Н.А. Горин, В.Н. Струнилин

Донецкий национальный технический университет кафедра Компьютерная инженерия

МОНИТОРИНГ ТЕМПЕРАТУРЫ СРЕДСТВАМИ МИКРОКОНТРОЛЛЕРА ARDUINO UNO

Аннотация

Горин Н.А., Струнилин В.Н. Мониторинг температуры средствами микроконтроллера Arduino Uno. Выполнена разработка электронного прибора, отслеживающего при помощи терморезистора изменение и отображения на LED- дисплее температуры устройства под управлением микроконтроллера Arduino Uno.

Ключевые слова:, терморезистор, LED – дисплей, микроконтроллер.

Постановка проблемы.

При работе как электронной, так и механической техники выделяется тепловая энергия. Например, при работе микроконтроллера в мобильном телефоне выделяется небольшое количество тепла, а при работе центрального процессора в компьютере может выделяться достаточное количество тепла, способное нарушить работоспособность не только самого процессора, но и электронных элементов, находящихся рядом с ним на плате. Другим примером является конвейер на заводе для штамповки пластмассовых деталей. В конвейере уже установлены датчики контроля температуры, но бывают случаи, когда их для большей надёжности нужно продублировать независимой системой, которая должна быть простая в использовании и недорогая при её компоновке. Следовательно, разработка *устройства* определения температурного режима является актуальной.

Анализ литературы.

После выполнения анализа литературы выбрана платформа Arduino Uno.

Arduino Uno контроллер построен на ATmega328 [1]. Платформа имеет 14 цифровых входов/выходов (шесть из которых могут использоваться как выходы ШИМ), шесть аналоговых входов, кварцевый генератор 16 МГц, разъем USB, силовой разъем, разъем ICSP и кнопку перезагрузки. Для работы необходимо подключить платформу к компьютеру посредством кабеля USB, либо подать питание при помощи адаптера AC/DC или батареи [1].

Платформа программируется посредством ПО Arduino. Язык программирования устройств Arduino основан на C/C++ [2,3].

Цель статьи – разработать электронный прибор для мониторинга температуры электронных устройств средствами микроконтроллера Arduino Uno.

Постановка задачи. Необходимо разработать систему мониторинга температуры для домашнего персонального компьютера (ПК), а именно для отслеживания температуры центрального процессора (CPU) и графического процессора (GPU) на видеокарте.

Программироваться микроконтроллер будет через USB при помощи ПК. Для программирования микроконтроллера будем использовать среду разработки Arduino 1.0.5. Микроконтроллер ATmega328 поставляется с записанным загрузчиком, облегчающим запись новых программ без использования внешних программаторов.

Работать полученное устройство будет автономно, т.е. без вмешательства операционной системы либо пользователя. Питание устройства производиться посредством подключения к одному из портов USB на задней панели ПК.

Принцип работы. Монтаж устройства производится посредством соединения датчиков температуры и контроллера Arduino Uno при помощи специальных проводников с разъёмами: с одной стороны типа «вилка», с другой стороны типа «розетка».

Электронное устройство состоит из:

- платформы Arduino Uno (рис.1);
- двух датчиков температуры DS18B20.

Структурная схема аппаратной части представлена на рис.2.

Рисунок 1 – Внешний вид Arduino Uno.

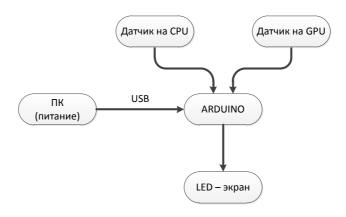


Рисунок 2 – Структурная схема аппаратной части.

Температурный диапазон датчиков от -55 до $+125^{\circ}$ С с точностью 0.06° С. Напряжение питания 3-5В, следовательно, питание подключается от выхода Arduino. Распиновка: 1-й вывод – земля; 3-й вывод - питание, 2-й - данные. Шина данных подключается к +5 вольт через резистор 4.7кОм (подтягивающий резистор). Все датчики подключаются параллельно.

На рисунках приведена схема аппаратной части (рис.3) и прототип готового устройства (рис.4) с одним датчиком температуры.

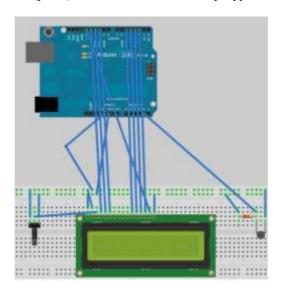


Рисунок 3 – Схема аппаратной части.

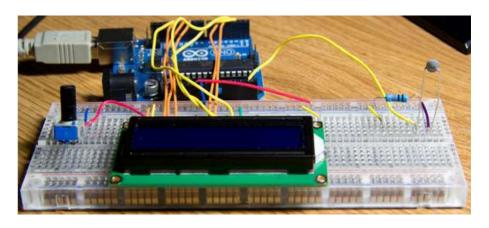


Рисунок 4 – Прототип готового устройства.

Выводы. Полученное устройство простое в применении, сборке и настройке. Сборка производится при помощи проводного монтажа. Если есть необходимость в увеличении количества датчиков температуры (больше шести штук), то необходимо дополнительно спаять небольшой модуль расширения и подвести к нему отдельно питание, вследствие чего можно подключить достаточное количество датчиков. Программирование микроконтроллера не сложное, т.к. не нужны специальные программаторы. Для программировании микроконтроллера используется язык С. Среда разработки сама позаботится о том, чтобы перевести программу на язык Assembler – понятный для микроконтроллера. Установка датчиков сводится к закреплению их на необходимом объекте отслеживания. Следует учесть специфику среды, в которую помещаются датчики, т.к. в данном проекте были использованы обычные датчики без изоляции от влаги либо других вредных для схем факторов.

Список литературы

- 1. Официальный сайт Ардуино в России/ Интернет-ресурс.- Режим доступа: http://arduino.ru/Hardware/ArduinoBoardUno.
- 2. Официальный сайт Ардуино, библиотека SPI/ Интернет-ресурс.-Режим доступа: http://arduino.cc.
- 3. Подбельский В.В., Программирование на языке Си: Учеб. пособие. 2-е доп. изд./ В.В. Подбельский, С.С. Фомин. М.: Финансы и статистика, 2004. 600 с., ил.