the competition is restricted among S-cells whose
responses are larger than θL .

When we took θL = 0.6, 0.8, 0.85, 0.90, 0.95 and
1.00, the error rate of the neocognitron for the blind test set
was 1.00% (50/5000), 1.00% (50/5000), 0.80% (40/5000),
0.76% (38/5000), 0.82% (41/5000) and 0.80% (40/5000)
when interpolating vectors were used; and 1.48% (74/5000),
1.30% (65/5000), 1.26% (63/5000), 1.22% (61/5000), 1.22%
(61/5000) and 1.22% (61/5000) when not used, respectively.
The number of generated reference vectors was 161, 313,
642, 1881, 4195 and 5000; and the number of line segments
after adjustment was 1312, 6131, 28 457, 231 321, 921 569
and 1 247 500, respectively. Incidentally, conventional learning
method used in Section 4 can be interpreted as a special case
where θL = 0. It should also be noted that the nearest-neighbor
method listed in Fig. 6 corresponds to the case where θL = 1.00
is chosen without the use of interpolating vectors. Although
the error rate can thus be further decreased by the use of a
non-zero threshold value of θL , it is acquired at the expense of
extremely large computational cost. Hence we chose a simpler
case of θL = 0 in this paper, because the computational cost is
reasonably small, and also because it requires a smaller number
of parameters when designing the network.

The method of interpolating vectors is well suited to the
neocognitron. In the hierarchical network of the neocognitron,
feature extraction by S-cells and toleration of positional shift
by C-cells are repeated. The process of tolerating shift by the
C-cells can also be interpreted as a blurring operation. Thus S-
cells of the highest stage (US4) analyze the response of the C-
cell layer of the preceding stage (UC3), which has already been
spatially blurred.

Feature vectors for intermediate deformed patterns between
arbitrary two reference vectors (or reference patterns) can
be well emulated by interpolating vectors (or interpolating
patterns) produced by a linear combination of the two vectors,
especially when the patterns are spatially blurred.

The same is true, not only for interpolating vectors, but also
for extrapolating vectors. In Section 2.3, we mentioned that a
better recognition rate is obtained if extrapolating vectors, as
well as interpolating vectors, are used. (Although we call our
method simply by the name of interpolating vectors, it is used
Fig. 10. Feature vectors of deformed patterns are well emulated by linear
combinations of the pair of reference vectors. The use of extrapolating vectors,
together with interpolating vectors, improves the recognition rate further.

Fig. 11. It becomes difficult to emulate deformed patterns by interpolat-
ing/extrapolating vectors, when the similarity between the pair of reference
vectors is not large enough, and/or when the amount of blur is not large enough.

as a general term including interpolating and extrapolating
vectors).

This situation is illustrated in Fig. 10, where feature vectors
are displayed expediently by original patterns presented to input
layer U0, instead of the actual responses of layer UC3, for
the sake of intuitive display. Lower half of Fig. 10 shows a
series of interpolating and extrapolating vectors produced by
linear combinations from a pair of reference vectors. Upper
half of the figure illustrates examples of deformed patterns
generated from the same pair of reference vectors. Each
deformed pattern in the upper half shows a large similarity to
the interpolating/extrapolating pattern below it. In other words,
a deformed pattern (to be more exact, a feature vector for a
deformed pattern) comes to show a large similarity to one of
the interpolating or extrapolating vectors generated by a linear
combination of the pair of reference vectors.

The left and right side of Fig. 10 illustrate examples of
extrapolation. The pattern at the upper left of the figure, for
example, is a pattern deformed from the left reference vector,
not in the direction to its partner, but in the opposite direction.
This pattern has a much larger similarity to the extrapolating
vector (pattern) at the lower left, which is produced by a linear
combination of the two reference vectors, where p or q in Eq.
(3) is negative.

If the similarity between a pair of reference vectors is not
large enough, or if the amount of blur is not large enough,
however, interpolating or extrapolating vectors produced by
linear combinations of reference vectors do not always emulate
feature vectors of deformed patterns correctly enough, as is
illustrated in Fig. 11.

K. Fukushima / Neural Networks 20 (2007) 904–916 913

2 Although the pitch of cells in a cell-plane is the same for S- and C-cells, the
locations of S- and C-cells are not necessarily exactly aligned. In some stages,
they are staggered by half a pitch (Fukushima, 2003). In these stages, if S-cells
are located on an integer grid n, the locations ν of C-cells relative to an S-
cell are at the centers of the meshes of the grid. More specifically, if we write
ν = (νx , νy) in Eqs. (17) and (18), νx and νy do not take integer values but take
integers plus 0.5. In the stage where S- and C-cells are exactly aligned, both νx
and νy take integer values.

3 Eq. (17) is slightly simplified mathematically than the corresponding
equation used in the neocognitrons of previous versions (Fukushima, 1980,
1988, 2003).
We have demonstrated so far that the error rate can be
decreased by the use of interpolating vectors that are distributed
along lines connecting pairs of reference vectors. We then
expected that the error rate might be decreased further, if
interpolating vectors are allowed to be distributed on planes
determined by triplets of reference vectors. An experiment
under the same condition as that in Section 4, however,
exhibited an error rate of 1.04% (52/5000) for the blind test
set of 5000 patterns. Different from our expectation, the error
rate by the use of triplets of reference vectors was slightly
worse than the use of pairs of reference vectors. A possible
reason for this result might be caused by a limitation of
creating interpolating vectors by linear combinations. Creation
of interpolating vectors by means of a method other than linear
combinations might be a future problem to be considered.

Appendix. Neocognitron

The neocognitron was initially proposed as a neural network
model of the mammalian visual system (Fukushima, 1980,
1988, 2003). It acquires the ability to recognize robustly visual
patterns through learning. It has a hierarchical multilayered
architecture similar to the classical hypothesis by Hubel and
Wiesel (1962, 1965).

The neocognitron used for the simulation in this paper is
almost the same as the conventional neocognitron (Fukushima,
2003). The main difference between the two resides in the
highest stage, which is discussed in detail in the text. We
then discuss below the mechanisms of lower stages, which are
common to both the conventional and the present neocognitron.

A.1. Contrast-extracting cells

As was discussed in Section 3.1, the neocognitron consists
of 4 stages of S- and C-cell layers (see Fig. 4).

The stimulus pattern is presented to the input layer
(photoreceptor array) U0. A layer of contrast-extracting cells
(UG), which correspond to retinal ganglion cells or lateral
geniculate nucleus cells, follows input layer U0.

Layer UG has two cell-planes: one cell-plane consists of
cells with concentric on-center receptive fields (k = 2 in Eq.
(15) below), and the other consists of cells with off-center
receptive fields (k = 1). The former cells extract positive
contrast in brightness, whereas the latter extract negative
contrast from the images presented to the input layer.

Let the output of a cell of U0 be u0(n), where n represent the
location of the cell. The output of a contrast-extracting cell of
layer UG , whose receptive field center is located at n, is given
by

uG(n, k) = ϕ

[
(−1)k

∑
|ν|<AG

aG(ν) · u0(n + ν)

]
,

(k = 1, 2), (15)

where ϕ[] is a function defined by ϕ[x] = max(x, 0). Parameter
aG(ν) represents the strength of fixed connections to the cell
and takes the shape of a Mexican hat. AG denotes the radius of
summation range of ν, that is, the size of spatial spread of the
input connections aG(ν).

The input connections to a single cell of layer UG are
designed in such a way that their total sum is equal to zero. In
other words, the connection aG(ν) is designed so as to satisfy∑
|ν|<AG

aG(ν) = 0. (16)

This means that the dc component of spatial frequency of the
input pattern is eliminated in the contrast-extracting layer UG .
As a result, the output from layer UG is zero in the area where
the brightness of the input pattern is flat.

A.2. S-cells

S-cells have modifiable input connections, which are
determined by learning. They work as feature-extracting cells
after having finished the learning.

S-cells of layer US1 come to work as edge-extracting cells
like simple cells in the primary visual cortex. Layer US1 has 16
cell-planes, each of which consists of edge-extracting cells of
a particular preferred orientation. Preferred orientations of the
cell-planes, namely, the orientations of the training patterns, are
chosen at intervals of 22.5◦.

S-cells of intermediate stages (US2 and US3) come to extract
more global features, such as parts of training patterns.

An S-cell receives variable excitatory connections from a
group of C-cells of the preceding stage (see Fig. 5). The
S-cell also receives a variable inhibitory connection from
an inhibitory cell, called a V-cell. The V-cell receives fixed
excitatory connections from the same group of C-cells as does
the S-cell, and always responds with the average intensity of the
output of the C-cells.

Let uSl(n, k) and uCl(n, k) be the output of S-cells and C-
cells of the kth cell-plane of the lth stage, respectively, where n
represents the location of the receptive field center of the cells.2

The output of the S-cell is given by3

uSl(n, k) =
1

1 − θl

·ϕ

KCl−1∑
κ=1

∑
|ν|<ASl

aSl(ν, κ, k) · uCl−1(n + ν, κ)

bSl(k) · vl(n)
− θl

 ,
(17)

914 K. Fukushima / Neural Networks 20 (2007) 904–916
where

vl(n) =

√√√√KCl−1∑
κ=1

∑
|ν|<ASl

cSl(ν) · {uCl−1(n + ν, κ)}2 (18)

is the output of the V-cell that sends inhibitory signals to the
S-cell. Parameter aSl(ν, κ, k) (≥0) is the strength of variable
excitatory connection coming from C-cell uCl−1(n + ν, κ) of
the preceding stage. It should be noted here that all cells in
a cell-plane share the same set of input connections, hence
aSl(ν, κ, k) is independent of n. ASl denotes the radius of
summation range of ν, that is, the size of spatial spread of
input connections to a single S-cell. Parameter bSl(k) (≥0) is
the strength of variable inhibitory connection coming from the
V-cell. Parameter cSl(ν) represents the strength of the fixed
excitatory connections to the V-cell, and is a monotonically
decreasing function of |ν|. The positive constant θl is the
threshold of the S-cell and determines the selectivity in
extracting features.

In (17) and (18) for l = 1, uCl−1(n, k) stands for uG(n, k),
and we have KCl−1 = 2.

After having finished the learning, whose process is
discussed in Appendix A.4, the output of the S-cell of Eq. (17)
can be expressed also by vector notation like the one used in
Section 3.4:

uSl(n, k) =
ϕ(s − θl)

1 − θl
, (19)

where s is the similarity between the reference vector X and the
test vector x.

This means that the response of an S-cell takes a maximum
value equal to 1 when the test vector is identical to the reference
vector, and becomes 0 if the similarity s is less than the
threshold θl of the S-cell. In the multi-dimensional feature
space, the area that satisfies s < θl becomes the tolerance
area in feature extraction by the S-cell, and the threshold θl
determines the radius of the tolerance area. The selectivity of
an S-cell to its preferred feature (or the reference vector) can
thus be controlled by the threshold θl .

Incidentally, Eqs. (17)–(19) hold also for the highest stage
(l = L), where we have θL = 0. In other words, they reduce to
(8), (9) and (13), respectively, if we put l = L and θL = 0.

A.3. C-cells

The response of an S-cell layer USl is spatially blurred in the
succeeding C-cell layer UCl . Mathematically, the response of a
C-cell of UCl , excluding the highest stage UC4, is given by

uCl(n, k) = ψ

[∑
|ν|<ACl

aCl(ν) · uSl(n + ν, k)

]
, (20)

where ψ[x] = ϕ[x]/(1 + ϕ[x]). Parameter aCl(ν) represents
the strength of the fixed connections converging from a group
of S-cells to the C-cell, which spread within a radius of ACl .
Basically, the input connections to a C-cell are excitatory and
have a spatial distribution like a dome.
In some layers (UC1 and UC2), however, inhibitory
connections surround the excitatory ones (Fukushima, 2003).
The concentric inhibitory surround in aCl(ν) endows the C-
cells with the characteristics of end-stopped cells, and C-cells
behave like hypercomplex cells in the visual cortex. In other
words, an end of a line elicits a larger response from a C-cell
than a middle point of the line. C-cells, whose input connections
have inhibitory surrounds, can participate in extraction of bend
points and end points of lines while they are making a blurring
operation. This increases recognition rate of the network.

The inhibitory surrounds in the connections also have
another merit. The blurring operation by C-cells, which usually
is effective for improving robustness against deformation of
input patterns, sometimes makes it difficult to detect whether
a lump of blurred response is generated by a single feature or
by two independent features of the same kind. For example,
a single line and a pair of parallel lines of a very narrow
separation generate a similar response when they are blurred.
The inhibitory surround in the connections to C-cells creates
a non-responding zone between the two lumps of blurred
responses. This silent zone makes the S-cells of the next stage
easily detect the number of original features even after blurring.

A.4. Self-organization of the network

The neocognitron is trained to recognize patterns through
learning. Only S-cells in the network have their input
connections modified through learning. In the specific network
discussed in this paper, supervised learning is used for the
lowest stage (US1), and unsupervised learning for intermediate
stages (US2 and US3).

Training of the network is performed from lower stages
to higher stages: after the training of a lower stage has been
completely finished, the training of the succeeding stage begins.
The same set of training patterns is used for the training of
all stages except layer US1. It should be noted that the same
training set is used also for the learning of layer US4 at the
highest stage.

We discuss here the learning method for US2 and US3 first,
and then the method for US1.

A.4.1. Competitive learning for intermediate layers
In the unsupervised learning, which is used for US2 and

US3, the self-organization of the network is performed using
two principles. The first principle is a kind of winner-take-all
rule: among the S-cells situated in a certain small area, which is
called a “hypercolumn”, only the one responding most strongly
to a training pattern becomes the winner. The winner has its
input connections strengthened.

The second principle for the learning is introduced in order
that the connections are strengthened under the restriction of
shared connections. The winner cell not only grows by itself,
but also controls the growth of neighboring cells, working, so
to speak, like a seed in crystal growth. To be more specific,
all other S-cells in the cell-plane, from which the seed cell is
selected, follow the seed cell, and have their input connections
strengthened by having the same spatial distribution as those of
the seed cell.

K. Fukushima / Neural Networks 20 (2007) 904–916 915

4 It should be noted here that, if two layers have the same radius based on
the pitch of the cells in their respective layers, the actual size of the connections
measured with the scale of the input layer is larger in the higher stage, because
the density of cells is lower in the higher stage.
The amount of strengthening of each input connection to the
winner, namely to the seed cell, is proportional to the intensity
of the response of the cell from which the relevant connection
leads.

Let cell uSl(n̂, k̂) be selected as a seed cell at a certain time,
the variable connections aSl(ν, κ, k̂) to this seed cell, and, as a
consequence of the shared connections, to all the S-cells in the
same cell-plane as the seed cell, are increased by the following
amount:

∆aSl(ν, κ, k̂) = cSl(ν) · uCl−1(n̂ + ν, κ). (21)

The inhibitory variable connection bl(k̂) from the V-cell is
strengthened at the same time to the average strength of the
excitatory connections aSl(ν, κ, k̂). That is,

bSl(k̂) =

√√√√KCl−1∑
κ=1

∑
|ν|<ASl

{aSl(ν, κ, k̂)}2

cSl(ν)
. (22)

Incidentally, (21) and (22) are the same equations as (10) and
(11), respectively.

The initial strength of the variable excitatory connections
is very weak and nearly zero. Then, the variable excitatory
connections to the S-cell grow into a template that exactly
matches the spatial distribution of the response of the C-cells
in the preceding layer. Through the excitatory connections, the
S-cell receives signals indicating the existence of the relevant
feature to be extracted. If an irrelevant feature is presented,
the inhibitory signal from the V-cell becomes stronger than the
direct excitatory signals from the C-cells, and the response of
the S-cell is suppressed. The S-cell thus acquires the ability to
extract a feature of the stimulus presented during the learning
period.

Once an S-cell is selected as a seed cell and has learned to
respond to a feature, the cell usually loses its responsiveness
to other features. When a different feature is presented, a
different cell usually yields the maximum output and learns the
second feature. Thus, a division of labor among the cells occurs
automatically.

For the learning of intermediate layers US2 and US3 of the
neocognitron discussed in this paper, each training pattern of
the training set was presented only once.

The neural networks’ ability to recognize patterns robustly is
influenced by the selectivity of feature-extracting cells, which
is controlled by the threshold of the cells. Fukushima and
Tanigawa (1996) have proposed the use of higher threshold
values for feature-extracting cells in the learning phase than
in the recognition phase, when unsupervised learning with a
winner-take-all process is used to train neural networks. This
method of dual threshold is used for the learning of layers US2
and US3.

A.4.2. Supervised learning for the edge-extracting layer
In the supervised learning for US1, the teacher presents a

training pattern to the input layer and points out the position of
the feature that should be extracted. An S-cell whose receptive
field center coincides with the position of the feature takes
the place of the winner, and becomes the seed cell for that
feature. The other process of learning is identical to that of the
unsupervised learning, and occurs automatically.

To be more specific, the teacher presents a training pattern,
namely a straight edge of a certain orientation, to the input layer
of the network. The teacher then points out the location of the
feature, which, in this particular case, can be an arbitrary point
on the edge. The presentation of the training pattern, or an edge,
to each cell-plane can be only once during the learning.

A.5. Parameters for the simulation

The scale of the network and the arrangement of cells in each
layer is identical to the conventional neocognitron discussed by
Fukushima (2003).

The total number of cells (not counting inhibitory V-cells)
in each layer is as follows. U0: 65 × 65, UG : 71 × 71 × 2,
US1: 68 × 68 × 16, UC1: 37 × 37 × 16, US2: 38 × 38 × KS2,
UC2: 21×21× KC2, US3: 22×22× KS3, UC3: 13×13× KC3,
US4: 5 × 5 × KS4, and UC4: 1 × 1 × 10.

Although the number of cells in each cell-plane has been
pre-determined for all layers, the number of cell-planes in each
S-cell layer (KSl) is determined automatically in the learning
phase depending on the training set. In each stage except the
highest one, the number of cell-planes of the C-cell layer (KCl)
is the same as KSl . The recognition layer UC4 has only KC4 =

10 cell-planes, and each cell-plane contains only one C-cell.
The sizes of connections converging to single cells (namely,

radii AG , ASl , ACl , etc.) are determined as follows, where the
pitch of cells in the cell-plane of the preceding layer is taken
as the unit of length.4 In the contrast-extracting layer UG , the
radius of input connections aG(ν), namely AG in (15), is 3.3,
and the positive center of the Mexican-hat is 1.2 in radius.
For S-cell layers, the radius of input connections ASl is 3.4
for l = 1, 2 and 3. It is 4.9 for l = 4. As for C-cell layers,
AC1 = 9.4, AC2 = 7.4, and AC3 = 4.4. The excitatory
center of the connections aCl(ν) is 3.4 in radius for the lower
layers (l = 1, 2). Connections aC3(ν) for layer UC3 do not have
inhibitory surrounds and consist of only excitatory components.

The radius of the hypercolumn used for the competition area
in the learning is 3.1 for US2 and US3.

The threshold values used in the experiment of Section 4
were as follows. For the edge-extracting layer US1, we chose
θ1 = 0.55. For layers US2 and US3, the thresholds in the
recognition phase were: θ (R)2 = 0.50 and θ (R)3 = 0.56. Those
in the learning phase were: θ (L)2 = 0.64 and θ (L)3 = 0.67. The
numbers of cell-planes generated by the training set of 5000
patterns were KS2 = 43, KS3 = 133 and KS4 = 160 in the first
experiment discussed in Section 4.

References

Burges, C. (1998). A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2, 1–47.

916 K. Fukushima / Neural Networks 20 (2007) 904–916
Cover, T. M., & Hart, P. E. (1968). Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, IT-4(5), 515–516.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36(4), 193–202.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of
visual pattern recognition. Neural Networks, 1(2), 119–130.

Fukushima, K. (2003). Neocognitron for handwritten digit recogni-
tion. Neurocomputing, 51, 161–180. A computer program of this
neocognitron in C language is available from Visiome Platform:
http://platform.visiome.neuroinf.jp/.

Fukushima, K., & Tanigawa, M. (1996). Use of different thresholds in learning
and recognition. Neurocomputing, 11(1), 1–17.
Gray, R. M. (1984). Vector quantization. IEEE ASSP Magazine, 1(2), 4–29.
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. Journal of Physiology
(Cambridge, Eng.), 106(1), 106–154.

Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional
architecture in two nonstriate visual areas (18 and 19) of the cat. Journal
of Neurophysiology, 28(2), 229–289.

Kohonen, T. (1995). The self-organizing maps. Berlin, Heidelberg, New York:
Springer-Verlag.

Schölkoph, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., et al.
(1997). Comparing support vector machines with Gaussian kernels to radial
basis function classifiers. IEEE Transactions on Signal Processing, 45,
2758–2764.

http://platform.visiome.neuroinf.jp/

	Interpolating vectors for robust pattern recognition
	Introduction
	Interpolating vectors
	Multi-dimensional feature space
	Reference vectors
	Interpolating vectors
	Adjusting phase

	Use of interpolating vectors for the neocognitron
	Outline of the neocognitron
	S-cells of the highest stage
	Initial learning of the highest stage
	Application of interpolating vectors to the neocognitron

	Computer simulation
	Discussions
	Neocognitron
	Contrast-extracting cells
	S-cells
	C-cells
	Self-organization of the network
	Competitive learning for intermediate layers
	Supervised learning for the edge-extracting layer

	Parameters for the simulation

	References

