ИССЛЕДОВАНИЕ СОСТАВА УГЛЕМЕТАНОВЫХ ГЕОМАТЕРИАЛОВ С ПОМОЩЬЮ СВЧ-ПИРОЛИЗА КАМЕННОГО УГЛЯ

Татьяна Анатольевна Киряева

Федеральное государственное бюджетное учреждение науки «Институт горного дела им. Н. А. Чинакала» СО РАН, 630091, Россия, г. Новосибирск, Красный проспект, 54, кандидат технических наук, тел. (923)170-32-11, e-mail: coalmetan@mail.ru

Приведены результаты исследований состава газообразных продуктов углеметановых геоматериалов и их материального баланса с помощью СВЧ-пиролиза.

Ключевые слова: углеметановые геоматериалы, выход летучих веществ, СВЧ-пиролиз, состав газообразных продуктов.

ANALYSIS OF COAL-AND-METHANE GEOMATERIAL COMPOSITION USING MICROWAVE-ASSISTED PYROLYSIS OF BLACK COAL

Tatiana A. Kiryaeva

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, 630091, Russia, Novosibirsk, 54 Krasny prospect, Ph. D. Eng, Doctoral Candidate, tel. (923)170-32-11, e-mail: coalmetan@mail.ru

The paper reports research findings on composition and balance of gaseous components of coal-and-methane materials obtained using microwave-assisted pyrolysis.

Key words: coal-and-methane geomaterials, volatile content, microwave-assisted pyrolysis, gaseous product composition.

Несмотря на достаточно большой опыт разработки угольных пластов, опасных по внезапным выбросам угля и газа, проблема внезапных выбросов стоит в ряду наиболее актуальных в социальном, экономическом и научно- технических аспектах. Одна из главных задач этой проблемы — выявление природы и механизма внезапных выбросов угля и газа. Взрыву метана, по предположениям проф. Х.А. Исхакова [1] и к.т.н. С.А. Калякина [2], предшествует скрытая активизация газообразных компонентов, приводящая их в возбужденное состояние благодаря сорбции на поверхности углей и минеральных компонентов. В этих статьях приводятся химические реакции, протекающие в угольном веществе при его механоактивации. При этом возникает «активное» угольное вещество, способное самопроизвольно разлагаться и воспламеняться.

Для количественного содержания жидких, газообразных и твердых фаз, их качественного состава в продуктах пиролиза каменного угля нами выполнено соответствующее исследование с помощью масс-спектрометрии, газовой хроматографии и далее приведены данные для образца угля, отобранного на Чертинском месторождении Кузбасса (глубина залегания пласта 240м, V^{daf} =20%).

СВЧ – пиролиз предварительно высушенных образцов (навеска m=1г.) проводили в инертной атмосфере аргона в кварцевом реакторе с пористым

дном. Жидкие продукты собирали в приемник, снабженный газоотводной трубкой. Газообразные продукты пропускали через серию ловушек, после поглощения CO_2 и окисленных соединений серы газы анализировали методом газовой хроматографии на предмет содержании CO, H_2 и углеводородов группы C_1 - C_4 . В ходе экспериментов уровень подводимой СВЧ мощности изменялся ступенчато от 50Вт до 100Вт с шагом 25Вт. Типичная температурная кривая нагрева образца угля представлена на рис. 1.

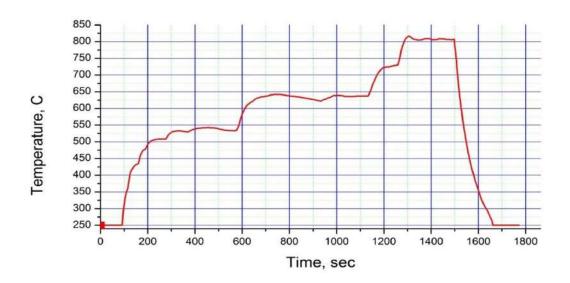


Рис. 1. Температурная кривая СВЧ – пиролиза образца угля

Выход (масс. %) продуктов пиролиза угля в инертной атмосфере и состав идентифицированных газов представлен на рис. 2.

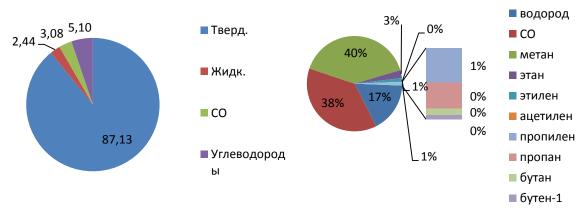


Рис. 2. Материальный баланс и состав газообразных продуктов СВЧ-пиролиза образца угля

Обнаружено, что полученный твердый остаток не подвергается озолению в обычных условиях (T=650°C). В отличие от исходного угля наблюдается про-

цесс, напоминающий коксование, при этом образуется рыхлый спекшийся продукт, состоящий преимущественно из углерода.

Состав жидких продуктов представлен в основном нафталином и его производными (рис. 3), а также полиароматическими соединениями. Стоит отметить малое количество серосодержащих соединений (менее 0,5%).

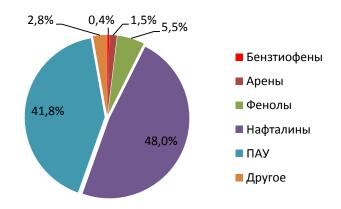


Рис. 3. Материальный баланс, состав газообразных и жидких продуктов СВЧ-пиролиза образца угля

При анализе газов (рис. 4) в режиме реального времени установлено, что СВЧ пиролиз протекает, по меньшей мере, в три стадии.

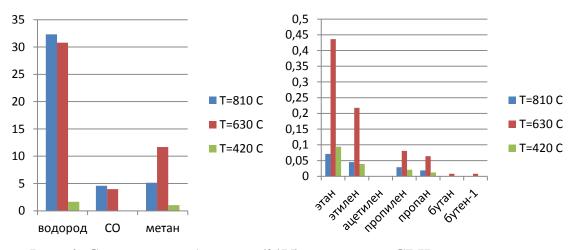


Рис. 4. Состав газообразных (%V) продуктов СВЧ – пиролиза при различных температурах нагрева угольного образца

Первая стадия — низкотемпературная до (450-500°С) и характеризуется низким содержанием водорода, метана и отсутствием СО, что свидетельствует о преобладании процессов газовыделения из исходного сырья над пиролизом. Во время второй стадии (T=600-650°С) процесс пиролиза существенно интенсифицируется, в составе продуктов наблюдаются СО и углеводороды от C_1 до C_4 . Последняя стадия ($T\sim800$ °С) сопровождается образованием в основном синтез-газа.

Таким образом, в результате термического разложения углеметана образуются продукты распада, которые создают с воздухом взрывоопасные смеси. В шахтных условиях мелкодисперсная пыль реакционноспособна по отношению к кислороду. Наличие ацетилена, водорода и др. в продуктах распада угольного вещества и нанопыли снимают вопрос об источниках воспламенения. Становится очевидным, что в определенных условиях горных работ горючие газы, генерируемые углем могут самовоспламеняться, а наночастицы пыли при движении в потоке воздуха — самовозгораться.

Работа выполнена при частичной финансовой поддержке РФФИ (проект № 13-05-00673) и проекта ОНЗ РАН-3.1.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Исхаков Х.А. Активация компонентов взрыва метана путем их сорбции на поверхности угольной пыли. // ТЭК и ресурсы Кузбасса. 2006. № 2, С. 55-57.
- 2. Калякин С.А. Идеология взрывобезопасности угольных шахт, опасных по газу и угольной пыли. // Безопасность Труда в Промышленности. 2010. № 11, С. 38-43.

© Т. А. Киряева, 2015