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Learning Impedance Control
for Robotic Manipulators

Chien-Chern Cheah and Danwei Wang

Abstract—Learning control is a concept for controlling dynamic  control. However, due to parametric uncertainties, it is difficult
systems in an iterative manner. It arises from the recognition to derive the full description of the dynamics. Furthermore,

that robotic manipulators are usually used to perform repetitive 04,56 of the nonlinearity of the dynamics, the identification
tasks. Most researches on the iterative learning control of robots ’

have been focused on the problem of free motion control and and estimation techniques [7], [26], [30] could not be easily

hybrid position/force control where the learning controllers are  deployed.

designed to track the desired motion and force trajectories. The ~ Recently, there have been many studies in the topic of
iterative learning impedance control of robotic manipulators, |earning control for controlling of robotic systems in an
however, has been studied recently. In this paper, an iterative o aive manner. In this paper, learning controllers are referred
learning impedance control problem for robotic manipulators is he cl f | h | .
formulated and solved. A target impedance is specified and a _to t e_c ass_ of control systems that generaFe a Con_tro act_lon
learning controller is designed such that the system follows the in an iterative manner to execute a prescribed action which
desired response specified by the target model as the actions areis defined in [4], [31]. A recent survey by Arimoto can be
repeated. A design method for analyzing the convergence of the found in [31]. This control concept arises from the recognition

learning mpedance system is developed.Asuf_hment conc_imon for that robotic manipulators are usually employed to perform
guaranteeing the convergence of the system is also derived. The

proposed learning impedance control scheme is implemented on "€Petitive tasks [4], [15]. Learning control schemes are easy
an industrial selective compliance assembly robot arm (SCARA) to implement and do not require exact knowledge of the
robot, SEIKO TT3000. Experimental results verify the theory and  dynamic model. Several learning motion control laws [2], [4],
confirm the effectiveness of the learning impedance controller. [6], [15], [18], [24], [32], and learning Hybrid Position/Force
Index Terms—Convergence analysis, impedance control, itera- control laws [1], [9], [12], [22], [37] have been developed
tive learning algorithm, robot force control. for iterative learning control of robotic manipulators. The
feedforward control inputs are learned such that the system
tracks the desired motion and force trajectories as the actions

are repeated. The iterative learning impedance control for

M OST of today’s industrial manipulators are used fofpotic manipulators has been developed recently with some
tasks such as materials transfer, spray-painting, aHFlalyticaI and experimental results [10], [34], [35].

spot welding, of which operations can be adequately handledrne concept of active control of a manipulator’s interac-
by simple position control strategies. To expand the feasikige pehavior is formally treated as an aspect of impedance
applications of robots, it is necessary to control not onlysnio| [19]. Hogan [19] stresses the necessity of control
the motion but also the forces of interacting between thg he manipulator impedance based on the assertion that
manipulator and the environment. Assembly, polishing, andis not sufficient to control position and force variables
deburring are typical examples of such tasks. Several contgghne |mpedance control does not attempt to track motion
laws have been developed for simultaneous control of bofy force trajectories but rather to regulate the mechanical
motion and force [31], [38] of robotic manipulators. Despitgynedance [19] specified by a target model. Impedance control

the diversity of approaches, it is possible to classify most _Bfovides a unified approach to all aspects of manipulation [19].
the design procedures as based on two major approachesigyih free motion and contact tasks can be controlled using a

1) impedance control [19]; single control algorithm. It is unnecessary to switch between

2) hybrid position/force control [29]. control modes as task conditions change. The nature of the

A number of researchers have proposed different implemearajectory learning formulation has prohibited the research into
tation of hybrid position/force control and impedance contralhe impedance control problem because in impedance control,
When the structures and parameters of the robot dynamétarget impedance is specified rather than the trajectory. There
model are known precisely, many model-based control theoriessts, however, another nonclassical approach of neural-
and design methods, e.g., [19], [28], [36], [39] can be used tetwork learning impedance control methods [5], [14], [17],
design nonlinear controllers for simultaneous motion and for§20], [21], [33]. However, unlike iterative learning approach

. . . T[n?e)l], it is difficult to provide a theoretical framework for
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in the literature, our approach allows the performance of timeapping betweerny(¢) and X(¢) is one-to-one by applying
learning system to be specified by a reference model (or targfed implicit function theorem [27]. The equation of motion
impedance) in addition to the reference trajectory. A targean therefore be expressed in the task space as [25]
impedance [19] is specified and the feedforward control input .. .

is learned such that the system follows the desired responseM[X’“(t)]X’“(t) +VIX(®), L] = Fil(®) + Ti(t) - (4)
specified by the target model as the actions are repeatedy,Aere

design method for analyzing the convergence of the learning

impedance control system is developed. A sufficient condition MX ()] = T g (O]M g (0] gr (8)]

for ?u?rantfeing_ theI conc\i/er.gegceI ofﬂt}he Iearn_ing irtnpeda.nce'[Xk(t)’ X)) = I g ® Vg ®), qu(t)] — Mlgu(t)]
control system is also derived. In the experiment, an in- T o (O T (1T~ o (DX (¢

dustrial selective compliance assembly robot arm (SCARA) s lax (0] Tlan (8] lax (01Xx(8)
robot, SEIKO TT3000, is used to verify the theory and Fi(t) =777 [ ()]

to evaluate the feasibility and performance of the proposed Ti(t) = T g ()] ().

learning impedance controller. A single learning controller waé . . -
. . ; . learly, in the case where the task space is the joint space,
implemented without the need to switch the learning controllef

from non contact to and from contact tasks as needed ‘It have

most of the learning controllers in the literature. Experimental hlq ()] = qi(t) (5)

results showed that the proposed learning impedance controller

reduced the impedance error dramatically as the operations @ hence/[gx(¢)] = I. It is important to note thaf/(-) is

repeated. a symmetric and positive definite matrix [30]. We consider

The remainder of this paper is organized as followdhe stiffness relation betweefi, () and X,.(¢) at the contact

Section Il formulates the robot dynamic equations and conti®int be dominated by

]E)roblem._ Scho_n Il presents j[he learning impedance _con_trol Filt) = K, [Xo(t) — Xu(t)] 6)

or robotic manipulators, Section IV presents the application

of the proposed controller to an industrial robot, and Sectionwhere K, € R**™ is a symmetric and positive definite

concludes this paper. A preliminary version of the work istiffness matrix that describes the environment stiffness. The

this paper was also presented in [10]. vector X,(t) € R* can be seen as representing the location
to which the contact poinky(¢) would return in the absence

II. ROBOT DYNAMIC EQUATION AND PROBLEM FORMULATION  Of contact force. Note that in this paper, we assume that the

The equation of motion for the constrained robotic manipL‘?—nVIronment stiffnesg(, and the static position¥,(¢) are

lator with n degrees of freedom, considering the contact foréglkno_wn. The specifications of the |mped_ance c_ontrol problem
re given in terms of a reference motion trajectory and a

and the constraints, is given in the joint space as follows [25].~ . i . - ”

o = esired dynamic relationship between the position error and
Mg ®)a(t) + Vige(t), @(t)] = () + fx(t) (1) the interaction force. Impedance control does not attempt to
0track motion and force trajectories but rather to control motion
Lind force by developing a relationship between interaction

.y n L .
$h22ﬁkitshs(;$re"rﬁgt? ::J\grgc? pe)o};itive 'jetf?rﬁt(reo?;t ;ie(rtt)laem}?rtlnx forces and manipulator position [19], that is, the mechanical
V(-,-) € R™ contains the centrifugal Coriolis and gravita-lmpedance' The target impedance [19] is specified as

tional forces, f;,(t) € R" is the interaction forces/moments Mo [Xa(t) = X ()] + C[Xalt) — X(1)]
gssouated with the cpnstram’tg,(t) € R" denotes the control + K[ Xa(t) — X(8)] = —F(2) )
inputs andt € [0, ¢;] is the operation interval.

It is well known that when the robot’s end-effector contactehere A, C,,,, and K,,, € R™ are positive definite matrices
the environment, a task space coordinate system defined withich specify the desired dynamic relationship between the
reference to the environment is convenient for the study wéference position error and the interaction force andt) €
contact motion [25]. LetX,(¢) € R™ be the task space vectorR", X4(t) € R", X4(t) € R" are the reference acceleration,
defined by [25] velocity, and position, respectively. For learning impedance

control design, we assume th#f,,, C,,, and K,, are cho-

(1) = hla(t)] @ sen such thatl -1 C,,, M YK, + K,,,), and MY (K, +
whereh(-) € R* — R is generally a nonlinear transforma-f»)M,,*C,, are symmetric matrices. For instances, when all
tion describing the relation between the joint and task spad@e matrices are diagonal matrices, the multiplication of the

wheregy(t) € R™ denotes the joint angles of the manipulat

Then, the derivatives oK (t) are given as diagonal matrices will also be diagonal and symmetric.
. The objective of Learning Impedance Control design is to
-’fk(t) = J@(H)]ar(t) _ develop an iterative learning law such that the system response
Xi(t) =J@®]ge () + J[an ()] (t) (3) satisfies the behavior of the specified target impedance (7) for
all t € [0, ¢;] as the actions are repeated [10], [11]. That is,

where J(-) = 0h(-)/0q € R**™ is the Jacobian matrix. It is
assumed that the robotic manipulator is operating in a finite
workspace such thaff(-) is nonsingular and therefore the wi(t) — 0 (8)

k — oo
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where feedforward learning control input, ang,(t) € R™ is an
. . . . intermediate state variable. In this control law, a dynamic
wi(t) = M [Xa(t) = Xp(8)] + O [Xa(t) — X ()] compensatoy(t) is introduced and a learning control input
+ K [Xa(t) — Xa(8)] + Fi(2) (9) my(t) is added and updated according to an iterative rule, so
that the system response is identical to the behavior of the

X ) i i target impedance specified by (7) as the action is repeated.
Remark 1: In the conventional iterative learning contro

X : ) ) LI'his iterative learning control law is proposed as
formulation, the controller is designed to track a desired g Prop

trajectoryyq(t) as the action is repeated. In general [31] mpy1(t) = mp(t) + BK 2 (t) (14)

is defined as the impedance error.

yr(t) = ya(t),  ask— oo (10) where

where y(t) is the motion and/or force trajectory. In our k() = a[Xa(t) — X (O] + [Xa(t) — Xa(®)] +wx(?) (15)

learning approach, the control objective can be specified bysaan intermediate reference model error ahe (0, 2) and

targetimpedance (or reference model) as seen from (8) and (9hre positive constants. The dynamic compensatdt) is
Furthermore, since the desired motion and force trajectorig$roduced as

cannot be derived from the reference model (7) becadtise
and X,(t) are unknown, the conventional trajectory learning Un(t) + ayp(t) = Lp[Xa(t) — Xi(D)]
control cannot be applied directly for learning the desired + L[ Xq(t) — Xp(t)] + L Fx(t)  (16)
model explicitly from the desired trajectories.

Remark 2: From (9), the reference trajectory er@y(¢) —
X (t) can be written ins-domain or Laplace domain as

whereL, € R**", L, € R**", L, € R**™ are the feedback
gains to be defined and is a positive constant to be chosen.
Without the introduction ofy;(t) described by (16) in the
Xy(s) = Xp(s) = [Myns? + Cpus + K|t control laws (13) and (14), the resulting learning system is a
[=Fi(s) +wi(s)]. (11) Pl-type learning system [2]. The uniform boundedness result
of the tracking errors of the PI-type learning system can be
Therefore, in the special case of free motion or non contatalyzed as in [2], [3] using the passivity concept. Since
task where the contact force is zero, the reference trajectding feedback system described by (16) is strictly passive, the
error also converges to zero in addition to the convergencestébility of the interconnected system with the feedback control
the reference model errar,(t) because laws (13) and (16) can also be studied using passivity theorem
[16]. Another useful theorem for studying the stability of this

2 —1
Xa(s) = Xp(s) = [Mms”™ + Cms + K] wn(s). - (12)  interconnected system is the application of small gain theorem

Hence, the learning impedance control scheme can be app[i%%]' 15) diff . ith {0 i h
to both contact and noncontact tasks. Using the learning rom (15), differentiates () with respect to time, we have
impedance approach, a unified learning controller can bey () = a[Xq(t) — Xp(H)] + [Xa(t) = X (®)] +9x(t). (17)
developed for both contact and non contact tasks without the ) ) o
need to switch the learning controllers from non contact to arttPStitute (15) and (16) into the above equation to eliminate
from contact tasks for learning control of robotic manipulato#/(t) result in
'(Ij'hig is impor_gant si?r::edthte currf[antI itegaiivc(ej Igarning tcort]trolé\/[m[jgd(t) — Xk(t)] + Cm[Xd(t) — Xk(t)]

esigns provide methods to control robots during contact an _ _ .
free motion separately. From a practical point of view, most + Kl Xat) = Xa(O)] + L0lt) = Min[24(2) + 2 (1))

tasks involve a transition from free motion to contact motion (18)
and every contact task ends with a transition from contact ftherer, . L., andL, in (16) are chosen ak, = M-1K,, —
free motion. Therefore, when these different control schem&e&_fn ]i_ = M-'C, - al, — al, ané) L, o ML

are applied to the robots, the learning algorithms are needp‘qerefor& by choosing the compensator gdipsL,, andL,:
to switch from one control to another and therefore the overgypropriately, the system response converges to that specified
control is discontinuous in nature. L by the target impedance (7)4f,(¢) andz,(¢) converge to zero

for all ¢ € [0, ¢;]. Alternatively, from (11), we have

[ll. LEARNING IMPEDANCE CONTROL A 2\ 0 L 9
. . N wi(s) = Xg(s)— Xy M, 'mS+ K] Fr(s). (1
In this section, we present the learning impedance controlle%jk(s) a($) =X () H{ Mo 5™+ Cnist K] L (5). (19)
for robotic manipulators. We suppose that a feedback contiidte learning impedance control problem can be restated as

law [25] has been designed for stability of the closed-loajat of designing a learning controller so that
system as We(t) — 0,  ask — oo (20)

Tilt) = Kp[Xa(t) = Xo(0)] + Ko[Xa(t) — Xn(?)] whereawy(t) is the inverse Laplace transformation @f,(¢)
+ Kyyr(t) + mu(t) (13) and is defined as the indirect target impedance error. From

where K, € R"*", K, € R™*", K, € R™*" are feedback (18) and (19), we have
and compensator gains to be chosem,(t) € R" is a Wr(8) = [Mypns? 4+ Cps + K| My (s + a)zi(s).  (21)
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Since (21) is stable and strictly proper linear system wittmodel is given by
the input z,(¢t) and outputwy(t), from the theory of linear

system [16], ifz;(t) converges to zero for afl € [0, ¢/], the [Xa(t) — Xi(t)] + 2¢w[Xa(t) — X (1)]
indirect target impedance erraF,(¢) converges to zero for + W2 [X4(t) — Xp(t)] = 0. (26)
al t € [0, tf]. o )
To guarantee the convergence of the learning impedanideen, from the definition ofy in the theorem, we have
control system, the controller gaitiép,. Kb K, Ly, L,U., an_d AA)Y2 A2
L, have to be chosen carefully. This is made precise in they < min{b—, ST 1} =min{2¢, 2¢%, 1} (27)
al al

following Theorem:
Theorem: Consider the learning control systems given bjsr o, chosen to be zero. Hence, for a system that is sufficiently

(4), (6), (13), (14), and (16) with the target impedance specifigémped so that? > %, we havey < 1. If system is lightly

by (7). Let the feedback gains and compensator gAINSK.,,  damped such thaf) < ¢2 < % we havey < 2¢2 and hence

Ky, Ly, Ly, and L, be chosen as the maximum value ofy decreases with decreasing damping

_1 factor. From (23), we can deduce that a higher controller gain

Kp =akiln, Ky =hilp, Ly = My Cpy = aly — aly is needed for a desired system response with light damping.

K, =kil,, Ly.=My' L, =M, 'K, —aal, (22) Thisis because for such a system, a high overshoot arises and

hence a higher controller gain is required to suppress it.
Similarly, in the presence of contact force, the desired model

can be expressed by

where ¢ is a positive constant anél; and « are constants
chosen to satisfy the following conditions:

/ C:
L2 (2= Bk - ;2 >0 [Xa(t) = Xp ()] + 20w[Xa(t) — Xp(®)] + (W + K,)
2 . _ Y, — _

L2 2oph -8 4 5 [Xa(t) — Xi(t)] = Ks[Xa(t) — X,(8)]. (28)
“r ’712167 Therefore, in the case of very stiff environment, the target
52 (2-B)k <1 — 26—20> impedance is a lightly damped system which required a higher
YAAThly controller gain to guarantee the convergence of the learning

@ co ) impedance system.
Y c7ly  2N3crlily AT T Remark 6: In paper [34] and [35] by Wang and Cheah,

another impedance learning control scheme is developed to
where v < min{(A12X2)/?/ba1, A3/2ba1, 1}, A1 = tackle the same problem. In comparison, the impedance learn-

Amin[A1] > 0, A2 = Apin[A42] > 0, A1z = Amin[A142] > 0, ing controller in [34] and [35] uses the impedance ewgft)

A = MNK, + K,) — aM;'C,, + &®1, A2 = directly in the iterative learning law for updating;,(¢). While

M 'C, — al, b,y denotes the norm bound fad; and in the approach developed in this paper, the impedance error
c -+ cg are constants to be defined. Then, a sequencegf(t) is incorporated in an indirectly manner. In particular,
control inputs will be generated such that the desired responsg+) does not appear directly in the set of controller equations
specified by the target impedance (7) is reached. Thatis (13)—(16) and the target impedance for learning is realized in
5 5 . . (18). Furthermore, a discrete time scheme corresponding to
wi(t) = M [Xa(t) = Xi(B)] + Cn[Xa(t) = Xp(1)] the approach in [34] and [35] has been developed in [&]
+ K [Xa(t) — Xi(t)] + Fir(t) — 0 (24)

forall t € [0, tf] ask — oc. IV. EXPERIMENT

Proof: Refer to the Appendix. AAA In a practical robot system, many disturbances are present.

Remark 3: Equation (23) states the sufficient conditiong&lthough the robustness analysis of the learning control system
for the convergence of the target impedance error. Note thatcertain practical issues has been developed [2], [18], [31],
several terms in (23) of the Theorem are inversely proportiorigiplementing the proposed learning schemes in real time
to /; andl,. Hence, increasing;, [; decreases these termsexperiments allows the investigation of the robustness and
Therefore,k; can be chosen such that [, andis > 0. the feasibility of the actual implementations. In this section,

Remark 4: Notice that the iterative learning impedancehe proposed learning impedance controller is applied to an
scheme described by (14), (15), and (16) does not require theustrial robot and experimental results are presented.
measurement or estimation of the force derivative as in [23]
or the acceleration as in [1], [9], and [13]. A. Experimental Setup

Remark 5: Suppose thatA,,; = M 1K, An
M 1C,, are defined using the coefficient matrices of thg
desired model in (7) and are chosen as diagonal such that

The robot used in this experiment is the industrial robot
EIKO TT3000 as shown in Fig. 1. This robot is the SCARA
type manipulator with three degrees of freedom as illustrated
Ama = 2wnlyn, Amy = w21, (25) inthe schematic diagram of Fig. 2. The first joint is a prismatic
joint, the second and third joints are revolute joints.
where( is the damping factor and,, is the undamped natural The dynamics model of the robotic arm [25] can be de-
frequency. For illustration purpose, F(t) = 0, the desired scribed by (4) as explained in Section Il. The parameters of
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Fig. 1. The experimental setup.

Fig. 2. A SCARA robot.

the SCARA robot can be detailed as

mi1 iz
M(Q) = |m21 M2
[/M31 32

5t
=12, f=
_7_3

where
mi1 =my1 +ma +m3
mi2 =0

mi13 =0

mis

ms3

N1
2
JE

vy
mes |, V(% Q) = | V2

U3

(29)

Power
VME Bus | | Amplifier
PC 486 [— —
System | Bncoder Robot
Foree
Sensor

Fig. 3. Block diagram of the experimental system.

maz = (mo + mg)ag + mgag + 2mgagaz cos(fs)
Moz =maa3 + maasaz cos(fs)

_ 2
M3z =1M303

v =mi11g
Vg = — M3A203 5111(93)(932, + 29293)
V3 =MmM3azas3 8111(93)95 (30)

and m;, mo, andms are the masses of link one, two, and
three, respectively, in kilograms, andaz are the length of
link two and three, respectively, in meters, anid the constant
acceleration due to gravity in meter per second.

The hierarchical structure of the robot control system is
shown in Fig. 3. At the top of the system hierarchy is the
robot supervisory Computer using a PC 486 and at the lower
level are the multiprocessors using a VME bus-based system.
The lower level system is used for real time data collection
and control. This VME bus-based system consists of the host
computer MVME 147 and the target computer MVME104.
The MVME 147 is a MC68030 based system with 4 MB
DRAM and a 25 MHz system clock and MVME104 is a
MC68010 based system with 512 kB of RAM and a 10
MHz system clock. The MVME104 is also responsible for
input/output operations using four channels for the encoder
inputs and four channels for the digital to analog converters.
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Three encoders are employed for position measurement of

each joint and a differentiator is used to estimate the velocity end
from the position measurements. The pulses per revolution for \
encoder two and three are 600 and 800, respectively. For t
prismatic joint, one pulse equals 0.010 44 mm. To measure the
contact force, a force sensor made by Lord is mounted on the
end-effector of the robot.

start

/

N

side view

=

plane view

Fig. 4. End-effector path.
B. Experimental Results

To effectively verify the proposed learning impedance con-
trol law, the end-effector was set to follow a path which The impedance learning control law which described by
involved free motion tracking, transition from free motion td13), (14), and (16) were applied to the robotic system with
contact motion, contact motion on the constraint plane withe controller gains set as
gompliance, trgnsition from coqtact r_notion to free motion, and K, = diag[10, 10,250]
finally free motion tracking again as illustrated in Fig. 4. Here, P
the joint space is chosen as the task space since the contact K, =K, = diag[12,12,100]
task in this experiment can be conveniently described by the L =diag[12,12,150].

joint axis 1 (orz axis) as shown in Figs. 2 and 4. Therefore .
For joint two and threep = 4, 3 = 1 were chosen and

(35)

z1(t) a was calculated ag = k,/k, = %. For the independent
X(t)= |62(2) (31) joint one, o = 1, 8 = 1.5 were chosen and was calculated
03(1) asa = ky/k, = 235. The compensator gaink,, L,, and

Mathematically, the task can be specified by the referene Were calculated based on (22). The impedance error was
model (7) as calculated as

wi(t) = My, [Xa(t) — Xi ()] + Cu[Xa(t) — X (8)]
+ K[ Xa(t) = Xp(t)] + Fi(?)

M, = diag[50,40,40]
Cyy =diag[200, 200, 200]
K, = diag[800,1000,1000]

(36)

(32) and the experimental results of the impedance errors, the

where the reference trajectoria(¢)=[=%,(t).0L,(t),0%,()]* trajector_y er.rors(Xd - Xi) and_ the gontgct force (t) are
are described by the following equations as given in (33jhown in Figs. 5-11. In the first trial, i.ek = 0, mo(t)

shown at the bottom of the page. Herg,(t) is specified WaS also set to zero for alf € [0,%;] and hence the
in meters, fo4(¢) and #s4(¢) are specified in radians. Thecontroller is a feedback law with no learning control. As the

sampling frequencyf, was 244 Hz and the perioth of the operation repeated, the impedance errors decreased as shown
whole operation was 360/ s. In this experiment, a steel balll" Figs. 5=7. From Figs. 8-10, the results also showed that

is attached to the force sensor and hence the frictional fol@€ trajectory tracking errors decreased when the impedance
along the constraint plane is negligible. In another words €mors decreased. It should be noted that in Fig. 8, the reference

trajectory error for joint one converged to a steady state value

fi(®) described by (11) in the presence of contact force. Notice
y p
F=10 (34) also that the impedance errors converged even though the
0 contact points were changing at every iteration as shown by
( 0.045 62 t 15/, tt+ 107/ t3 for0 < ¢ < 220
T\ 15005 © T 1500% 0 T 15008 = ,
6> . 15f% 10£3 1500 3000
z14(t) =9 —0.045 + 0.045 25— st >3} for <t < ——
taf?) > ‘)<15000 1500t " T 15008 ; ;
0 for 3000 <t< 3600
\ s s
f 65 . 15f% 10f3 3000
2.017 4+ 0.6 25 5 gt s 3) foro<t< ——
Boq(t) = + <3000O 30004 + 30003 - s
o 3000 3600
2.617 for <t <
f 65 . 15f% 10f3 3000
1.885 — 0.5 A L s3) foro<t< —
0ur(t) — 7 ‘)<30000 500017t 3000 = S 33
sa(t) = 3000 3600 (33)
1.385 for <t <

\
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Fig. 5. The impedance error of joint one.

the contact force in Fig. 11. The experimental results illustratiegrees of freedom. Experimental results verified the proposed

the validity of the theory presented in Section Il and showheory and illustrated the robustness of the learning controller.

that the learning impedance controller reduces the impedarcsingle learning controller was implemented without the need

error tremendously. These results also illustrate the superiottity switch the learning controller from non contact to and

of learning control as compared to no learning control on tieom contact task as needed in most of the iterative learning

first trial. controllers in the literature. The development of this learning

impedance control law should lead to further research and
V. CONCLUSION applications in learning control and force control for robot
An iterative learning impedance control problem is forapplications.
mulated and solved for robotic manipulators. In contrast to
most of the iterative learning controller designs in the liter- APPENDIX

ature, whereby a reference trajectory is given and a learning proof of Theorem: For clarity of the proof, the depen-

algorithm is designed to make the trajectory tracking eMmgfance of the system parameters on time is implied unless
converges to zero as the action is repeated, our approach allgysrwise specified. Equation (7) can be rewritten as
the performance of the learning system to be specified by a

target impedance in addition to the reference trajectory. GiverXd — Xpo+ Ama(Xa — X)) + At (Xg = X3) = BBy (37)

a target impedance, the learning controller is able to legrp, . 4 L =M7K, A, =M-1C, andB,, = —M~!

and eventually drives the closed loop dynamics to follow ”Erom (6) and (37), we have a desired state’ XT]T and
response of the target impedance as the actions are repeategl. fqired forcer :as e

design method for analyzing the convergence of the learning ] .
impedance system is developed. A sufficient condition is als@Xa— X.) + Ao (Xa— X))+ A (Xa—Xe) = B Fe (38)
derived to guarantee the convergence of the learning controlle(g}.
o .Whiere
The proposed learning impedance controller was applie

to control of an industrial robot SEIKO TT3000 with three F, = K,(X, - X,). (39)
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Fig. 6. The impedance error of joint two.

Similarly, from (16), we can define a desired intermediate statbbeorem [16]. Alternatively, the stability of the system can
value . corresponding to the desired state as be analyzed using Small Gain Theorem [16]. Therefore, the
. _ boundedness of the velocity variable is ensured &hd'(-),
Ye + e = (An}I - an)(Xd = Xe) + (Amz —al —al) f(-, -, -) are local Lipschitz continuous [2]. Substituting (15)
(Xa = Xe) = B Fe (40) and (41) into (42), we have

whereL,, L, andL, are chosen as in (22) of the theorem. The % X, X -1 -1

; = )+ M (Xp)kiz + M~ (X,
desired statéX”, XT]T exists but is unknown sinck, is an k=X X )+ (Xp)kr2k + (Xx)ma,
unknown desired force becauie and K, are unknown. Here,
the definitions of the desired state and force are for analyz

(43)

ﬁerefore the desired control inptt. corresponding to the

and are not used in the control law in actual implementati
P ésired stateX, is described by

From (18), the desired value af, and z; corresponding to
the desired model is given by = 0 andz. = 0, respectively. X, = F(X. X )+ M~Y(X.)m (44)
Now, with the feedback gain&,, K, also chosen as in the ¢ e e

theorem, we have the feedback control law in (13) given byynere we note that, = a(Xg— X))+ (Xg— X)) +ye =0

Tp = k1{a(Xy — Xi) + (Xq — Xp) + o} +my.  (41) and hence
From (4) and (6), the dynamic model can be written as Ye = a(Xe — Xg) + (X — Xa) (45)
Xi = f(Xp, Xy, t) + M™HX) Ty (42) and

where f(Xy, Xy, t) = —M~! (X) V(Xy, Xz) + M7} _ _ X

(X;) K, (X,—X). The interconnection of the passive robotic 2 = a(Xa = Xp) + (Xa = Xn) + 4

system [3] with a strictly passive feedback system (16) does —a(Xq = Xe) = (Xg = Xe) —ye

not disturb the stability of the system as a result of the Passivity =a(Xe — Xp)+(Xe — X&) — (ye —yr). (46)
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Subtracting (43) from (44), we have the error dynamic equaich implies that

tion given by
86X = =k MY (X)) 2z + Sh( Xy, t) + MY X3 )6my, (47)

where 6my, = me — my, Sh(Xi, t) = [f(Xe, X, t) —
F(Xp, Xp, O] + [M7Y(X.) — M_1(X})]me. Similarly, from
(16) and (40), we have
S + by, = —(Am1 — aad)6Xy, — (Ama — al — o)
86Xy — B,,5F, (48)

wheresX; = X, — Xy, (5Xk = Xe —Xk, U = Ye — Uk and
6ty = F, — Fy,. Furthermore, from (6) and (39), we have

6F, = —K:6X;. (49)
Therefore, substitute (49) into (48) results in
Ot + adyy, = —(flml —aad)6 Xy, — (flmg —al — aI)(SXk
(50)

Wherejlrnl = Arnl - BhK, = Mrzl(Knl + Ks)y Arn? =

Ao = M1C,,. From (46), (47), and (50), we have
2 = (Am1 — 0a)6X g + (Ao — al)6Xy, + ady

— By M7 (Xy) 2 + 6R(Xy) + M~ X)6ms,  (B1)

S =M (X ) 2 + k1M~ (Xp )2 — [An16Xg + A28 Xy,
+ 8f( Xy, t) + M1 X )m. ]} (52)

where §f(Xy, 1) = f(Xe,t) = f(Xp, 1), M~HXy) =
M~YX.) — M7Y(X}), and §h(Xy, t) = 6f(xp, t) +
§M~1(X})m,. Let us define an index functioW(t) as

Va(t) = /0 "L s () bma(r) dr (53)

kg
for all ¢ € [0, t;]. We assume that &, exists att = 0 such
that
t 1 T
Y dmy (T)émo(T) dT < 0
where émg = me. — my, for all ¢ € [0, t;]. For example, if
mo = 0, we have

Vo(t) = (54)

t
1
Vo(t) = / ——mI(TYme(T) dr < 0. (55)
o k1B
From (14) and (15), we have
6mk+1 = 6mk bt /3k12k. (56)
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Fig. 8. The reference trajectory error of joint one.

Define AVy, = Viy1 — Vi, we have, from (53) and (56), that (46) and (59), we have

t t 2k = 06X, 4+ A6 Xy + ALy, 60
AVk:/Jkl/ AL (r)z ()df—z/ AL () smu(r) dr. * kot A2bdi + A (60)
0 0

(57) where A; = A1 — aAps + 2, Ay = Ao — al. Note
that M,,,, C,,, K,,, anda can be chosen such thaf,;,[4;],

For simplicity of the following presentation, the dependenc’ém“f1 [A2], and Ayin[A1 4] are nonzero. LeL = (2 — f)k ]
of the functions on their arguments is implied. Substitute (Sﬂ'd substituting (60) into the second term of (58), we have

into the above equation, and integrating by parts, we have t )
- / L)L = M)z dr
0

Ay == M= [ = Dl = Maa(r) - XTI M6 (r)

+2 [ A OM s - a0D)pXi(r) + i L SXT (1) An(L — ) A8 Xa(r)
F6F + (Amz — aD)6Xi(r) + M~ m.]dr  (58) + & (N AL(L = M) Ar&i(7)
‘ + 6XF ()L — M)A6 X3 (1)
where M (-) = dM(-)/dt. Integrating (50) gives + 6Xk (1)A2(L — M)(st(T)
6yk = _(Arnl - Oé-’zlrnQ + OéQI)gk(t) + 6Xk (T)(L M)Algk( )
— Az — al - aD)6X;, (59) + & (1) AL — MK (7)
+ 6XT(1)Ax(L — M) A& (T)
where &(t) 2 fg ==X, (1) dry. Therefore, from + &8 (1) AL(L — M) A6 Xy ()} dr. (61)
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Fig. 9. The reference trajectory error of joint two.

Similarly, substituting (59) and (60) into the last term of (58)rom (64) and (65), by integrating by parts, we note that
we have

~ ~

2 / t (T M[(Amy — aaD)8X3(7) + (Amz — al)6X4(7) 2 /0 X7 (1)L A6 X)(r) dr
’ + abyp(T) + 6f + M~ m.]dr :t SXF(H)LA6X (1), (66)
=2 / t (6XT (1M A6 X3(7) + 6XT (1) AsM A Xy (1) 2 /0 & (1) LA Ap6 Xy (7) dr
° t
— 08 (MMM A7) + X (1) M A X (r = OLAAGE +20 | FOLA G b
+ 86X (1) AaM A28 X3 (1) — ab X (T)M A1 63,(7) 0 o
+EE (1) AL M A8 X () + &F (1) ALM A1 6 X (7) .
— abXT (1) AsM A &(T) + SWE(T)} dr 62) 2 /0 0Xj (1) LA (T)dr

where

TN N

t
‘ = 26X T () LA () — 2 / SXT(r)LASXu(7) dr
Wi =2(6X 1+ A6 Xy + A1&) T M(6f +6M~ m,). (63) 0

t
Adding (61) and (62) with each corresponding terms and + 2« / SX{E(T) LA & (T) dr
. . 0
substitute back into (58), we have
_ T _ 2\ _ 1 t
AVy, = =2 Mz, /0 BW2(r) — sWh(r)dr  (64) i / SXT () LA (r) dr
where o,
. . . 2 T
SWR(t) =6XF (L — M — 2M A3)6Xy, + 2a /0 & ()L AL (1) dr (68)
+6XF (LA — AsM Ay — 245 M A1)5 X,
+6XF (LAY — MAy — 2M A1)5X,, . S
+6XF(LAy — AM — 24, M A3)8 X —2(1 — )X} (LA < (1= 7)6X L6X,,
+6XT(LA; — MA; + 20M A&, + (1= )& (LA (69)
T . .
+ & (fAl —AM - 2,A1MA2)6X’“ wherey € (0,1] is a constant to be defined. Therefore,
+ 60X (LA2A, — A?MAl + 20 A2 M A )&, by partitioning the term26X,['(LA;)é in (65) into 2(1 —
+ &8 (LA Ay — AiM Ay — 2A1 M A1)6Xy. (65) )6 XF (LA, +2v6XF (LA, substituting the inequality

since Ay, Az, and A; A, are symmetric matrices. Note the
fact of the following inequality:
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Fig. 10. The reference trajectory error of joint three.
(69) and (66)—(68) into it, we arrive at - £E(A1M+ 2A1MA2)6Xk
T .
— F(ALM Ay 4+ 2A1 M A))6 X,
AVi < =28 Mz, — EF LA A& — 6XF LAY6X,, K (T . )
- 6Xk (AQMAl - 2C¥A2MA1)£k (71)

— 2v6X[F LA &, — avéjl LA1&,
(70) Now, let us rewrite the second to fourth terms of (70) as

t
0

- / SWE(r) — SWi(r) dr

h —¢T(LAANG, — 6XF(LA)6Xy — 296 XF(LALE,
where .
‘ ‘ : < —<z—/s>k1[ Il } [ Aoy —vbal} [ Il }

W) =KL (0L = M = 2MASK, 4 XL —ndy) = o)l S

- AQMAQ - 2A2MA1](5Xk

+&F [L(YAT + 2041 Ap + 202 A7)

— A MA; 4204, M A6,

— SXT(MAy +2MAL6X),

— SX{(AsM + 245 M A»)6 X,

— 6XF(MA; + 20M A&,

which is nonpositive if v is chosen such thaty <
(A21A2)Y/2 /be1; whereb,; denotes the norm bounds feiy,

A2 = Amin[42], and A2; = Amin[4241]. Now, since the first

to fourth terms of (70) are nonpositive, therefad/,.(¢) is
negative semi-definite i6W32(¢) — §W}(¢) is nonnegative.
From (63) and (71), we have (72), shown at the bottom of

’7(2 — /3)/{}1 —C2 —C4 —C5
6W5(t) - (5W;}(t) Z yT —Cy4 67(2 - /3)/{}1 —C3 —Cg y (72)
—C5 —Cg ’}/)\%(2 bt /3)]{}1 — Cg
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Fig. 11. The contact force.

the previous page, where condition (23) of the Theorem, wherg = 2cycsc6 — c3c2,

) then §W32(t) — W (t) > 0 and henceAVi(t) < 0. This

116Xkl (A2t A2)/2 A2 implies thatV;(¢) converges to a nonnegative constant be-

y=[6Xk]l | v < min{b—7 ﬁ7 1} causeVp(t) is bounded. ThereforaVy(t) — 0 ask — 0.
1€l ot ! Furthermorez,(t) — 0 for all ¢t € [0, ;] because

2b42 + 2¢1

c1 =cf + cpbme, c2 = by + —
1

AVy, < =zt Mz, <0. (73)
2041042 + 2¢1ba2 This implies thatz;, — 0 for all ¢ € [0, t¢] becausez,(t) —
K1 0 for all ¢t € [0, ¢f]. From (9) and (18), we have
b2y + bay ;201 + c1ba2 we :Mrn(Xd _ Xk) I Crn(Xd _ Xk)
borbaz + C1bat + K (Xg — Xp) + I = My, G + az). (74)
K1

c3 =b2,bn +

cg =baabg1 +

cs =barbar + :
Therefore, the impedance erroj. converges to zero such that

b2+ cib, . . . .
c6 =barbarbez + lTll7 7 = A3 — 27\ wy = M (Xg — Xi) + O (Xa — Xi)
cs =02 by + K (Xg — Xg) + F — 0 (75)
. . . ask for all t € [0, ] AAN
¢y andey, are the Lipschitz constants of the functiofis, -) o 0. #4]
and M~1(.), respectively,by;, %;, and b,2 are the norm REFERENCES
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