УДК 541.13+11: 541.136/.136.88: 544.653.3

РАВНОВЕСНАЯ КОНЦЕНТРАЦИЯ ЭЛЕКТРОАКТИВНЫХ ЧАСТИЦ В РАСПЛАВЕ (Li_{0.62}K_{0.38})₂CO₃ И МЕХАНИЗМЫ РЕАКЦИИ ВОССТАНОВЛЕНИЯ КИСЛОРОДА НА ЗОЛОТОМ ЭЛЕКТРОДЕ

С. И. Вечерский, М. А. Конопелько, Н. Н. Баталов

Институт высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия E-mail: vecherskii@ihte.uran.ru Поступила в редакцию 23.05.11 г.

Методом термодинамического моделирования рассчитаны равновесные концентрации основных компонентов расплава $(Li_{0.62}K_{0.38})_2CO_3$ и определены значения константы Варбурга в зависимости от температуры и отношения CO_2/O_2 в насыщающей расплав газовой смеси. Такие же зависимости константы Варбурга и сопротивления стадии разряда – ионизации изучены кулоностатическим методом на катоде из Au. Показано, что в интервале 810–1000 К основными электроактивными частицами в расплаве являются ионы O_2^- и молекулы O_2 . Их относительная концентрация определяет доминирующий механизм реакции.

Ключевые слова: карбонатный расплав, термодинамическое равновесие, золотой катод, механизмы реакции.

The concentrations of the main components of the $(Li_{0.62}K_{0.38})_2CO_3$ melt have been evaluated by the thermodynamic modeling technique, and the Warburg coefficients of electroactive particles as a function of temperature and CO_2/O_2 gas mixture composition have been calculated. The same dependences of Warburg coefficient and charge transfer resistance were studied on Au cathode using coulostatic technique. It is shown that O_2^- ions and O_2 molecules are the main electroactive species in the melt. Their relative concentration determines which reaction mechanism dominates.

Key words: carbonate melt, thermodynamic equilibrium, golden cathode, reaction mechanisms.

ВВЕДЕНИЕ

Из литературных источников известно, что эффективность работы карбонатного топливного элемента (MCFC) зависит как от коррозионной стойкости, электропроводности и каталитической активности материала кислородного электрода (катода) [1], так и от свойств насыщенного катодными газами (смесь О2 и СО2 или воздух) электролита [2]. Это связано с тем, что электродная реакция определяется наличием в электролите и концентрацией тех или иных электроактивных частиц [2]. Зачастую в качестве электролита в MCFC используют расплав (Li_{0.62}K_{0.38})₂CO₃. В настоящее время накоплено много экспериментальных и теоретических данных о его свойствах [2-6]. Однако даже в наиболее исследованном случае, когда расплав насыщают смесью газов СО2 и О2, взятых в мольном отношении 2/1, существует несколько точек зрения в вопросе о том, какие электроактивные частицы и, следовательно, какие механизмы реакции восстановления кислорода преобладают в нем при той или иной температуре. От прояснения этого вопроса зависит, в частности, решение проблемы повышения каталитической активности катода MCFC.

Основываясь на результатах изучения кинетики электровосстановления кислорода с использованием золотых или оксидных катодов, ряд исследователей полагают, что при температурах ниже рабочей температуры MCFC 923 К электродная реакция в Li/K расплаве протекает по пероксидному механизму. С повышением температуры он замещается супероксидным [7]. Теоретически допускают, что в некотором температурном интервале возможно протекание реакции с участием растворенного в расплаве O_2 [8]. Также высказывают мнение, что при T = 923 К может реализоваться перкарбонатный механизм реакции [9], хотя до сих пор в литературе нет надежных экспериментальных данных, свидетельствующих об образовании в указанном расплаве ионов O_4^{2-} .

Такое разнообразие мнений показывает, что электрохимические методы не являются самодостаточными при анализе механизмов электродной реакции. Для прояснения этого вопроса необходима независимая информация о природе и концентрации электроактивных частиц в расплаве, то есть о его составе. В ряде случаев, чтобы определить равновесный состав электролита, используют метод термодинамического моделирования [6, 10]. В частности, было установлено, что в температурном интервале 761 – 1000 К насыщенный смесью CO_2 и O_2 эвтектический расплав (Li_{0.62}K_{0.38})₂CO₃ содержит электроактивные частицы трех сортов: пероксидные (O_2^{2-}) и супероксидные (O_2^{-}) ионы, а также растворенный в нем молекулярный кислород (О2). Их концентрация зависит от температуры и соотношения СО2 и О2 в газовой смеси [6]. Однако автор [6] затронул весьма широкий температурный интервал (вплоть до 1570 К) с большим шагом по температуре. При этом игнорировались некоторые особенности изменения концентрации электроактивных частиц в более узком температурном интервале 810–1000 К, в котором зачастую проводят электрохимические измерения и который наиболее важен с точки зрения выбора рабочей температуры МСFC. Между тем в указанном интервале происходит изменение механизмов реакции, что проявляется, например, в виде излома на построенной в координатах Аррениуса температурной зависимости тока обмена [7]. В связи с этим представляло интерес провести более подробные расчеты для указанного температурного интервала.

С другой стороны, результаты подобных расчетов требуют экспериментального подтверждения. Для этого мы использовали кулоностатические данные, полученные для золотого электрода.

В настоящей работе приведены результаты термодинамического расчета равновесной концентрации основных компонентов расплава (Li_{0.62}K_{0.38})₂CO₃ в зависимости от температуры и парциального давления О2 и СО2 в смеси катодных газов, а также экспериментальные температурные и концентрационные зависимости константы Варбурга W и сопротивления стадии разряда – ионизации θ , полученные кулоностатическим методом для катода из Аи. Цель исследования заключалась в том, чтобы оценить концентрацию электроактивных частиц в расплаве (Li_{0.62}K_{0.38})₂CO₃ в интервале 810-1000 К при различной концентрации катодных газов в насыщающей расплав газовой смеси, сравнить полученные результаты с экспериментальными данными и указать наиболее вероятные механизмы реакции, которые могут реализоваться в заданных экспериментальных условиях.

1. ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

1.1.. Методика и результаты расчета равновесной концентрации основных компонентов эвтектического расплава (Li_{0.62}K_{0.38})₂CO₃

Для расчета фазового равновесия в системе газ (смесь О₂ и CO₂) – расплав (Li_{0.62}K_{0.38})₂CO₃ мы использовали метод термодинамического моделирования с привлечением программы АСТРА [10]. Методика расчета приведена в [6]. Расплав рассматривали как ассоциированный жидкий раствор,

тривали как ассоциированный жидкий раствор, понимая под его компонентами образовавшиеся в результате химических взаимодействий ассоциаты (кластеры) различного состава, в которых энергия связи между частицами значительно превышает энергию связи между комплексами. При этом полагали, что термодинамические свойства кластеров описываются термодинамическими функциями соответствующих индивидуальных веществ и соединений с учетом поправок, связанных с температурной зависимостью теплового эффекта при их плавлении, а основной вклад в энергию смешения при образовании эвтектики (Li_{0.62}K_{0.38})₂CO₃ вносят Li₂CO₃ и K₂CO₃ [4, 6].

Основные отличия реализованного нами варианта расчетов от [6] заключаются в следующем. Во-первых, мы учли возможность образования в расплаве комплексов [LiKCO₃]. Для этого были рассчитаны приведенная энергия Гиббса $\Phi^0_{\text{LiKCO}_3}(x)$ и энтальпия образования данного соединения $\Delta_f H_0^0$ при T = 0 К. Чтобы их определить, мы использовали данные об энергии плавления и энергии образования LiKCO₃, приведенные в [4], а также экспериментальные данные [11]. Было найдено, что $\Delta_f H_0^0 = -1189$ кДж-моль-1, а приведенная энергия Гиббса имеет следующий вид:

$$\Phi^{0}_{\text{LiKCO}_{2}}(x) = 584.4 + 186.9 \cdot \ln x + 4.589 \cdot x^{-1}, \quad (1)$$

где $x = T \cdot 10^{-4}$ К. Выражение справедливо в интервале 778–1200 К. При расчете равновесной концентрации компонентов в расплаве в эту функцию вносили поправку, связанную с температурной зависимостью теплового эффекта при плавлении LiKCO₃. Во-вторых, так как использованная нами методика не позволяла непосредственно рассчитать концентрацию растворенного в расплаве O₂, то для ее оценки мы воспользовались экспериментальными данными об общей растворимости кислорода. Согласно [3], концентрация O₂ и CO₂, растворенных в расплаве (Li_{0.62}K_{0.38})₂CO₃, может быть рассчитана по формуле

$$C_i = K_i(T) \cdot P_i, \tag{2}$$

где $i = O_2$ или CO_2 , P_i – парциальное давление соответствующего газа в насыщающей расплав газовой смеси,

$$K_i = K_{0i} \exp\left(-\frac{E_i}{RT}\right),\tag{3}$$

где R — универсальная газовая постоянная, $K_{01} = 1465 \text{ моль-м}^{-3} \cdot \text{атм}^{-1}$ и $E_1 = 63.098 \text{ кДж-моль}^{-1}$ для O_2 , $K_{02} = 17.31 \text{ моль-м}^{-3} \cdot \text{атм}^{-1}$ и $E_2 = 3.031 \text{ кДж-моль}^{-1}$ для CO_2 .

Мы предположили, что поглощенный расплавом кислород не только физически растворяется в нем, но и частично взаимодействует с карбонатами, образуя новые компоненты. Результаты расчета равновесного состава расплава показали, что наличие в нем пероксидных O_2^{2-} и супероксидных O_2^- ионов связано исключительно с образованием и диссоциацией соответственно комплексов пероксида лития [Li₂O₂] и супероксида калия [KO₂]:

$$2\mathrm{Li}_{2}\mathrm{CO}_{3} + \mathrm{O}_{2} \leftrightarrow 2\mathrm{Li}_{2}\mathrm{O}_{2} + 2\mathrm{CO}_{2}, \tag{4}$$

$$2K_2CO_3 + 3O_2 \leftrightarrow 4KO_2 + 2CO_2.$$
 (5)

Чтобы найти концентрацию физически растворенного в расплаве O_2 , мы определили концентрации $[Li_2O_2]$ и $[KO_2]$ (соответственно концентрации ионов $O_2^{2^-}$ и O_2^{-}) и вычли их из общей концентрации поглощенного расплавом кислорода.

Следует отметить, что помимо ионов O_2^{2-} и O_2^- в расплаве также присутствуют оксидные (O²⁻) ионы. Но они возникают в результате диссоциации карбонатов лития и калия по реакции

$$\mathrm{CO}_3^{2-} \leftrightarrow \mathrm{O}^{2-} + \mathrm{CO}_2,$$
 (6)

и их концентрация определяется $P_{\rm CO_2}$ в газовой смеси.

Концентрацию растворенного в расплаве CO₂ рассчитывали непосредственно по формулам (2) и (3).

На рис. 1 приведены результаты расчета равновесной концентрации (С) компонентов расплава (Li_{0.62}K_{0.38})₂CO₃, находящегося в атмосфере газовой смеси, в которой отношение парциальных давлений углекислого газа и кислорода $P_{\rm CO_2}/P_{\rm O_2}=2/1$, а общее давление газов P = 1 атм. Основными компонентами расплава являются кластеры [LiKCO₃], [Li₂CO₃] и [K₂CO₃]. Наряду с ними в расплаве присутствуют растворенные в нем О2 и СО2, а также кластеры [Li₂O], [Li₂O₂] и [KO₂], которые диссоциируют и образуют соответственно оксидные, супероксидные и пероксидные ионы. Во всем рассмотренном температурном интервале концентрация ионов O_2^{2-} на 2–3 порядка меньше, чем концентрация оксидных и супероксидных ионов. Это согласуется с данными [6]. Однако концентрация растворенного O₂ в интервале температур 810-1000 К меньше, чем было найдено в [6].

Рис. 1. Температурные зависимости равновесной концентрации основных компонентов расплава ($\text{Li}_{0.62}\text{K}_{0.38}$)₂CO₃, находящегося в атмосфере газовой смеси, в которой отношение $P_{\text{CO}_2}/P_{\text{O}_2} = 2/1$, а общее давление газов P = 1 атм: $I - \text{Li}_2\text{O}$, $2 - \text{LiKCO}_3$, $3 - \text{K}_2\text{CO}_3$, $4 - \text{Li}_2\text{CO}_3$, $5 - \text{Li}_2\text{O}_2$, $6 - \text{KO}_2$, $7 - \text{O}_2$, $8 - \text{CO}_2$

Такие же расчеты были проведены для других газовых смесей, которые использовали в данной работе.

1.2. Константа Варбурга и сопротивление θ

Согласно [12], в случае восстановления электроактивных частиц одного сорта константа Варбурга имеет следующий вид:

$$W = \frac{RT}{2^{1/2}n^2 F^2} \left(\frac{1}{C_O D_O^{1/2}} + \frac{1}{C_R D_R^{1/2}} \right), \tag{7}$$

где *n* – число электронов, *R* – универсальная газовая постоянная, F – число Фарадея, Co и CR – равновесные концентрации соответственно окисленного и восстановленного веществ, D_O и D_R - коэффициенты диффузии этих веществ. Поскольку в расплаве (Li_{0.62}K_{0.38})₂CO₃ концентрация восстановленного вещества (ионов CO₃²⁻) во много раз больше, чем концентрация различных кислородных частиц, то вторым слагаемым в формуле (7) можно пренебречь [7]. Это упрощает формулу (7). Однако приведенные на рис. 1 результаты показывают, что в расплаве присутствуют три сорта электроактивных частиц: O_2^{2-} , O_2^- и O_2 , каждая из которых может участвовать в электродной реакции, внося свой вклад в константу Варбурга. Чтобы оценить ее величину, мы предположили, что процессы с участием указанных частиц происходят одновременно (параллельно) и независимо друг от друга. В этом случае можно ввести эффективную константу Варбурга

$$W_{eff}^{-1} = \sum_{i=1}^{3} W_i^{-1}, \qquad (8)$$

где W_i – константы Варбурга в случае диффузии частиц сорта *i*.

Второе допущение, которое мы сделали при расчете константы Варбурга, заключалось в том, что коэффициенты диффузии ионов O_2^{2-} и O_2^{-} в расплаве во всем рассмотренном интервале температур и концентраций частиц равны коэффициенту диффузии молекул O_2 . Это было связано с отсутствием в литературе соответствующих данных для ионов O_2^{2-} и O_2^{-} . С учетом этих замечаний соотношение (8) может быть переписано в виде

$$W_{eff}^{-1} \approx \frac{(2D)^{1/2} F^2}{RT} \sum_{i=1}^3 n_i^2 C_i, \qquad (9)$$

где n_i – число электронов, переносимых ионами O_2^{2-} и O_2^{-} или молекулами O_2 , C_i – концентрация

соответствующих электроактивных частиц, а *D* – коэффициент диффузии молекул кислорода в расплаве (Li_{0.62}K_{0.38})₂CO₃ [3]:

$$D = D_0 \exp\left(-\frac{E_D}{RT}\right),\tag{10}$$

где $D_0 = 4.32 \cdot 10^{-3} \text{ см}^2/\text{с}, E_D = 45.77 \text{ кДж/моль.}$

Другой параметр, который получают в результате кулоностатических измерений, – это приходящееся на единицу площади поверхности электрода сопротивление стадии разряда – ионизации θ . В случае электровосстановления частиц одного сорта оно связано с плотностью тока обмена i_0 соотношением [12, 13]

$$\theta = \frac{RT}{nFi_0}.$$
 (11)

Если растворимость газов подчиняется закону Генри, то [3]

$$i_0 = i_0^0 P_{\rm O_2}^\sigma P_{\rm CO_2}^\tau \,, \tag{12}$$

где i_0^0 – стандартный ток обмена, P_{O_2} и P_{CO_2} – парциальные давления соответственно O_2 и CO_2 в смеси, $\sigma \equiv P_{k,O_2}$ и $\tau \equiv P_{k,CO_2}$ – кажущиеся порядки реакции соответственно по O_2 и CO_2 [13]:

$$P_{k,i} = p_{k,i} - \alpha * \frac{\mathbf{v}_i}{n}. \tag{13}$$

Здесь $i = O_2$ или CO₂, $p_{k,i}$ – истинный порядок реакции по компоненту i, v_i и n – соответственно стехиометрический коэффициент вещества i и число электронов, переносимых в суммарной электродной реакции (при электровосстановлении различных форм кислорода n = 4 [5]), α^* – кажущийся коэффициент переноса:

$$\alpha * = \frac{m}{v} + \mu \alpha , \qquad (14)$$

где *m* – число предшествующих замедленной стадии быстрых электрохимических стадий, v – стехиометрическое число, μ – число переносимых в замедленной стадии электронов, α – истинный коэффициент переноса. Согласно [12], соотношение (14) оказывается справедливым и при μ = 0, то есть когда лимитирующей стадией является химическая (а не электрохимическая) реакция.

Если восстанавливаются частицы только одного сорта, соотношение (12) позволяет опреде-

лить порядки реакций σ и τ непосредственно по зависимостям $\theta(P_{O_2})$ и $\theta(P_{CO_2})$. Ситуация усложняется, когда в расплаве присутствует несколько сортов электроактивных частиц ($O_2^{2^-}$, O_2^- и O_2). Если можно пренебречь диффузией и по-прежнему считать, что реакции, в которых они участвуют, происходят независимо друг от друга, то можно ввести эффективное сопротивление

$$\theta_{eff}^{-1} = \sum_{i=1}^{3} \theta_i^{-1} , \qquad (15)$$

где θ_i – сопротивление реакции, в которой участвуют только частицы сорта *i*. К сожалению, в литературе отсутствует необходимая информация о скоростях реакций с участием различных частиц в рассматриваемом температурном интервале. Это не позволило нам провести оценку теоретического значения θ_{eff} .

1.3. Анализ кулоностатического отклика электрохимической системы при наличии нескольких независимых путей реакции

Для определения параметров θ и W на золотом электроде мы использовали кулоностатический метод. Согласно [14], если мы подключим к электрохимической ячейке в момент времени t = 0 конденсатор малой ёмкости C_0 , на обкладках которого сосредоточен заряд $Q_0 = C_0 V_0$, где V_0 –зарядное напряжение конденсатора, то зависимость поляризации электрода η от времени tможет быть описана выражением

$$\eta(t) = \eta_0 \frac{1}{b-a} [b \exp(a^2 t) \operatorname{erfc}(at^{1/2}) - (16) - a \exp(b^2 t) \operatorname{erfc}(bt^{1/2})],$$

где
$$\eta_0 = \frac{Q_0}{C_{dl}}, \quad a = \frac{\tau_d^{1/2} + (\tau_d - 4\tau_f)^{1/2}}{2\tau_f}, \quad \tau_f = \Theta C_{dl},$$

θ и *C_{dl}* – соответственно сопротивление стадии разряда-ионизации и ёмкость двойного слоя, которые приходятся на единицу площади поверхности электрода, $\tau_d^{1/2} = \frac{RTC_{dl}}{n^2 F^2} \left[\frac{1}{D_O^{1/2}C_O} + \frac{1}{D_R^{1/2}C_R} \right],$ $b = \frac{\tau_d^{1/2} - (\tau_d - 4\tau_f)^{1/2}}{2\tau_f}, \text{ erfc}(at^{1/2}) = 1 - \text{erf}(at^{1/2}),$

 $\operatorname{erfc}(bt^{1/2}) = 1 - \operatorname{erf}(bt^{1/2}), C_O \, u \, C_R$ – равновесные концентрации соответственно окисленного и восстановленного веществ, $D_O \, u \, D_R$ – коэффициенты диффузии этих веществ. Как уже было отмечено в комментарии к формуле (7), при исследовании эвтектического расплава ($Li_{0.62}K_{0.38}$)₂CO₃ вторым слагаемым в выражении для τ_d можно пренебречь [7].

Обычно электрохимическую ячейку, содержащую карбонатный электролит и электроды из Au, представляют эквивалентной электрической схемой (ячейка Randles-Ershler), которая включает в себя сопротивление электролита R_e , а также ёмкость двойного слоя C_{dl} , сопротивление θ и диффузионное сопротивление z_d (рис. 2, а) [12]. Для анализа отклика такой системы на импульсное воздействие удобно использовать преобразование Лапласа [15]. Можно показать, что функция (16) является оригиналом комплексной функции H(p) == $Q_0 Z(p)$, где комплексный импеданс ячейки [16]

$$Z(p) = \left[C_{dl} + \frac{p^{1/2}}{\theta p^{1/2} + B}\right]^{-1}.$$
 (17)

Здесь *p* – комплексная частота, $B = 2 \pi^{1/2} W$.

Рис. 2. Эквивалентные схемы контакта металл – электролит при наличии в расплаве одного сорта (*a*) и трех сортов (*б*) электроактивных частиц: R_e – сопротивление электролита, θ_i и z_i – соответственно сопротивление стадии разряда – ионизации и диффузионное сопротивление электроактивных частиц сорта *i*, где $i = O_2$, O_2^- и O_2^{2-}

Если на электроде одновременно протекают три независимые реакции, то эквивалентная схема ячейки (см. рис. 2) усложняется. Так как каждая реакция характеризуется своими значениями сопротивлений θ и z_d , необходимо включить параллельно ёмкости C_{dl} три «цепочки», каждая из которых состоит из последовательно соединенных сопротивлений θ_i и z_{di} , где $1 \le i \le 3$ (рис. 2, б). Индекс *i* принадлежит либо ионам O_2^{2-} и O_2^{-} , либо O_2 . Тогда комплексный импеданс будет иметь следующий вид :

$$Z_1(p) = \left[C_{dl} + p^{1/2} \sum_{i=1}^3 (\theta_i p^{1/2} + B_i)^{-1} \right]^{-1}.$$
 (18)

Оригинал этой функции отличается от оригинала функции (17). Поэтому формулу (18) уже нельзя применять для определения параметров ячейки. Однако в предельном случае $t \rightarrow 0$, когда можно пренебречь диффузией, соотношение (18) упрощается:

$$Z_1(p) \approx \left[C_{dl} p + \sum_{i=1}^3 \theta_i^{-1} \right]^{-1}.$$
 (19)

Второе слагаемое в правой части формулы (19) равно обратной величине эффективного сопротивления θ_{eff} (формула (15)). Поэтому, перейдя к оригиналу функции $Z_1(p)$, получим:

$$\eta(t) \approx \eta_0 \exp\left(-\frac{t}{\theta_{eff}C_{dl}}\right).$$
 (20)

Анализ кулоностатического отклика на начальном участке экспериментальной зависимости $\ln[\eta(t)]$ позволяет определить θ_{eff} .

В другом предельном случае $t \to \infty$, когда пренебрегают сопротивлением стадии разряда – ионизации θ , имеем:

$$Z_1(p) \approx \left[C_{dl} \, p + (2\pi p)^{1/2} \sum_{i=1}^3 W_i^{-1} \right]^{-1}.$$
 (21)

Правая часть формулы (21) содержит W_{eff}^{-1} (формула (8)). Переходя к оригиналу функции $Z_1(p)$, разложив его в ряд и выбрав первые два члена разложения, получим:

$$\eta(t) \approx \frac{2\eta_0 W_{eff}}{t^{1/2}} \left[1 - \frac{2(\pi C_{dl} W_{eff})^2}{t} \right].$$
 (22)

Анализируя отклик системы, полученный для достаточно больших промежутков времени ($t > 10\tau_f$), можно определить W_{eff} .

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Методики приготовления расплава $(Li_{0.62}K_{0.38})_2CO_3$ и подготовки газовых смесей, а также конструкция электрохимической ячейки и методика проведения кулоностатических измерений на катоде из **Аи описаны в** [17, 18]. Измерения проводили при общем давлении газов над расплавом P = 1 атм. Температурную зависимость

кулоностатического отклика системы исследовали в интервале 810–1000 К. При этом расплав насыщали смесью CO_2 и O_2 , взятых в мольном отношении 2/1. Концентрационные зависимости отклика изучали при T = 923 К. Для изучения зависимости от P_{O_2} использовали смеси, в которых P_{CO_2} было постоянным и составляло 0.1 атм. Парциальное давление O_2 варьировали в пределах от 0.3 до 0.9 атм. Чтобы обеспечить общее давление газов P = 1 атм, в смеси добавляли Ar. Зависимость от P_{CO_2} изучали таким же образом, но при этом фиксировали $P_{O_2} = 0.1$ атм.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. З приведены экспериментальные температурные зависимости сопротивления θ_{eff} и константы Варбурга W_{eff} , полученные для электрода из Аи. При повышении температуры W_{eff} и θ_{eff} уменьшаются. Зависимость $\theta_{eff}(T)$ имеет излом при $T \approx 900$ К. Ниже этой температуры энергия активации для θ_{eff} составляет 38 ± 4 кДж/моль. При T > 900 К она равна 57 ± 8 кДж/моль.

На том же рисунке приведены теоретические зависимости эффективной константы Варбурга W_{eff} от температуры, а также значения константы Варбурга W_i в случае диффузии только одного сорта электроактивных частиц. Чем выше значение W_i , тем меньший вклад данные частицы вносят в величину W_{eff} . Из рис. 3 видно, что в большом температурном интервале наибольший вклад в W_{eff} вносит диффузия растворенного в расплаве O_2 . Но при высоких температурах становится существенным вклад ионов O_2^- . Вкладом пероксидных ионов можно пренебречь.

Рис. 3. Температурные зависимости констант Варбурга W_{eff} и W_i , а также эффективного сопротивления стадии разряда – ионизации θ_{eff} в расплаве ($\text{Li}_{0.62}\text{K}_{0.38}$)₂CO₃, находящемся в атмосфере газовой смеси, в которой отношение $P_{\text{CO}_2}/P_{\text{O}_2} = 2/1$, а общее давление газов P = 1 атм: I-3 – теоретические значения констант Варбурга W_i при диффузии частиц только одного сорта – соответственно O2^2^- , O2^- и O2, 4 – теоретические (сплошная линия) и экспериментальные (точки) значения W_{eff} , 5 – экспериментальные значения θ_{eff} для электрода из Au

На рис. 4 представлены экспериментальные зависимости W_{eff} и θ_{eff} от P_{O_2} , полученные для электрода из Au при $P_{CO_2} = 0.1$ атм и T = 923 K, а также теоретические значения W_{eff} и W_i . При повышении P_{O_2} в газовой смеси значения W_{eff} и W_i уменьшаются. Это связано с увеличением концентрации электроактивных частиц. Основной вклад в W_{eff} также убывают при повышении P_{O_2} (см. рис. 4). Кажущийся порядок реакции по кислороду σ составляет 0.60 ± 0.03.

Рис. 4. Зависимости констант Варбурга W_{eff} и W_i , а также эффективного сопротивления стадии разряда – ионизации θ_{eff} от P_{O_2} при $P_{CO_2} = 0.1$ атм и T = 923 К: I-3 – теоретические значения констант Варбурга W_i при диффузии частиц только одного сорта – соответственно O_2^{2-} , O_2 и O_2^- ; 4 – теоретические (сплошная линия) и экспериментальные (точки) значения W_{eff} ; 5 – экспериментальные значения θ_{eff} для электрода из Au

На рис. 5 приведены аналогичные зависимости от $P_{\rm CO_2}$, полученные при $P_{\rm O_2} = 0.1$ атм. Повышение парциального давления $\rm CO_2$ в газовой смеси приводит к увеличению константы Варбурга W_i , связанной с диффузией пероксидных $\rm O_2^{2-}$ и супероксидных $\rm O_2^-$ ионов, но $W_{\rm O_2}$ уменьшается, так как увеличивается концентрация растворенного в расплаве $\rm O_2$. В результате эффективная константа Варбурга W_{eff} практически не зависит от $P_{\rm CO_2}$. К сожалению, имеющиеся у нас экспериментальные данные не позволили определить значения W_{eff} . Но данные других авторов [19] подтверждают относительно слабую зависимость W_{eff} or $P_{\rm CO_2}$.

Эффективное сопротивление θ_{eff} с повышением $P_{\rm CO_2}$ слабо убывает. Кажущийся порядок реакции $\tau = 0.05 \pm 0.01$.

Таким образом, результаты расчета вкладов различных электроактивных частиц в эффективное значение константы Варбурга (см. рис. 3–5) показывают, что ее величина зависит в основном от наличия в расплаве ионов O_2^- и растворенного в нем O_2 . Пероксидные ионы играют малозаметную роль. Несмотря на сделанные допущения о полной независимости друг от друга различных

электродных реакций и равенстве коэффициентов диффузии всех электроактивных частиц, расчетные и экспериментальные результаты удовлетворительно согласуются друг с другом (см. рис. 3–4). Это позволяет выдвинуть предположение, согласно которому в изученном интервале температур и концентраций катодных газов основными электроактивными частицами в расплаве ($\text{Li}_{0.62}\text{K}_{0.38}$)₂CO₃ являются ионы O_2^- и растворенный молекулярный кислород.

Рис. 5. Зависимости констант Варбурга W_{eff} и W_i , а также эффективного сопротивления стадии разряда – ионизации θ_{eff} от $P_{\rm CO_2}$ при $P_{\rm O_2} = 0.1$ атм и T = 923 К: 1-3 – теоретические значения констант Варбурга W_i при диффузии частиц только одного сорта – соответственно O_2^{2-} , O_2^- и O_2 ; 4 – теоретические значения W_{eff} ; 5 – экспериментальные значения θ_{eff} для электрода из Au

Температурная зависимость θ_{eff} имеет излом при *T* ≈ 900 К (см. рис. 3). Если предположить, что он связан с изменением доминирующего механизма реакции, то в области относительно низких температур, по-видимому, будут доминировать такие реакции, которые связаны с расходованием растворенного в расплаве О2, и протекают по молекулярному («Oxygen I» согласно [8]) или диссоциативному («Oxygen II» [8]) механизмам. Но при более высоких температурах будет преобладать супероксидный механизм реакции (см. таблицу). Исследование зависимости сопротивления θ_{eff} от P_{O_2} (см. рис. 4), показывает, что уже при T = 923 К кажущийся порядок реакции по кислороду ($\sigma = 0.6$) близок к теоретическому значению σ, которое соответствует супероксидному механизму реакции $(\sigma_{\text{теор}} = 0.625 [8])$. Такая ситуация возможна в том случае, если константа скорости реакции с участием ионов О₂⁻ больше константы скорости реакции, в которой участвуют молекулы О2. Тем не менее, при T = 923 К, по-видимому, одновременно протекают, по крайней мере, две реакции. На это указывают результаты расчета зависимости W_{eff} от температуры (см. рис. 3) и от P_{O_2} (см. рис. 4). В обоих случаях расчетные и экспериментальные результаты согласуются лишь тогда, когда учитываются концентрации как молекул O_2 , так и ионов O_2^- . Концентрация ионов O_2^{2-} мала, поэтому они дают пренебрежимо малый вклад в W_{eff} .

Результаты расчета зависимости эффективной константы Варбурга W_{eff} от $P_{\rm CO_2}$ (см. рис. 5) также свидетельствуют о том, что при T = 923 К и $P_{\rm CO_2} \ge 0.3$ атм одновременно протекают две реакции. Понижение концентрации ионов O_2^- в расплаве при увеличении $P_{\rm CO_2}$ компенсируется повышением концентрации растворенного в расплаве O_2 . В результате W_{eff} слабо зависит от $P_{\rm CO_2}$.

Найденный из кулоностатических измерений кажущийся порядок реакции по углекислому газу т = 0.05 близок к нулю. Для объяснения этого факта мы рассчитали истинные $p_{k,i}$ и кажущиеся $P_{k,i}$ ($\sigma \equiv P_{k,O_2}$ и $\tau \equiv P_{k,CO_2}$) порядки реакции в случае, если при протекании реакции по некоторому механизму данная стадия является лимитирующей. Результаты расчетов приведены в таблице. Видно, что в том случае, когда лимитирующими считают те стадии, которые указаны в [8], следовало бы ожидать более отрицательных значений τ. Это противоречит экспериментальным результатам. Согласно расчетам, близкие к 0 значения т возникают в том случае, если при T = 923 К и $P_{O_2} = 0.1$ атм реакция восстановления кислорода в расплаве протекает по супероксидному или по молекулярному механизму (заметим, что отличие τ от 0 может быть связано также с некоторым вкладом диссоциативного механизма реакции). Но лимитирующей является последняя стадия - гомогенная реакция взаимодействия CO₂ с ионами O²⁻. Таким образом, при низких парциальных давлениях $O_2 (P_{O_2} \le 0.1 \text{ атм})$ и высоких парциальных давлениях CO_2 ($\dot{P}_{CO_2} \ge 0.3$ атм), лимитирующей стадией реакции восстановления кислорода в расплаве (Li_{0.62}K_{0.38})₂CO₃, по-видимому, является стадия рекомбинации O^{2-} и CO_2 . Ранее эту гипотезу выдвинули авторы [20].

ЗАКЛЮЧЕНИЕ

Анализ результатов термодинамического расчета концентрации основных компонентов расплава $(Li_{0.62}K_{0.38})_2CO_3$ и результатов исследования кулоностатического отклика на электроде из Au показал, что при насыщении расплава смесью CO₂ и O₂, взятых в мольном отношении 2/1, в интервале 810 – 1000 К основными электроактивными частицами являются ионы O₂⁻ и растворенный в расплаве O₂. Концентрация ионов O₂²⁻ на два порядка ниже концентрации других электроактивных частиц. Поэтому они играют малозаметную роль в электрохимических процессах. В области температур ниже 900 К, по-видимому, доминируют реакции, которые протекают по молекулярному или диссоциативному механизмам. В области бо-

Механизмы реакций	μ	pk, O ₂	σ^{*1}	pk, CO ₂	τ^{*1}
Молекулярный* ²					
1. $O_2(g) \leftrightarrow O_2(e)$,	-	-	-	-	-
2^{*4} . $O_2(e) + e^- \leftrightarrow O_2^-$	1	1	7/8	0	-1/4
3. $O_2^- + e^- \leftrightarrow O_2^{2-}$	1	1	5/8	0	-1/2
4. $O_2^{2-} + e^- \leftrightarrow O_2^- + O^-$	1	1	3/8	0	-3/4
5. $O^- + e^- \leftrightarrow O^{2-}$	1	1/2	-3/8	0	-1
6. $O^{2-} + CO_2 \leftrightarrow CO_3^{2-}$	0	1/2	-1/2	1	0
Диссоциативный* ³					
1. $O_2(g) \leftrightarrow O_2(e)$	-	-	-	-	-
2. $O_2(e) \leftrightarrow 2O$	0	1/2	1/2	0	0
3^{*4} . $O + e^- \leftrightarrow O^-$	1	1/2	3/8	0	-1/4
4. $O^+ e^- \leftrightarrow O^{2-}$	1	1/2	1/8	0	-1/2
5. $O^{2-} + CO_2 \leftrightarrow CO_3^{2-}$	0	1/2	0	1	1/2
Супероксидный					
1. $O_2 + 2CO_3^{2-} \leftrightarrow 2O_2^{2-} + CO_2$	0	1/2	1/2	-1	-1
2. $O_2^{-} + O_2^{2-} \leftrightarrow O_2^{-}$	0	3/4	3/4	-1/2	-1/2
3^{*4} . $O_2^{-} + e^- \leftrightarrow O_2^{2-}$	1	3/4	5/8	-1/2	-3/4
4. $O_2^{2-} + e^- \leftrightarrow O^{2-} + O^-$	1	3/4	3/8	-1/2	-1
5. $O^{-} + e^{-} \leftrightarrow O^{2-}$	1	3/8	-1/4	-1/4	-1
6. $O^{2-} + CO_2 \leftrightarrow CO_3^{2-}$	0	3/8	-3/8	3/4	0

Возможные механизмы реакции электровосстановления кислорода на электроде из Au в расплаве (Li0.62K0.38)₂CO₃ [8]

Примечание. *1 – порядки реакции указаны для случая, когда данная стадия является лимитирующей, и рассчитаны при $\alpha = 0.5$ и n = 4; *2 – «Охудеп I» [8], индексы (g) и (e) относятся соответственно к газообразному и растворенному в электролите O₂; *3 – «Охудеп II» [8]; *4 – замедленная стадия согласно [8].

лее высоких температур (вплоть до 1000 К) преобладает супероксидный механизм реакции.

При рабочей температуре МСFC T = 923 К в области парциальных давлений углекислого газа $P_{\text{CO}_2} \ge 0.1$ атм и высоких парциальных давлений кислорода $P_{\text{O}_2} \ge 0.3$ атм реакция электровосстановления кислорода в основном протекает по супероксидному механизму, в котором лимитирующей является первая электрохимическая стадия. В области высоких парциальных давлений CO_2 ($P_{\text{CO}_2} \ge 0.3$ атм) и низких парциальных давлений CO_2 ($P_{\text{CO}_2} \ge 0.3$ атм) и низких парциальных давлений O_2 ($P_{\text{CO}_2} \ge 0.3$ атм) восстановление кислорода происходит в результате двух параллельных реакций, которые протекают по супероксидному или молекулярному механизмам. При этом лимитирующей стадией, по-видимому, является стадия рекомбинации O^{2-} и CO_2 .

СПИСОК ЛИТЕРАТУРЫ

1. Makkus R. C., Hemmes K., de Wit J. H. W. // J. of Electrochem. Soc. 1994. Vol. 141, № 12. P. 3429–3438.

2. Fontes E., Lagergren C., Simonsson D. // J. Electroanal. Chem. 1997. Vol. 432. P. 121–128.

3. Wilemski G. // J. Electrochem. Soc. 1983. Vol. 130, № 1. P. 117–121.

4. Dessureault Y., Sangster J., Pelton A. D. // J. Electrochem. Soc. 1990. Vol. 137, № 9. P. 2941–2950.

5. Selman J. R., Maru H. C. // Advances in Molten Salt Chemistry. Vol. 4 / eds. G. Mamantov, J. Braunstein. New York ; Landon : Plenum Press, 1981. P. 159–389. 6. *Терентьев Д.И.* Термодинамическое моделирование в многокомпонентных расплавленных солевых системах на основе карбонатов щелочных металлов / автореф. дис. ... канд. хим. наук. Екатеринбург, 2001. 24 с.

7. Uchida I., Nishina T., Mugikura Y., Itaya K. // J. Electroanal. Chem. 1986. Vol. 209. P. 125–133.

8. Prins-Jansen J. A., Hemmes K., de Wit J. H. W. // Electrochim. Acta. 1997. Vol. 42, №. 23–24. P. 3585–3600.

9. Janowitz K., Kah M., Wendt H. // Electrochim. Acta. 1999. Vol. 45, № 23-24. P. 1025-1037.

 Синярев Г. Б., Ватолин Н. А., Трусов Б. Г., Моисеев Г. К. Применение ЭВМ для термодинамических расчетов металлургических процессов. М. : Наука, 1982.

11. Janz G. J., Perano J. L. // Trans. Faraday Soc. 1964. Vol. 60. P. 1742–1744.

12. Дамаскин Б. Б., Петрий О. А. Введение в электрохимическую кинетику. М. : Высш. шк., 1983.

13. Ротинян А. Л., Тихонов К. И., Шошина И. А. Теоретическая электрохимия / под ред. А. Л. Ротиняна. Л. : Химия. Ленингр. отд-ние, 1981.

14. Delahay P. // J. Phys. Chem. 1962. Vol. 66. P. 2204-2207.

15. Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М. : Наука, 1973. 736 с.

16. Santos E., Iwasita T., Vielstich W. // Electrochim. Acta. 1986. Vol. 31, № 4. P. 431–437.

17. Бычин В. П., Чупахин Е. О., Баталов Н. Н. // Электрохимия. 1996. Т. 32, № 3. С. 396–401.

18. Бычин В. П., Конопелько М. А., Молчанова Н. Г. // Электрохимия. 1997. Т. 33, № 12. С. 1423–1426.

19. Reeve R. W., Tseung A. C. C. // J. Electroanal. Chem. 1996. Vol. 403. P. 69–83.

20. Yuh C. Y., Selman J. R. // J. Electrochem. Soc. 1991. Vol. 138, № 12. P. 3649–3656.