А.А. Шавёлкин, канд. техн. наук

(Украина, Донецк, Донецкий национальный технический университет)

УПРАВЛЯЕМЫЙ ВЫПРЯМИТЕЛЬ С АКТИВНЫМ ФОРМИРОВАНИЕМ ВХОДНОГО ТОКА

В настоящее время широко применяются активные выпрямители на полностью управляемых ключах (IGBT, IGCT) с формированием синусоидального входного тока [1]. Принцип их действия предполагает то, что выпрямленное напряжение $U_d > U_{\Lambda m}$ ($U_{\Lambda m}$ амплитуда линейного напряжения на входе).

Регулирование напряжения в управляемых выпрямителях (УВ) с фазовым управлением связано с существенной проблемой – несинусоидальным входным током. Усугубляется проблема при работе на емкостную нагрузку.

Задача регулирования выпрямленного напряжения может быть решена при использовании в схеме полностью управляемых ключей и импульсных методов регулирования. При этом схема и алгоритм управления должны решать две задачи: обеспечения регулирования при высоком качестве выходного напряжения и формирование синусоидального входного тока.

Цель работы. Исследование возможностей схемы трехфазного мостового выпрямителя на полностью управляемых ключах и разработка алгоритма, обеспечивающего регулирование напряжения при синусоидальном входном токе.

Изложение материала и результатов работы. Схема УВ (рис.1) обеспечивает одностороннюю проводимость с передачей энергии в цепь нагрузки. Принцип действия аналогичен понижающему импульсному преобразователю.

Для этого в схему введен выходной $L_B C_B$ фильтр с обратным диодом VD на входе. Регулирование U_C достигается изменением коэффициента заполимпульсов нения включения ключей. При этом $i_{\phi_{A1}}$ имеет импульсный харак-

Рис. 1. Схема управляемого выпрямителя

тер (рис. 6). Для сглаживания пульсаций входного тока используется $R_{\phi}L_{\phi}C_{\phi}$ – фильтр, причем емкость C_{ϕ} на входе УВ необходима также для исключения перенапряжений в ключах при разрыве тока сети и сглаживания пульсаций напряжения на входе выпрямителя.

В мостовой схеме выпрямления ток, потребляемый из сети, – несинусоидальный при длительности 2/3 периода. Зажимы УВ *p* и *n* через два ключа (рис.1) присоединяются к двум фазам сети на линейное напряжение u_{π} – ток протекает в двух фазах. Равномерное распределение тока по фазам сети во времени можно обеспечить при поочередном подключении выходных зажимов к разным фазам при $u_{\pi}>0$. Так, при включении VT1 и VT4 напряжение $u_B=u_{AB}$ (рис. 2) и ток протекает в фазах *A* и *B*, при запирании VT4 и отпирании VT6 $u_B=u_{AC}$ ток протекает в фазах *A* и *C* и т.д. Полагаем, что напряжение U_C и соответственно ток i_L в дросселе L_B идеально сглажены. При этом токи i_d на выходе и $i_{\Phi 1}$ на входе УВ за счет периодического переключения ключей выпрямителя

будут иметь форму импульсов постоянной амплитуды. Используя ШИМ можно обеспечить изменение среднего значения тока i_{ϕ_1} по синусоидальному закону. Рассмотрим применение векторной ШИМ (SVC), поскольку ЭТОТ метод обеспечивает минимальное количество переключений ключей схемы.

заны фазы сети, которые соединяются с выводами p и n, u_B , токи в фазах и угол сдвига пространственного вектора тока β . Вектор <u> I_S </u> представлен на рис.3,а (нумерация положений <u> I_S </u> соответствует табл. 1). При этом для сектора между векторами 1 и 5 (интервал в 60° выделен на рис. 2) первый базовый (ненулевой) вектор задается u_{4B} ,

второй *и*_{AC}.

Рис. 2. Временные диаграммы напряжений

Для $cos\phi=1$ пространственные вектора напряжения <u>U</u>_S и тока сети <u>I</u>_S совпадают по фазе. Разбиваем период (рис. 2) на 6 интервалов в моменты изменения полярности напряжения сети u_{ϕ} . Интервалы соответствуют максимумам u_{ϕ} и определяют положение <u>U</u>_S и <u>I</u>_S в секторе 60°. При этом имеется 6 ненулевых векторов и 1 нулевой, когда УВ от сети отключен. Возможные состояния схемы УВ представлены в табл. 1, где пока-

Таблица 1

состояния схемы выпрямителя										
N⁰	p	п	u_B	i_A	i_B	i_C	β, °			
1	Α	В	u_{AB}	i	-i	0	-30			
2	В	А	u_{BA}	- i	i	0	150			
3	В	С	u_{BC}	0	i	- i	90			
4	С	В	u_{CB}	0	- i	i	-90			
5	Α	С	u_{AC}	i	0	- i	30			
6	С	А	u_{CA}	- i	0	i	-150			
0			0	0	0	0	0			

Относительные (к периоду коммутации T_K) длительности нахождения схемы в состояниях, которые обеспечивают формирование пространственного вектора для сектора в 60° (рис. 3, δ):

$$\delta_1 = \mu \sin(60 - \theta); \quad \delta_2 = \mu \sin\theta; \quad \delta_0 = 1 - \delta_1 - \delta_2, \tag{1}$$

где μ – коэффициент модуляции по амплитуде (относительное значение U_C).

Рис. 3. Формирование пространственного вектора входного тока

Принимаем в качестве начала отсчета времени момент t_1 (рис.2), тогда $u_{AB}=U_{\Pi m}cos\theta, u_{AC}=U_{\Pi m}cos(\theta-60^{\circ}), (U_{\Pi m}-$ амплитуда линейного напряжения u_{Π} сети). Среднее на интервале T_K значение выпрямленного напряжения

$$U_{CP} = u_{AB} \cdot d_{l} + u_{AC} \cdot d_{2} = \mu U_{Jm} [\cos\theta \cdot \sin(60^{\circ} \cdot \theta) + \cos(\theta \cdot 60^{\circ}) \cdot \sin\theta] = \mu U_{Jm} \cdot \sqrt{3/2}.$$
 (2)

Соотношение (2) запишем в виде $U_{CP} = m(U_{Лm} \cdot \sqrt{3/2}) = mU_{CP1}$.

Алгоритм управления при μ =1 и дискретности формирования вектора 6° (частота f_K =1/ T_K =3000Гц) иллюстрирует рис. 4. Расчетные соотношения для сектора θ =0°-30° (для θ =30°- 60° значения те же) приведены в табл. 2. Для перехода от δ_i к временным интервалам t_i использовано модулирующее напряжение u_{TP} треугольной формы единичной амплитуды с частотой f_K /2, которое сравнивается по уровню с напряжениями, соответствующими δ_1 и (δ_1 + δ_2). Импульсы, соответствующие t_1 и t_2 , подаются на пару ключей соединяющих выход выпрямителя с фазами сети A и B, A и C. При этом ключ в фазе A включен в течение времени, которое соответствует сектору 1-5 (T/6), а переключаются ключи в фазах B и C.

Рис. 4. Принцип реализации векторной ШИМ

Таблица 2

<i>Ө</i> , град	0	3	6	9	12	15	18	21	24	27	30
$60 - \theta$	60	57	54	51	48	45	42	39	36	33	30
δ_{l}	0,866	0,839	0,809	0,777	0,743	0,707	0,67	0,629	0,406	0,545	0,5
δ_2	0	0,052	0,105	0,156	0,208	0,259	0,309	0,358	0,588	0,454	0,5
γ	0,866	0,891	0,914	0,933	0,951	0,966	0,979	0,987	0,994	0,999	1
1-γ	0,133	0,109	0,086	0,066	0,049	0,033	0,021	0,013	0,006	0,001	0

Основные соотношения для сектора 30°

Напряжение u_B (рис.6) имеет форму импульсов с частотой $f_M=f_K/2$, длительность которых определяется суммой (t_1+t_2) для соседних интервалов, соответствующих положению вектора 9° и 15°, 21° и 27°, 33° и 39°, 45° и 51°, 57° и 63° (рис. 4). Среднее значение выпрямленного напряжения на интервале T_K – постоянное (2), меняется длительность импульса. Полагаем, что емкость C_B достаточно велика и U_C идеально сглаженное, $U_H = U_C = m \frac{\sqrt{3}}{2} U_{Jm} = m U_{CP1}$. Тогда можно считать, что ток i_L пульсирует, изменяясь при этом по линейному закону. Полагаем, что импульс напряжения на выходе УВ при коэффициенте заполнения $mg = m \frac{t_1 + t_2}{T_K} = m(d_1 + d_2)$ имеет постоянную амплитуду в пределах

 T_K , значение которой при постоянном U_C составит $U_B = \frac{U_C}{mg} = \frac{mU_{CP1}}{mg} = \frac{U_{CP1}}{g}$. Длительность импульса $t_i = \Delta t = \mu \gamma T_K$. В середине сектора при $\theta \rightarrow 30^\circ$ и $\gamma = 1$ напряжение $U_B = U_{CP1}$. Амплитуда пульсаций тока относительно I_{LCP}

$$\Delta I_{L} = \frac{(U_{B} - U_{C})\Delta t}{L_{B}} = \frac{U_{CP1}(1 - mg)m}{L_{B}f_{K}}.$$
(3)

Амплитуда пульсаций i_L в пределах сектора изменяется в соответствии со значением γ – минимальна в середине сектора θ =30° и возрастает по краям (рис.5, *a*). При μ =1 значение ΔI_L пропорционально (1- γ) (табл. 2), максимальное значение $\Delta I_{LMAX}=A=0.133(U_{CPI}/L_Bf_K)$ соответствует θ =0° и θ =60°. При этом получаем модулированные по амплитуде колебания $Di(t) = F(t) sin w_M t$, где F(t) – периодическая несинусоидальная функция с частотой, кратной частоте напряжения сети, которая с некоторым приближением может быть представлена как F(t)=A -/ $Asin3\omega t$ |. Используя стандартное разложение в ряд Фурье для / $Asin3\omega t$ |, получаем

$$F(t) = A(1 - \frac{2}{p} - \frac{4}{p3}\cos 2(3wt) + \frac{4}{p3 \cdot 5}\cos 4(3wt) - \frac{4}{p5 \cdot 7}\cos 6(3wt) + \dots)$$

Если пренебречь высшими гармониками, то

Рис.5. Диаграммы работы выходного фильтра выпрямителя

$$\Delta i(t) = A(\frac{p-2}{p} - \frac{4}{3p}\cos 6wt)\sin w_M t =$$

$$= A(0.363\sin w_M t - 0.212\sin(w_M + 6w)t - 0.212\sin(w_M - 6w)t)$$
(4)

Таким образом, пульсации i_L обусловлены действием гармоники с частотой модуляции (при амплитуде ее $0.048(U_{CPI}/L_B f_K))$ и близких по частоте боковых гармоник ($\omega_M + 6\omega$) и ($\omega_{M-} 6\omega$). При этом в разложении отсутствуют низкочастотные составляющие.

Вместе с тем, анализ (3) показывает, что максимальная амплитуда пульсаций имеет место при μ =0.5. Так, для θ =0° значение $\mu(1 - \mu\gamma)$ =0.283, а для θ =30° значение $\mu(1 - \mu\gamma)$ =0.25. Относительное изменение амплитуды пульсаций при этом составляет те же 13.3%, что и при μ =1, абсолютное изменение амплитуды пульсаций A^{1} =0.033($U_{CPI}/L_{B}f_{K}$) и с учетом (4) его влияние на гармонический состав при расчете параметров схемы (f_{K} , L_{B}) можно не учитывать. Это подтверждает и диаграмма тока на рис.5, δ .

Расчет производится при μ =0.5 в соответствии с (3) исходя из допустимого значения ΔI_L (например, 10% от среднего значения I_{LCP}). Переменные составляющие тока замыкаются через конденсатор C_B , обуславливая колебания выходного напряжения u_{II} , величина которых определяется коэффициентом пульсаций напряжения, $K_{IIH}=U_{IIm}/U_{CP}$. Принимаем, что переменная составляющая тока конденсатора $i_C(t) = \Delta I_L \sin w_M t$.

Соответствующие пульсации ис относительно среднего значения UCP

$$u_{\Pi} = \frac{1}{C} \int i_C(t) dt = -\frac{\Delta I_L}{C w_M} \cos w_M t = U_{\Pi m} \cos w_M t .$$
⁽⁵⁾

Емкость конденсатора C_B при этом:

$$C = \frac{DI_L}{W_M \, 05U_{CPI} K_{\Pi H}} \,. \tag{6}$$

Диаграммы $i_{\phi A1}$ и u_B показаны на рис. 6. Ток $i_{\phi A1}$ имеет форму импульсов постоянной амплитуды, формируемых методом однополярной ШИМ из постоянного тока i_L . При этом $i_{\phi A1}$ имеет такой же гармонический состав как напряжение инвертора напряжения [1] и содержит основную гармонику с частотой сети (50Гц) и высшие гармоники с частотами кратными, f_M . Амплитуда основной гармоники зависит от сопротивления нагрузки R_H на выходе УВ и μ :

$$I_{m\Phi(1)} = mI_{LCP} = m\frac{mU_{CP1}}{R_{H}}.$$

Гармоника с частотой f_M определяется I_{LCP} и ее амплитуда I_m составляет порядка $I_{LCP}/3$ [1]. Максимальное значение I_m имеет место при $\mu=1$. Замыкается эта гармоника через конденсатор фильтра C_{ϕ} и обуславливает соответствующие пульсации напряжения на нем – в фазном напряжении на входе выпрями-

теля (рис. 7). По аналогии с (5) и (6) получаем: $C_{\phi} = \frac{I_m}{W_M \sqrt{2}U_{\phi}K_{\Pi H}}$.

Искажения формы u_{ϕ} обуславливают дополнительные пульсации тока i_L и u_B , по возможности их следует сводить к минимуму. Значение L_{ϕ} выбирается из условия, чтобы резонансная частота f_P (частота среза) $L_{\phi}C_{\phi}$ – фильтра была меньше f_M . Амплитудно-частотная характеристика имеет «подъем» в области f_P , поэтому для снижения добротности фильтра введен резистор R_{ϕ} (рис. 1).

На рис.7 показаны диаграммы i_{ϕ} и u_{ϕ} . Частота $f_M=1500\Gamma$ ц ($f_R=3000\Gamma$ ц при дискретности перемещения вектора 6°), параметры фильтра на входе: $L_{\phi}=0.5 \text{ м}\Gamma$ н, $R_{\phi}=6 \text{ Ом}$, $C_{\phi}=100 \text{ мк}\Phi$. Ток i_{ϕ} опережает u_{ϕ} , что обусловлено присутствием C_{ϕ} на входе и соответствующей емкостной составляющей тока, которая не зависит от нагрузки. Исходя из баланса активных мощностей, при $cos\phi=1$ найдем соотношение между входным и выходным токами выпрямителя:

$$P_{I} = \sqrt{3}I_{IJ}U_{JI} = \frac{\sqrt{3}}{\sqrt{2}}I_{IJ}U_{Jm} = P_{d} = (m\frac{\sqrt{3}}{2}U_{Jm})I_{H},$$

где $I_{1,\Pi}$ – линейный ток, потребляемый из сети. Отсюда $I_{1,\Pi} = m \frac{I_H}{\sqrt{2}}$.

Транзисторы схемы проводят ток половину периода напряжения сети, среднее значение тока транзистора и диода $I_{VTCP} = m \frac{I_H}{p \sqrt{2}}$, $I_{VDCP} = I_H (1-\mu)$ при амплитуде $I_{VTm} = I_H$.

Выводы. Возможности регулирования напряжения УВ из условия обеспечения синусоидального входного тока ограничены значением $0.866U_{Лm}$. Поэтому применение схемы предполагает использование соответствующего согласующего трансформатора

1. Костенко В.І., Шавьолкін О.О. Перетворювальна техніка.: Навч. посібник. – Донецьк: ДонНТУ, 2006. – 232с.