
1

Sensorless Trapezoidal Control of BLDC Motors
using BEMF Integration (InstaSPIN

TM
-BLDC)

Jon Warriner D3 Engineering

Abstract

This application note presents a solution for sensorless control of Brushless DC motors using the
TMS320F2803x microcontrollers. TMS320F280x devices are part of the family of C2000 microcontrollers
which enable cost-effective design of intelligent controllers for three phase motors by reducing the system
components and increasing efficiency. Using these devices, it is possible to realize precise control
algorithms.

This application note covers the following:

 Incremental build levels based on modular software blocks.
 Experimental results

Table of Contents

System Overview .. 2

Hardware Configuration .. 6

Software Setup Instructions to Run InstaSPIN_BLDC Project ... 8

Incremental System Build ... 9

Version 1.0 – Aug 2011

2

System Overview

This document describes the “C” real-time control framework used to demonstrate the trapezoidal control
of BLDC motors. The “C” framework is designed to run on TMS320C2803x based controllers on Code
Composer Studio. The framework uses the following modules

1
:

Macro Names Explanation

BLDCPWM / PWMDAC PWM and PWMDAC Drives

InstaSPIN
TM

-BLDC InstaSPIN-BLDC Library Functions

PID_GRANDO PID Regulators

RC Ramp Controller (slew rate limiter)

RC3 Ramp down Module

SPEED_PR Speed Measurement (based on sensor signal period)

IMPULSE Impulse Generator

MOD6_CNT_DIR Mod 6 Counter with direction control
1
 Please refer to pdf documents in motor control folder explaining the details and theoretical background of each macro

In this system, the sensorless trapezoidal control of BLDC motors will be experimented with and will
explore the performance of the speed controller. The BLDC motor is driven by a DRV830x Three Phase
PWM Motor Driver. The TMS320F2803x control card is used to generate three pulse width modulation
(PWM) signals. The motor is driven by an integrated power module by means of BLDC specific PWM
technique. Phase voltages and DC bus return current (Ifb Ret) is measured and sent to the
TMS320x2803x via analog-to-digital converters (ADCs).

InstaSPIN_BLDC project has the following properties:

C Framework

System Name
Program Memory Usage

2803x

Data Memory Usage
1

2803x

InstaSPIN_BLDC 4597 words
2

1200 words

1
Excluding the stack size

2
Excluding “IQmath” Look-up Tables

3

CPU Utilization of Trapezoidal BLDC Control (Sensorless)

Name of Modules * Number of Cycles

BLDCPWM 105

InstaSPIN
TM

-BLDC Library 277

PID 91

RC 29

RC3 26 √

SPEED_PR 42

IMPULSE 17 √

MOD6_CNT_DIR 9

Contxt Save, Virtual Timer etc. 153

Pwm Dac (optional)

DataLog (optional)

Total Number of Cycles 749 **

CPU Utilization @ 60 Mhz 25%

CPU Utilization @ 40 Mhz 37.4%

* The modules are defined in the header files as “macros”
** At 20 kHz ISR freq.
√ Not included in the speed loop

System Features

Development /Emulation Code Composer Studio v4.1 (or above) with Real Time debugging

Target Controller TMS320F2803x

PWM Frequency 20kHz PWM (Default), 60kHz PWMDAC

PWM Mode Symmetrical with 4 quadrant switching and programmable dead-band.

Interrupts ADCINT1 EOC

Peripherals Used PWM 1 / 2 / 3 for motor control

PWM 5A, 6A, 6B & 4A for DAC outputs

ADC A2 for low side DC bus return current sensing, B7, A7 and B4 for
Bemf sensing

SPI-B for communication and configuration of the DRV8301 (DRV8302
uses discrete digital and analog I/O for configuration)

4

The overall system implementing a 3-ph sensorless BLDC control is depicted in Figure 1

PWM-1

F28035 MCU

CAN

UART

I2C

CPU

32 bit

A

B

PWM-2
A

B

PWM-3
A

B

PWM-4
A

B

CAP-1

PWM-1A

PWM-2A

PWM-3A

ADC

12 bit

Vref

1

2

3

4

5

16

2H

3H

2L

3L

2H 3H

2L 3L

1

2

3

1H

1L

DRV830x
DC-Bus

spare

3 Phase

Motor

Voltage

sensing

Inc.

Encoder

/ Taco

QEP /

CAP

3

12V

QEP
3

HOST

Phase

Current

Feedback

3

DC Bus

Current

Feedback

DC Bus

Voltage

Feedback

PWM-1B

PWM-2B

PWM-3B

Figure 1 A 3-ph BLDC drive implementation

5

The software flow is described in the Figure 2 below.

Interrupt INT1

TINT0_ISR

Save contexts and clear

interrupt flags

Execute ADC

conversion (BEMF and

current)

Execute Mod6 counter

module

Execute InstaSPIN-

BLDC modules

Execute PID module

Execute BLDC PWM

DRV

Update Datalog and

Virtual Timer

Restore context Return

c_ int0

Initialize S /W

modules

Initialize time

bases

Confg ADC EOC

and enable INT1

Initialize other

system and

module parameters

Background

loop
INT 1

Figure 2 Software Flowchart

 7

 CAUTION: The inverter bus capacitors remain charged for a long time after the high
power line supply is switched off/disconnected. Proceed with caution!

For reference the pictures below show the jumper and connectors that need to be connected for this lab.

Figure 4 DRV830x-HC-EVM Connections and Settings

 8

Software Setup Instructions to Run InstaSPIN_BLDC Project
Please refer to the “Generic Steps for Software Setup for DRV830x-HC-C2-KIT Projects” section in the
DRV830x-HC-EVM How To Run Guide

C:\TI\controlSUITE\development_kits\DRV830x-HC-C2-KITv*\~Docs

This section goes over how to install CCS and set it up to run with this project.

The remainder of this application note will specifically discuss a hardware configuration
consisting of a DRV8301-HC-EVM with a TMS320F2803x controlCARD installed. The process for
other configurations, such as a DRV8302-HC-EVM, would be similar except the corresponding
build configuration would need to be chosen in Code Composer Studio.

The default configuration of this project is optimized for running low to medium current motors.
The gain of the DRV830x built-in current sense amplifiers is set to 40 giving a measurable current
range of +/-20.625A. The gain can be changed by choosing the desired #define for DRV_GAIN in
the file BLDC_Int-Settings.h. Note that there are four possible settings for the DRV8301 while the
DRV8302 is limited to gains of 10 or 40.

Select the InstaSPIN_BLDC as the active project. Verify that the build level is set to 1, and then right click
on the project name and select “Rebuild Project”. Once build completes, launch a debug session to load
the code into the controller. Now open a watch window and add the variables shown in the table below
and select the appropriate Q format for them.

Figure 5 Watch Window Setup

Setup time graph windows by importing Graph1.graphProp and Graph2.graphProp from the following
location C:\TI\ControlSUITE\developement_kits\DRV830x-HC-C2-KITv*\InstaSPIN_BLDC Click on

Continuous Refresh button on the top left corner of the graph tab to enable periodic capture of data
from the microcontroller.

 9

Incremental System Build for InstaSPINTM-BLDC project

The system is gradually built up in order so that the final system can be confidently operated. Eight
phases of the incremental system build are designed to verify the major software modules used in the
system. The table below summarizes the modules testing and using in each incremental system build.

Testing modules in each incremental system build

Software Module Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8

PWMDAC_MACRO √√ √√ √ √ √ √ √

RC3_MACRO √√ √ √ √ √ √ √

MOD6_CNT_DIR_MACRO √√ √ √ √ √ √ √

IMPULSE_MACRO √√ √ √ √ √ √ √

BLDCPWM_MACRO √√ √ √ √ √ √ √

ADC Offset Calibration √√ √ √ √ √ √

InstaSPIN
TM

-BLDC Lib √√ √ √ √ √

SPEED_PR_MACRO √√ √ √ √ √

PID_MACRO (IDC) √√ √ √

RC_MACRO √

PID_MACRO (SPD) √√ √

Note: the symbol √ means this module is using and the symbol √√ means this module is testing in this phase.

 10

Level 1 Incremental Build

Assuming the load and build steps described in the “DRV830x-HC-C2-KIT How To Run Guide” completed
successfully, this section describes the steps for a “minimum” system check-out which confirms operation
of system interrupts, some peripheral & target independent modules and one peripheral dependent
module. Open BLDC_Int-Settings.h and select level 1 incremental build option by setting the
BUILDLEVEL to LEVEL1 (#define BUILDLEVEL LEVEL1). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.
In the software, the key variables to be adjusted are summarized below.

 RampDelay (Q0 format): for changing the ramping time.
 CmtnPeriodTarget (Q0 format): for changing the targeted commutation interval.
 CmtnPeriodSetpt (Q0 format): for changing the initial startup commutation interval.
 DfuncStartup: for changing the PWM duty cycle in per-unit.

The key explanations and steps are given as follows:

 The start-up and the initial speed up of the BLDC motor is controlled by the RMP3CNTL module. This
module generates a ramp down function. This ramp down feature of RMP3CNTL module allows speed
up of the BLDC motor from stand still in an open loop configuration (like a stepper motor).

 One of the inputs to RMP3CNTL module, DesiredInput, determines the final speed at the end of the
motor speed up phase. This input is provided from the system using the system variable
CmtnPeriodTarget. User initializes this system variable with appropriate value depending on the type of
the BLDC motor. The second input to RMP3CNTL module is rmp3_dly, which is also user initialized by
using the system variable RampDelay. This determines the rate at which the motor speeds up. The
output of RMP3CNTL module is Out, which provides a variable time period gradually decreasing in
time. The Out terminal is initialized by the system variable CmtnPeriodSetpt which sets the initial
startup speed of the motor. CmtnPeriodTarget and CmtnPeriodSetpt are both initialized by the #defnes
for RAMP_END_RATE and RAMP_START_RATE respectively. These #defines are located in
BLDC_Int-Settings.h and set the initial and final speed of the startup ramp. The #defines allow these
quantities to be entered in units of RPM. The second output of RMP3CNTL module is
Ramp3DoneFlag, which, when set to 0x7FFF, indicates the end of the ramp down (or motor speed up)
phase.

 Out is used to provide the input Period for the IMPULSE module. This module generates periodic
impulses with period specified by its input Period.

 The DATALOG module is used to view the output variables of the modules. The initialization required to
perform this, is done in the level 1 incremental build initialization routine. During this initialization, one of
the inputs of DATALOG module is configured to point to mod1.Counter. Thus Out signal is shown in the
graph in CCS.

 The periodic impulse output, Out, is applied to the input TrigInput of the MOD6_CNT module. The
output of this module is Counter, which can assume one of the 6 possible values 0, 1, 2, 3, 4 or 5. This
output changes from one state to the next when a trigger pulse is applied to the input. This Counter is
finally used as the pointer input, CmtnPointer, for the module BLDC_3PWM_DRV. These 6 values of
the pointer variable, CmtnPointer , are used to generate the 6 commutation states of the power inverter
driving the BLDC motor. The duty cycle of the generated PWM outputs (according to the 6 commutation
states) during the motor speed up phase are determined by the input DfuncStartup.

 11

 Now, compile/load/run program with real time mode and set “EnableFlag” to 1 in the watch window.
Initially when RMP3CNTL ramps down, Period (the period of Out) will also gradually go down. At the
end of ramp period (when Out equals DesiredInput) Period will become constant and Ramp3DoneFlag
will set to 0x7FFF.

 Check MOD6_CNT_DIR output variable Counter in the watch window and graph window. This will vary
between 0 and 5.

 Use a scope to check the PWM outputs controlled by the peripheral dependent module
BLDC_3PWM_DRV.

 The output states of all the 6 PWM outputs will be such that together they generate the 6 commutation
states of the power inverter driving the BLDC motor.

 After verifying this take the controller out of real time mode (disable), reset the processor and then
terminate the debug session.

While running this level, the Graph windows should look similar to Figure 6

Figure 6 Graph Windows for Build Level 1 (a) mod6 counter, (b) BemfA, (c) BemfB and (d)BemfC

While running this level, the PWM outputs should appear as in Figure 7

 12

Figure 7 The PWM outputs , PWM 1 (Yellow) , PWM 2 (Pink) and PWM 5 (Green), PWM 6 (Blue)

 22

Level 6 Incremental Build

Assuming the previous section is completed successfully, this section verifies the closed current loop and
current PI controller. Open BLDC_Int-Settings.h and select level 6 incremental build option by setting the
BUILDLEVEL to LEVEL6 (#define BUILDLEVEL LEVEL6). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

 RampDelay (Q0 format): for changing the ramping time.
 CmtnPeriodTarget (Q0 format): for changing the targeted commutation interval.
 CmtnPeriodSetpt (Q0 format): for changing the initial startup commutation interval.
 CurrentStartup: for changing the startup current in per-unit.
 IRef: changing the running current in per-unit.
 InstaSPIN_BLDC1.Int_Threshold: for changing the BEMF integration threshold in per-unit

The steps are explained as follows:

 Compile/load/run program with real time mode.

 The motor will gradually speed up and finally switch to closed loop commutation mode.

 Now use the variable IRef to specify the reference current for the PI controller. The PI controller will
start to regulate the DC bus current and hence the motor current. Gradually increase/decrease the
command current (IRef value) to change the torque command and adjust PI gains. Note that the speed
is not controlled in this step and a non-zero torque reference will keep increasing the motor speed.
Therefore, the motor should be loaded using a brake/generator (or manually if the motor is small
enough) after closing the loop. Initially apply relatively light load and then gradually increase the amount
of the load. If the applied load is higher than the torque reference, the motor cannot handle the load and
stops immediately after closing the current loop.

 Verify the motor speed (both pu and rpm) calculated by SPEED_PR. View the following variables in the
Watch Window.

o speed1.Speed (pu)

o speed1.SpeedRpm (rpm)

 Bring the system to a safe stop as described below by setting EnableFlag to 0, taking the controller out
of realtime mode and reset.

 23

Figure 11 Graph Windows for Build Level 6 (a) mod6 counter, (b) V_int, (c) Vphase and (d)Vag

 27

Level 8 Incremental Build

Assuming the previous section is completed successfully, this section verifies the cascaded closed speed
and current loops. Open BLDC_Int-Settings.h and select level 8 incremental build option by setting the
BUILDLEVEL to LEVEL8 (#define BUILDLEVEL LEVEL8). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

 SpeedRef (GLOBAL_Q format): for changing the reference Speed in per-unit.

The steps are explained as follows:

 Compile/load/run program with real time mode.

 The motor will gradually speed up and finally switch to closed loop commutation mode.

 Now use the variable SpeedRef to specify the reference speed for the PI controller PID_REG3. The
SpeedLoopFlag is automatically activated when the PI reference is ramped up from zero speed to
SpeedRef. Once this is done, the PI controller will start to regulate the motor speed. Gradually increase
the command speed (SpeedRef value) to increase the motor speed.

 Adjust speed PI gains to obtain the satisfied speed responses, if needed.

 Bring the system to a safe stop as described below by setting EnableFlag to 0, taking the controller out
of realtime mode and reset.

Figure 13 Graph Windows for Build Level 8 (a) mod6 counter, (b) V_int, (c) Vphase and (d)Vag

 28

Level 8 Incremental System Build Block Diagram

RampDelay

CmtnPeriod

Target DesiredInput
Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE

MACRO
Out TrigInput

BLDC

PWM

DRV

EV

HW

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

MOD6_CNT

MACRO
Counter State 3-Phase

Inverter

ADCB7

ADCResult4

Vag

ADCA7

ADCB4

ADCA2

ADCResult5

Vbg

ADCResult6

Vcg

ADCResult7

BLDC

Motor

RC3

MACRO

Duty

ADC

CONV

ADC

HW

Comm_Trig

V_int

Vphase

Vint_lockout

State

InstaSPIN-

BLDC

Ramp3DoneFlag=0x7FFF

Ref PID

 MACRO

Spd Reg.

Fdb

SPEED_PR

MACRO

TimeStampSpeed

SpeedRed

Level 8 verifies the cascaded closed speed and current loops.

VIRTUAL

TIMER Int_Threshold

Ref PID

 MACRO

Idc Reg.

Fdb
CurrentStartup

Ramp3DoneFlag=0x7FFF

Out
Out

