УДК 621.643

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ЦЕНТРОБЕЖНОГО НАСОСА НА ГРУБОДИСПЕРСНОЙ ВОДОУГОЛЬНОЙ СУСПЕНЗИИ

Круть А.А., Трейнер Н.Б., канд-ты техн. наук, НПО «Хаймек», Козыряцкий Л.Н., канд. техн. наук, доц. Донецкий национальный технический университет

Представлены результаты исследования характеристик центробежного насоса при перекачивании грубодисперсных водоугольных суспензий. Даны значения коэффициентов пересчета этих характеристик с воды на водоугольные суспензии.

Test results of centrifugal pump performance on coarse-grained coalwater slurries are presented. Performance scaling factors from water to slurry service are given.

Проблема и ее связь с научными и практическими задачами.

В технологических схемах терминалов приготовления водоугольного топлива, в схемах водошламового хозяйства углеобогатительных фабрик, а также в гидротранспортных системах для перемещения угольных шламов широко используются центробежные насосы (грунтовые, шламовые, углесосы). Заводы-изготовители дают характеристики этих насосов на воде. Для правильного выбора типа насоса и обеспечения его эксплуатации в рабочем диапазоне подач требуется пересчет характеристик с воды на гидросмесь с заданными параметрами.

Анализ исследований и публикаций. Проведенный анализ известных публикаций показал, что вопросами исследования характеристик углесосов У900-90 их водоугольной суспензии никто не занимался. Известны характеристики на воде и на пульпе, а на водоугольной суспензии со скоростью 1000 мин⁻¹ и 750 мин⁻¹ таких характеристик нет.

Постановка задачи.

Целью данной работы является получение характеристик H = f(Q), $\eta = f(Q)$, N = f(Q) и $\Delta hg = f(Q)$ углесосов У900-90 при частоте вращения ротора 1000 мин^{-1} и 750 мин^{-1} на водоугольной суспензии, а так же получение кавитационных характеристик. Сравнение этих характеристик с характеристиками полученных на чистой воде.

Изложение материала, расчеты, характеристики.

При пересчете характеристик пользуются коэффициентами пересчета напора K_H , КПД K_η и мощности K_N :

$$K_H = H_C / H_O$$
; $K_{\eta} = \eta_C / \eta_O$; $K_N = N_C / N_O$,

где H, η и N - соответственно напор, измеряемый в метрах столба перекачиваемой среды, КПД и мощность насоса на суспензии (индекс "С") и на воде (индекс "0").

Коэффициенты пересчета связаны между собой соотношением

$$K_N = \frac{K_H K_\rho}{K_\eta}$$

где $K_{\rho} = \rho_{C} / \rho_{O}$ - отношение плотности суспензии к плотности воды.

В общем случае на характеристики насоса при работе на гидросмеси, следовательно, и на коэффициенты их пересчета оказывают влияние физико-механические свойства твердых частиц (включая плотность и форму), их гранулометрический состав и концентрация в гидросмеси. Степень этого влияния зависит от размеров проточной части насоса, частоты вращения рабочего колеса и режима работы.

В связи с таким многообразием факторов, влияющих на коэффициенты пересчета, теоретическое их определение затруднительно. Наиболее достоверные данные по пересчету характеристик насосов обычно получают экспериментальным путем.

Влияние свойств грубодисперсной водо-угольной суспензии на характеристику центробежного насоса исследовалось на стендовой установке с углесосом У900-90. В качестве привода использовался двигатель постоянного тока с регулируемой частотой вращения. Исследования проводились при частотах вращения 1000 и 750 мин⁻¹.

Во время экспериментов периодически отбирались пробы суспензии на выходе из напорного трубопровода. Среднее значение плотности суспензии составляло $1174~\rm kr/m^3$, массовая концентрация угля в ней - 46,7~%. Гранулометрический состав угля приведен в табл. 1.

Суспензия обладала ярко выраженными вязкопластическими свойствами. При пуске углесоса на малой частоте вращения (150-200 мин⁻¹) суспензия в трубопроводе не приходила в движение. Лишь при давлении углесоса, достаточном для преодоления напряжения начального сдвига, начиналось движение суспензии. Величина этого давления зависела от продолжительности нахождения суспензии в покое.

Таблица 1

Класс крупности частиц, мм	Выход частиц, %	Суммарный выход, %
1,0-3,0	0,39	0,39
0,5-1,0	1,54	1,93
0,3-0,5	5,77	7,70
0,1-0,3	15,84	23,54
0,074-0,1	2,57	26,11
0,05 - 0,074	2,16	28,27
0,04 - 0,05	1,43	29,70
0 - 0,04	70,30	100,00

Для пуска системы после перерыва в работе в течение 15-30 минут необходимо было за углесосом создать давление 0,16 МПа (с учетом превышения начального уровня суспензии в нагнетательном трубопроводе над осью углесоса на 8,6 м). При перерыве в работе в течение нескольких суток величина необходимого давления возрастала до 0,35 МПа. Рассчитанные по указанным давлениям, внутреннему диаметру и длине трубопровода напряжения начального сдвига суспензии составили соответственно 25 и 100 Па. Среднее значение вязкости суспензии 1 Па∙с при 20 °С.

При частоте вращения 1000 мин⁻¹ и номинальной подаче $Q_{HOM} = 620 \text{ м}^3$ /ч напор углесоса на водоугольной суспензии составлял 37 м (столба перекачиваемой суспензии), а КПД - 65 %, что соответственно на 2 м и 5 % ниже, чем на воде (рис. 1). При переходе с воды на суспензию на частоте вращения 750 мин⁻¹ и номинальной подаче 465 м³/ч напор углесоса снизился с 22,5 до 21,5 м, а КПД - с 68,5 до 62,5 % (рис. 2).

Для исследованных частот вращения установлено, что коэффициент пересчета напора $K_{\scriptscriptstyle H}=0.95$ практически постоянен в диапазоне рабочих подач $(0.6-1.1)Q_{HOM}$ и не зависит от частоты вращения насоса.

Коэффициенты пересчета КПД составляют: K_{η} 0,93 при $\eta = 1000$ мин⁻¹ и $K_{\eta} = 0,91$ при $\eta = 750$ мин⁻¹. Значения K_{η} также практически постоянны в диапазоне рабочих подач.

Из приведенных данных следует, что при переходе с воды на водоугольную суспензию потери напора в углесосе возросли в 1,17-1,19 раза, в то время как в трубе с диаметром условного прохода $D_y = 200$ мм при номинальной подаче углесоса 620 м 3 /ч и соответствующей скорости суспензии 5,2 м/с потери напора возрастают в 1,3 раза. С уменьшением подачи возрастание потерь в трубопроводе значительно больше

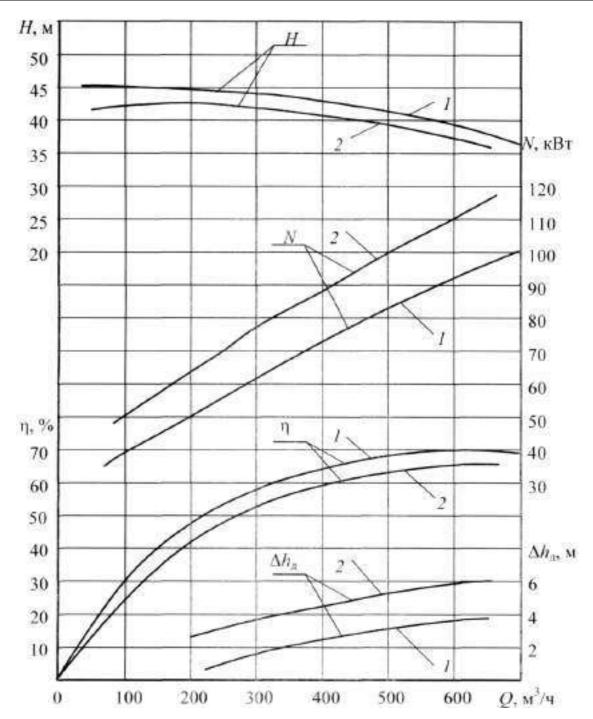


Рисунок 1 - Характеристики углесоса У900-90 при частоте вращения 1000 мин⁻¹: 1 - на воде; 2 - на водоугольной суспензии

(табл. 2). При обычной скорости движения суспензии в трубопроводе $1,0\,\mathrm{m/c}$ и соответствующем градиенте скорости на стенке $30\,\mathrm{c}^{-1}$ эти потери, по данным экспериментов, возрастают в $15\,\mathrm{pas}$.

Относительно небольшое превышение потерь напора в углесосе при перекачивании грубодисперсной водоугольной суспензии, по сравнению с потерями на воде, объясняется тем обстоятельством, что в проточной части углесоса даже при $n=750\,\mathrm{muh}^{-1}$ средние относительные

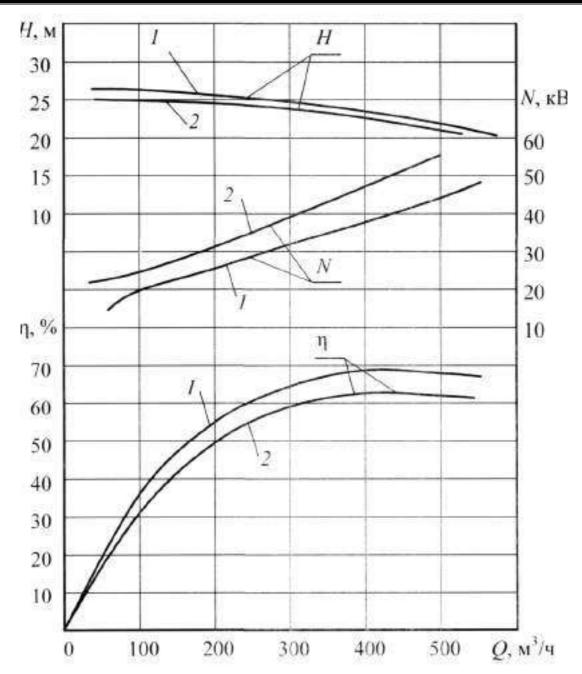


Рисунок 2 - Характеристики углесоса У900-90 при частоте вращения 750 об/мин: 1 - на воде; 2 - на водоугольной суспензии.

скорости потока составляют 5-12 м/с, а градиенты скоростей в пристеночной области, рассчитанные по методике, приведенной в работе [1], находятся в пределах $200\text{-}500~\text{c}^{-1}$.

Такие скорости и градиенты обуславливают турбулентный режим течения суспензии с полным разрушением ее структуры и восстановлением ньютоновских свойств и, как следствие, небольшое (в 1,15-1,2 раза) превышение потерь напора на суспензии по сравнению с потерями на воде. Чем выше скорость потока, тем меньше разница в потерях напора.

Этим объясняется более высокое значение коэффициента пересчета КПД при n = 1000 мин⁻¹, чем при n = 750 мин⁻¹.

Кавитационные испытания углесоса на грубодисперсной водоугольной суспензии были проведены при частоте вращения 1000мин⁻¹ и подачах 500 и 247 м³/ч.

Таблица 2

	Окружная		Скорость	Отношение потерь	
Частота,	скорость	Подача	гидросмеси	напора на гидро-	
вращения,	рабочего	углесоса, м ³ /ч	в трубе,	смеси и воде	
МИН	колеса,	м ³ /ч	M/C	в угле-	в трубо-
	M/C		MI/C	coce	проводе
1000	26,7	620	5,2	1,17	1,3
1000	26,7	370	3,1	1,14	2,3
750	20,0	465	3,9	1,19	1,6
750	20,0	280	2,3	1,15	4,3

Начало кавитационных явлений характеризуется снижением напора на частной кавитационной характеристике (рис. 3).

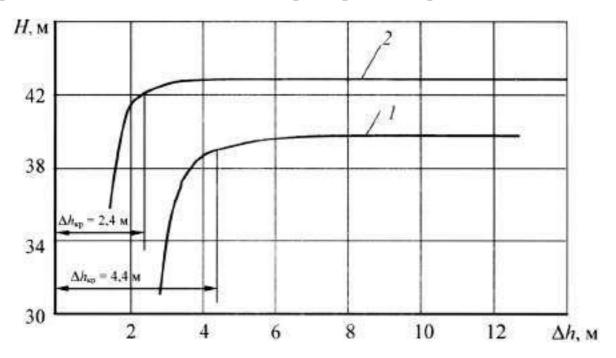


Рисунок 3 - Частные кавитационные характеристики углесоса У900-90 на водоугольной суспензии при частоте вращения 1000 мин^{-1} : 1 - подача углесоса $500 \text{ м}^3/\text{ч}$; 2 - подача углесоса $247 \text{ м}^3/\text{ч}$

По величинам критического кавитационного запаса Δh_{KP} , при котором напор углесоса снижается на 3 %, определены в соответствии с ГОСТ 6134-87 "Насосы динамические. Методы испытаний" значения допускаемого кавитационного запаса углесоса на суспензии: при Q= 500 м³/ч Δh_{JC} = 5,4 м; при Q= 247 м³/ч Δh_{JC} = 3,3 м.

Как видно из кавитационных характеристик $\Delta h_{\mathcal{A}} = f(Q)$ (рис. 1), допускаемый кавитационный запас углесоса, измеряемый в метрах столба перекачиваемой среды, на суспензии выше, следовательно, всасывающая способность ниже, чем на воде. На номинальной подаче $Q_{\text{ном}}=620 \text{ m}^3/\text{ч}$ коэффициент пересчета допускаемого кавитационного запаса с воды на суспензию $K_{\Delta h_{\mathcal{A}}} = \Delta h_{\mathcal{A}C} / \Delta h_{\mathcal{A}O} = 1,6$; при подаче $Q=0.6Q_{\text{ном}}=370 \text{ m}^3/\text{ч}$ $K_{\Delta h_{\mathcal{A}}}=2,0$. Эти данные необходимо учитывать при расчете узлов всасывания насосных установок, перекачивающих водоугольные суспензии.

Выводы и направление дальнейших исследований.

Полученные результаты показывают, что при перекачивании грубодисперсных высококонцентрированных водоугольных суспензий не происходит значительного снижения напорных и энергетических характеристик центробежных насосов по сравнению с характеристиками на воде. Это обстоятельство в сочетании с низкой удельной материалоемкостью центробежных насосов (в 6-8 раз ниже, чем у поршневых) свидетельствует о целесообразности их использования в технологических схемах гидротранспортных систем.

В дальнейшем необходимо проведение исследований в более широком диапазоне концентраций водоугольной суспензии.

Список источников.

1. Трайнис В.В. Параметры и режимы гидравлического транспортирования угля по трубопроводам.- М.: Недра, 1970.

Дата поступления статьи в редакцию: 31.10.08