Занятие 1

ПРАКТИЧЕСКИЕ СПОСОБЫ ОПРЕДЕЛЕНИЯ КРИТЕРИЕВ ПО-ДОБИЯ ПРИ МОДЕЛИРОВАНИИ В ЭЛЕКТРОМЕХАНИКЕ

1. ЦЕЛЬ РАБОТЫ

Получение практических знаний по применению основных способов нахождения критериев подобия при создании моделей физических процессов и явлений, происходящих в электромеханических преобразователях энергии.

2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Знание критериев подобия необходимо для установления масштабов, которые связывают между собой параметры создаваемой модели и имеющегося оригинала. Кроме того, анализируя критериальные соотношения, можно установить наиболее характерные свойства моделируемого процесса или явления.

В практике создания моделей электромеханических преобразователей наибольшее применение находят следующие способы определения критериев подобия:

- за счет преобразования уравнения изучаемого процесса;
- способ интегральных аналогов.

3. ВСПОМОГАТЕЛЬНЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА

Микрокалькулятор, листы бумаги в клетку, карандаш, линейка.

4. МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ

4.1. Определение критериев подобия за счет преобразования уравнения изучаемого процесса

Применим этот способ к конкретному простому случаю. Проанализируем электромагнитный процесс в двигателе постоянного тока с независимым возбуждением при включении (обмотка якоря разомкнута) без учета насыщения магнитной цепи.

В цепи обмотки возбуждения электрической машины (в оригинале), т. е. в цепи, обладающей активным сопротивлением R_1 и индуктивностью L_1 , при включении ее на постоянное напряжение $u_1 = U_1$ (рис. 3.1) протекает процесс, описываемый дифференциальным уравнением

$$u_{1} = i_{1}R_{1} + L_{1} di_{1}/dt_{1}.$$

$$\downarrow i_{1} \qquad \qquad R_{1}$$

$$\downarrow u_{1} \qquad \qquad \downarrow L_{1}$$

Рис. 3.1. Электрическая схема моделируемого процесса

Во второй цепи (в создаваемой модели) с параметрами R_2 , L_2 должен протекать подобный первому процесс, уравнение которого

$$u_2 = i_2 R_2 + L_2 \, di_2 / dt_2 \, .$$

Определим критерии подобия, для чего произведем некоторые преобразования. Разделив первое и второе уравнения соответственно на i_1R_1 и i_2R_2 , получим

$$1 - \frac{u_1}{i_1 R_1} + \frac{L_1}{i_1 R_1} \cdot \frac{di_1}{dt_1} = 0; \qquad 1 - \frac{u_2}{i_2 R_2} + \frac{L_2}{i_2 R_2} \cdot \frac{di_2}{dt_2} = 0.$$

Так как процессы в модели и оригинале должны быть подобны, то

$$u_1 = m_u u_2 \, ; \quad i_1 = m_i i_2 \, ; \quad R_1 = m_R R_2 \, ; \quad L_1 = m_L L_2 \, ; \quad t_1 = m_t t_2 \, ,$$

где m с подстрочными индексами — масштабы подобия соответствующих величин.

Подставив последние выражения в первое из преобразованных уравнений, получим

$$1 - \frac{m_u}{m_i m_R} \cdot \frac{u_2}{i_2 R_2} + \frac{m_L m_i}{m_i m_R m_t} \cdot \frac{L_2}{i_2 R_2} \cdot \frac{di_2}{dt_2} = 0.$$

Поскольку исходное уравнение является однородным, то

$$\frac{m_u}{m_i m_R} = \frac{m_L}{m_R m_t} = 1.$$

Точки координатного пространства, в которых критерии подобия численно равны, называются сходственными точками. Только в этих точках пропорциональны все сходственные параметры сопоставляемых подобных процессов. При этом масштабные коэффициенты сходственных параметров подобных процессов подчиняются условиям

$$M_j/M_m=1$$
,

где M_j, M_m - комбинации (произведения или отношения) масштабных ко- эффициентов.

Заменяя масштабы m отношениями сходственных параметров, находим:

$$\frac{u_1/u_2}{i_1/i_2 \cdot R_1/R_2} = 1; \qquad \frac{L_1/L_2}{R_1/R_2 \cdot t_1/t_2} = 1,$$

или в критериальной форме записи

$$\pi_1 = \frac{u}{iR} = idem$$
; $\pi_2 = \frac{L}{Rt} = idem$.

В качестве примера определим числовые значения критериев подобия π_1 и π_2 для случая, когда параметры оригинала и модели имеют следующие значения:

$$R_1 = 10 \; \text{Om},$$
 $L_1 = 20 \; \Gamma \text{H},$ $u_1 = 100 \; \text{B};$ $R_2 = 20 \; \text{Om},$ $L_2 = 40 \; \Gamma \text{H},$ $u_2 = 75 \; \text{B}.$

Решения исходных линейных однородных дифференциальных уравнений, описывающих процессы в оригинале и в модели, имеют вид

$$i_{1} = \frac{u_{1}}{R_{1}} \left(1 - e^{-\frac{R_{1}}{L_{1}}t_{1}} \right) = \frac{100}{10} \left(1 - e^{-\frac{10}{20}t_{1}} \right) = 10 \left(1 - e^{-0.5t_{1}} \right);$$

$$i_{2} = \frac{u_{2}}{R_{1}} \left(1 - e^{-\frac{R_{2}}{L_{2}}t_{2}} \right) = \frac{75}{20} \left(1 - e^{-\frac{20}{40}t_{2}} \right) = 3.75 \left(1 - e^{-0.5t_{2}} \right).$$

4.1.1. Для масштаба времени $m_t=1$, т. е. $t_1=t_2$, токи имеют значения, представленные в табл. 3.1.

$t_1=t_2$	c	0	1	2	3	4	5	10	∞
						8,66			
i_2	A	0	1,46	2,36	2,92	3,25	3,56	3,72	3,75

Числовые значения токов в оригинале и в модели

Этому случаю соответствуют кривые токов на рис. 3.2.

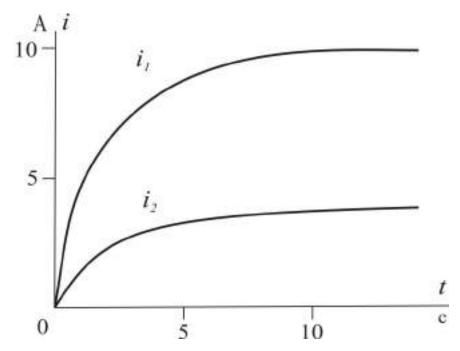


Рис. 3.2. Временная диаграмма токов при $m_t = 1$

Нетрудно заметить, что масштаб m_i для любых моментов времени

$$m_i = i_1/i_2 = 2,66 = \text{const.}$$

В свою очередь, остальные масштабы сходственных параметров

$$m_R = 0.5$$
; $m_L = 0.5$; $m_u = 1.33$.

Теперь можно легко проверить справедливость отношений:

$$\frac{m_u}{m_i m_R} = \frac{1,33}{2,66 \cdot 0,5} = 1;$$
 $\frac{m_L}{m_R m_t} = \frac{0,5}{0,5 \cdot 1} = 1.$

Далее вычислим значения критериев π_1 и π_2 , например, для момента времени $t_1=t_2=5$ c:

$$\frac{u_1}{i_1 R_1} = \frac{100}{9.5 \cdot 10} = 1.05;$$
 $\frac{u_2}{i_2 R_2} = \frac{75}{3.56 \cdot 20} = 1.05$,

т. е. критерий подобия $\pi_1 = 1,05 = idem$.

Точно так же получим

$$\frac{L_1}{R_1 t_1} = \frac{20}{10.5} = 0.4;$$
 $\frac{L_2}{R_2 t_2} = \frac{40}{20.5} = 0.4$,

т. е. критерий подобия $\pi_2 = 0.4 = idem$.

Аналогично можно показать, что и для других сходственных моментов времени критерии численно одинаковы.

Задание 1.1

Определить численные значения критериев подобия при моделировании рассматриваемого процесса в неизменном масштабе $m_t=1$ для момента времени t, если известно, что параметры оригинала $R_1=5$ Ом, $L_1=0.1$ Гн, $u_1=110$ В, а параметры R_2 , L_2 , u_2 используемой модели приведены в табл. 3.2

Параметры модели

Таблица 3.2

№ F	вар.	1	2	3	4	5	6	7	8	9	10
t	c	2	7	4	8	I	9	6	10	3	0,5
R_2	Ом	200	100	300	50	250	10	150	75	25	125
L_2	Гн	1	4	7	5	8	2	9	3	10	6
u_2	В	100	150	130	170	110	140	190	120	180	160

Определим теперь численные значения критериев подобия для случая, когда $m_t \neq 1$. Предположим, например, что $m_t = t_1/t_2 = 3$, т. е. второй процесс (в модели) протекает в 3 раза медленнее первого (в оригинале). Пусть при этом параметры оригинала

$$R_1 = 10 \text{ Ом},$$
 $L_1 = 20 \text{ Гн},$ $u_1 = 100 \text{ B};$

параметры модели

$$R_2 = 90 \text{ Ом}, \qquad L_2 = 60 \text{ Гн}, \qquad u_2 = 500 \text{ B}.$$

Как и в первом случае, когда $m_t=1$, найдем зависимости $i_1=f(t_1)$ и $i_2=f(t_2)$.

Для определения масштаба токов m_i при $m_t \neq 1$ необходимо брать значения токов i_1 и i_2 в сходственные моменты времени. В данном случае сходственными считаются моменты времени, при которых токи в относительных единицах $i_1/i_{1\infty}$ и $i_2/i_{2\infty}$ (где $i_1/i_{1\infty}$ и $i_2/i_{2\infty}$ - установившиеся значения токов) достигают равных значений (табл. 3.3).

В рассматриваемом примере сходственными будут моменты времени 3 с и 1 с соответственно для первого и второго процессов 4 с и 1,33 с, 10 с и 3,33 с и т. д.

Масштаб токов для сходственных моментов времени

$$m_i = i_1/i_2 = 1.8 = \text{const.}$$

Числовые значения токов

Таблица 3.3

	INCHORDIC SHATCHEN TOROD							
t_1	i_1	$t_2 = t_1/3$	i_2	$i_1/i_{1\infty}=i_2/i_{2\infty}$				
С	A	С	A	-				
0	0	0	0	0				
1	3,90	0,33	2,17	0,39				
2	6,30	0,67	3,50	0,63				
3	7,80	1,00	4,34	0,78				
4	8,66	1,33	4,82	0,87				
6	9,50	2,00	5,28	0,95				
10	9,93	3,33	5,52	0,99				
∞	10,00	∞	5,56	1,00				

Вычислив остальные масштабы

$$m_R = 1/9$$
, $m_L = 1/3$, $m_u = 1/5$,

найдем, что соотношения масштабов соблюдаются и в этом случае:

$$\frac{m_u}{m_i m_R} = \frac{1/5}{1,8 \cdot (1/9)} = 1; \ \frac{m_L}{m_R m_t} = \frac{1/3}{(1/9) \cdot 3} = 1.$$

Зависимости токов от времени имеют вид рис. 3.3.

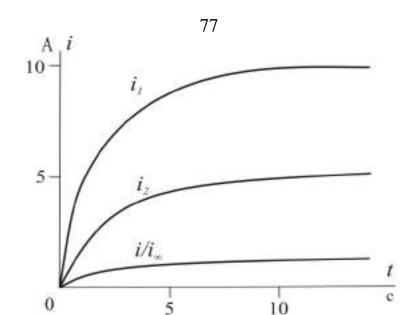


Рис. 3.3. Временная диаграмма токов при $m_t \neq 1$

Проверим равенство численных значений критериев подобий π_1 и π_2 для сходственных моментов времени, например для t_1 =3 с и t_2 =1 с.

Критерий π_1 :

$$\frac{u_1}{i_1 R_1} = \frac{100}{7.8 \cdot 10} = 1.28; \quad \frac{u_2}{i_2 R_2} = \frac{500}{4.34 \cdot 90} = 1.28$$

т. е. $\pi_1 = 1,28 = idem$.

Критерий π_2 :

$$\frac{L_1}{R_1 t_1} = \frac{20}{10 \cdot 3} = 0.67; \quad \frac{L_2}{R_2 t_2} = \frac{60}{90 \cdot 1} = 0.67,$$

следовательно, $\pi_2 = 0.67 = idem$.

Задание 1.2

Определить численные значения критериев подобия по условиям задания $1.1\,$ при рассмотрении процесса в замедленном масштабе времени $m_t\,$ (табл. 3.4).

Значения масштаба времени										Таблица 3.4	
№ вар.	1	2	3	4	5	6	7	8	9	10	
m_t	3	7	5	2	20	9	10	4	8	5	

4.2. Способ интегральных аналогов

Определение критериев подобия способом интегральных аналогов производится следующим образом. Если уравнение моделируемого процесса содержит *п* членов, то для нахождения критериев подобия необходимо разделить все члены уравнения на какой-либо из них. При этом следует опустить символы связи между членами уравнения, символы дифференцирования и интегрирования, а также неоднородные функции. К полученным в результате этих операций *п*-1 основным критериям подобия необходимо присовокупить *а* дополнительных критериев - аргументов неоднородных функций, входящих в члены уравнения.

Общее число критериев подобия, найденных способом интегральных аналогов,

$$k_J = (n-1) + a.$$

Число возможных форм записи n-1 основных критериев, получаемых приведением уравнения к безразмерному виду, равно числу членов уравнения:

$$F_J = n$$
.

Рассмотрим методику определения критериев подобия способом интегральных аналогов на примере моделирования переходного электромагнитного процесса в цепи, образованной последовательным соединением элементов с активным сопротивлением R и индуктивностью L, которая включается на напряжение u, меняющееся во времени по синусоидальному закону с угловой скоростью ω (включение трансформатора на холостом ходу без учета насыщения). Электрическая схема процесса аналогична рис. 1.

Дифференциальное уравнение процесса имеет вид

$$u = iR + Ldi/dt$$
,

где $u = U \sin \omega t$.

4.2.1. Записываем исходное уравнение в виде $\, \phi_{\scriptscriptstyle 0} = \sum_{i}^{\scriptscriptstyle m} \phi_{\scriptscriptstyle i} = 0 \, . \,$

$$\varphi_0 = \varphi_1 + \varphi_2 + \varphi_3 = L\frac{di}{dt} + iR - U\sin\omega t.$$

4.2.2. Опускаем символы связи «+», «-» и «=» между членами уравнения:

$$\varphi_1 = L \frac{di}{dt}; \ \varphi_2 = iR; \ \varphi_3 = U \sin \omega t.$$

4.2.3. Исключаем из выражений для $\phi_1,...,\phi_m$ неоднородные функции, приняв в качестве дополнительных критериев подобия аргументы этих функций:

$$\varphi_3 = U \sin \omega t \rightarrow \sin \omega t \rightarrow \pi_{\text{non}} = \omega t; \ \varphi_3^* = U.$$

4.2.4. Опускаем в выражениях для $\phi_1,...,\phi_m$ символы дифференцирования и интегрирования, символы grad, div и т. д., заменяя d^nx/dy^n на x^n/y^n , $\int xdy$ на xy, а также (при условии соблюдения геометрического подобия) grad i на 1/l, rot H на H/l, $\nabla^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2$ на $1/l^2$, $div \ grad \ l$ на $1/l^2$ и т. д.:

$$\varphi_1 = L \frac{di}{dt} \rightarrow \varphi_1^* = L \frac{i}{t}.$$

4.2.5. Заменяем члены уравнения φ_i , φ_j , преобразованные на этапах 3 и 4, их аналогами φ_i^* , φ_j^* и записываем выражения для $\varphi_1,...,\varphi_i^*,...,\varphi_j^*,...,\varphi_m$:

$$\varphi_1^* = L \frac{i}{t}; \qquad \varphi_2^* = iR; \qquad \varphi_3^* = U.$$

4.2.6. Делим $\phi_1,...,\phi_i^*,\phi_j^*,...,\phi_m$ на какой-либо один из них и записываем выражения для основных критериев подобия в одной из возможных форм записи:

$$\pi_1 = \frac{{\phi_1}^*}{{\phi_3}^*} = \frac{Li}{Ut}; \qquad \quad \pi_2 = \frac{{\phi_2}^*}{{\phi_3}^*} = \frac{iR}{U}.$$

4.2.7. Дополняем полученную систему основных критериев подобия критериями подобия, полученными на этапе 3:

$$\pi_1 = \frac{Li}{Ut};$$
 $\pi_2 = \frac{iR}{U};$ $\pi_3 = \pi_{\text{доп}} = \omega t.$

4.2.8. Преобразовываем (в случае необходимости) полученные выражения для критериев подобия в иную (более удобную по условиям конкретной задачи) форму записи посредством их перемножения, деления, возведения в степень, умножения на постоянный коэффициент, например,

$$\pi_{1}' = \frac{\pi_{1}}{\pi_{2}} = \frac{LiU}{UtiR} = \frac{L}{Rt}; \qquad \pi_{2}' = \pi_{2}^{-1} = \frac{U}{iR}; \quad \pi_{3}' = \pi_{3} = \omega t.$$

4.2.9. На основании полученных выражений для критериев подобия записываем масштабные соотношения:

$$\pi_1 = \frac{Li}{Ut} \to \frac{m_L m_i}{m_u m_t} = 1; \ \pi_2 = \frac{iR}{U} \to \frac{m_i m_R}{m_u} = 1; \ \pi_3 = \omega t \to m_\omega m_t = 1.$$

Задание 1.3

Определить методом интегральных аналогов критерии подобия при создании модели рассматриваемого электромагнитного процесса при u = const.

5. СОДЕРЖАНИЕ ОТЧЕТА

Отчет по практической работе должен содержать:

- цель работы;
- краткие теоретические сведения;
- задания 1.1 ...1.3;
- выводы.

Литература

[2], c. 8...22;

[4], c. 8...103