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Abstract

In this paper, a fast and practical GPU-based implementation of Fuzzy C-Means (FCM) clustering
algorithm for image segmentation is proposed. First, an extensive analysis is conducted to study the
dependency among the image pixels in the algorithm for parallelization. The proposed GPU-based FCM
has been tested on digital brain simulated dataset to segment white matter(WM), gray matter(GM) and
cerebrospinal fluid (CSF) soft tissue regions. The execution time of the sequential FCM is 2798 seconds for
an image dataset with the size of 1MB. While the proposed GPU-based FCM requires only 4.2seconds for
the similar size of image dataset. An estimated 674-fold superlinear speedup is measured for the data size
of 700 KB on a CUDA device that has 448 processors.

Superlinear speedup, Fuzzy C-Means, Parallel algorithms, Graphic Processing Units (GPUs), CUDA

1 Introduction

Image segmentation has been one of the fundamental
research areas in image processing. It is a process
of partitioning a given image into desired regions ac-
cording to the chosen image feature information such
as intensity or texture. The segmentation is used with
application in the field of medical imaging, tumors lo-
cating and diagnosis. Over the past few decades, as
image segmentation has gained much interest, various
segmentation techniques have been proposed, each of
which uses different induction principle.

Clustering is one of the most popular techniques
used in image segmentation. In clustering, the goal
is to produce coherent clusters of pixels [1]. The pix-
els in a cluster are as similar as possible with respect
to the selected image feature information. While the
pixels belong in the adjacent clusters are significantly
different with respect to the same selected image fea-
ture information [1]. There are variants of cluster-
ing algorithms have been used widely in image seg-
mentation and they are K-Means [2], Fuzzy C-Means
(FCM) [3], and ISODATA [4].

In the last decades, FCM has been very popularly

used to solve the image segmentation problems [5];
[6]. It is a fuzzy clustering method that allows a sin-
gle pixel to belong to two or more clusters. The in-
troduction of fuzziness makes this algorithm to able
to retain more information from the original image
than the crisp or hard clustering algorithms [5]; [6].
However this sequential FCM becomes computation-
ally intensive when segmenting large image datasets
[6]. In such a case, the algorithm becomes very inef-
ficient.

One-way to improve the performance of the FCM
clustering algorithm is to use parallel computing
methods. Initially, Graphic Processing Units (GPUs)
were specific-purpose processors that only manipu-
late and accelerate the creation of images intended
for output to a display. However, GPUs have re-
cently shifted to general-purpose processors (GPG-
PUs) to solve general concerns, such as scientific and
engineering problems. Data parallelism on a GPU is
a powerful parallel model. In this paper, a fast and
practical parallel FCM approach on GPGPU is pre-
sented and discussed.

This paper is organized as follows: Section 2 pro-
vides a background of FCM algorithm and the paral-
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lel technology used. Section 3 presents related works.
The proposed method is explained in detail in Sec-
tion 4. The experimental results are presented and
discussed in Section 5. Finally, Section 6 provides the
conclusion and suggestions for future works.

2 Preliminaries

In the first sub-section, a brief introduction on Fuzzy
C-Means (FCM) algorithm is presented. While in
the following sub-section the parallel technology used
in this work namely on General Purpose Computing
on Graphics Processing Units (GPGPU) data paral-
lelism is discussed.

2.1 Fuzzy C-Means Algorithm

Fuzzy C-Means was developed by [3]. It is an itera-
tive optimization that minimizes the objective func-
tion defined in 1. The objective function consists of
two main components u and v. uij is the membership
function of a pixel, xi. It represents the probability
that xi may belong to a cluster. The uij is dependent
on the distance function, dij . dij is the Euclidean dis-
tance measure between the pixel xi and each cluster
center, vj , dij = ||xi−vj ||. m is a constant that repre-
sents the fuzziness value of the resulting clusters that
are to be formed; 1 ≤ m ≤ ∞.

Ji =
N∑
i=1

c∑
j=1

um
ij ||xi − vj||2 (1)

with respect to:

c∑
j=1

uij = 1, 1 ≤ i ≤ n

0 <
n∑

i=1

uij < n, 1 ≤ j ≤ c

c∑
i=1

n∑
i=1

uij = n.

(2)

In image clustering, the most commonly used
feature is the grey level or intensity value of the
image being segmented. Therefore, the objective
function,jm in 1 is minimized when higher member-
ship value is assigned to pixels with intensity values
close to a cluster center of the corresponding cluster,
while lower membership value is assigned to pixels
whose intensities are far from the cluster center.

vi =

N∑
i=1

um
ij .xi

N∑
i=1

um
ij

(3)

uij =
1

c∑
k=1

[
||xi−vj ||
||xi−vk||

] 2
m−1

(4)

Starting with random initialization of the member-
ship values for each pixel from the manually selected
clusters, the clusters are converged by recursively up-
dating the cluster centers and membership function
in 3 and 4. This is to minimize the objective func-
tion in 1. Convergence stops when the overall dif-
ference in the membership function between the cur-
rent and previous iteration is smaller than a given
epsilon value, ε. After the convergence, deffuzzifac-
tion is applied. Each pixel is assigned to a specific
cluster according to the maximal value of its mem-
bership function. The steps of the Fuzzy C-Means
algorithm are illustrated in Algorithm 1.

Algorithm 1: Fuzzy C-Means algorithm

Assumptions: Image is transformed into
feature space.
Step 1: Initialize the number of clusters c,
m = 2, and ε = 0.005
Step 2: Initialize the membership function, uij

randomly.
Step 3: repeat

Update the cluster center, vi using Equation
3
Update the membership function uij using
Equation 4

until ||uk+1
ij − uk

ij || < ε

2.2 Data Parallelism on GPGPU

Initially, GPU was a hardware equipped with a
processor specifically designed to accelerate graphic
processing. Eventually, GPU applications were ex-
tended to general-purpose computations. At present,
GPGPU is used in many applications typically per-
formed using a CPU, such as analytic, engineering,
and scientific applications [7]. With the release of
the massively parallel architecture called CUDA in
2007 from NVIDIA, GPUs have become widely ac-
cessible [8].

A GPU is a processor or a multiprocessor device
that has hundreds or even thousands of cores called
scalar processors (SPs), which are arranged in groups
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named streaming multiprocessors (SMs), as shown in
the left side of Fig. 1. Moreover, GPUs have different
kinds of memories: global, local, texture, constant,
shared, and register memories. Global, constant, and
texture memories are accessible to all threads in the
grid. Shared memory is visible to threads within one
CUDA block. It is faster than the global memory but
is limited by size. Register memory is visible to the
thread that initialized the said memory and lasts for
the lifetime of that thread.

CUDA is the parallel programming model used for
NVIDIA GPGPUs. CUDA can increase the perfor-
mance by harnessing the power of a GPU device.
Thousands of threads can be executed concurrently
using CUDA on GPGPU. The execution model of
CUDA on NVIDIA devices is shown in Fig. 1.

Figure 1: CUDA Execution Model on GPGPU

3 Related works

Li et al. proposed an Fuzzy C-Means (FCM) al-
gorithm based on GPU [9]. They modified the se-
quential FCM algorithm, such that the calculations
of the membership and cluster center matrices are
not comparable to the sequential one. They have
FCM on GPU using CUDA. The empirical results
obtained by Li et al. showed that the proposed par-
allel FCM on GPU is more efficient than the sequen-
tial FCM. Instead of efficiency, they claimed that the
proposed method exhibits improvement in the quality
of the GPU segmented image. The authors achieved
a 10-fold speedup with the proposed parallel FCM
on NVIDIA GTX 260 device compared with the se-
quential FCM for natural images sized from 53kb to
101kb.

Mahmoud et al. presented a GPU-based br-
FCM for medical images segmentation [10]. The br-
FCM is a faster variant of the sequential FCM [11].
The GPU-based brFCM is implemented on differ-
ent GPGPU cards. Mahmoud et al showed that
the GPU-based brFCM has a significant improvement
over the parallel FCM in [30]. The achieved speedup
is up tp 23.42 fold faster than parallel FCM in [30] for
medical images of 350x350 and 512x512 dimensions.

Shalom et al. proposed a scalable FCM based
on graphic hardware [12]. On two different graphic
cards, the results show that the proposed GPU-
based FCM algorithm is more efficient and faster
than the sequential FCM. The authors succeeded in
reaching a 73-fold speedup on NVIDIA GeForce 8500
GT. Amazingly, a 140-fold speedup was achieved on
NVIDIA GeForce 8800 GTX compared with sequen-
tial FCM for 65k yeast gene expression data set of 79
dimension.

Rowinska and Goclawski proposed a CUDA-based
FCM algorithm to accelerate image-segmentation
[13]. The proposed method has been tested on
polyurethane foam with fungus color images and was
compared with the sequential FCM implemented us-
ing C++ and MATLAB. The authors achieved a 10-
fold speedup of their parallel proposal compared with
the FCM implemented in C++ for object area of 310k
pixels, and a 50- to 100-fold speedup compared with
the FCM implemented in MATLAB for object area
of 260k pixels. A comparison of our work and the
previous related works is summarized in Table 1.

4 The Proposed Method

The sequential FCM algorithm has been subjected to
extensive analysis in order to find out where the al-
gorithm exhibits parallelism that we might exploit in
the parallel design. The strongest data dependency in
the FCM algorithm is the steps where the total sum-
mation calculation is required, as illustrated in step 3
in the sequential FCM (Algorithm 1). For instance,
two sigma operations are needed to calculate the clus-
ter centers as shown in Equation 3. Such a strong
dependency makes parallelizing the sequential algo-
rithm infeasible. According to Bernsteins conditions
[14], this type of dependency is called output depen-
dence. In parallel computing, the reduction method
is an efficient approach to remove output dependence.

The proposed parallel FCM design consists of two
main parts: a sequential part executed on the CPU
(host) and a parallel part executed on the GPU (de-
vice). Fig. 2 shows the block diagram of the proposed
work. The following sub-sections discuss each stages
of the block diagram in Fig. 2.
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Table 1: Comparison of our work and previous related works

Work by Method Image dataset Speedup

Li et al.
[9]

Modified the origi-
nal FCM algorithm
and then par-
allelized it on
GPGPU

Natural images
(from 53kB to
101kB)

10x

Mahmoud et al.
[10]

Parallelized br-
FCM the variant of
FCM algorithm on
GPGPU

Medical images
(Lung CT with
the dimesion of
512x512; Knee
MRI with the
dimension of
350x350)

23x faster
than in [30]

Shalom et al
[12]

Proposed a scal-
able FCM GPU-
based implementa-
tion

Yeast gene expres-
sion data set (79 di-
mension with 65K
genes)

140x

Rowinska et al.
[13]

Presented a CUDA-
based FCM algo-
rithm to accelerate
image segmentation

Polyurethane foam
with fungus color
images (object area
of 310k pixels)

10x

This paper
A parallel FCM ap-
proach on GPGPU
using CUDA

Digital brain phan-
tom simulated
dataset (from 20kB
to 1000kB)

Superlinear
speedup

up to 674x

4.1 Initialization and data transfer-
ring

As shown in Fig. 2, the first two steps are executed
sequentially on the host. The membership is ran-
domly initialized. The memories are allocated on the
device global memory for the pixels of the image data,
membership, and cluster centers. All the arrays are
defined in a 1-D pattern.

After defining memories on the device, all the data
are transferred from host to device, and then the main
program loop is started. Subsequently, the parallel
kernels are called concurrently to manipulate the im-
age pixels on the device.

4.2 Calculating cluster centers from
membership functions

The host calls four CUDA kernels one after another to
calculate the cluster centers from memberships. The
first CUDA kernel concurrently handles the heavy
calculations, such as exponential, division, and mul-
tiplication of floating points for every pixel. At this
step, the final summation is not included. The nu-
merator and denominator of Equation 3 are calcu-
lated separately for every pixel, and the results are
stored in two different arrays in the device global

memory. The number of spawned CUDA threads in
this kernel is defined to be equal to the number of
image pixels, such that every thread will handle one
pixel.

The second CUDA kernel at this phase is the re-
duction kernel, which computes the partial summa-
tion of the numerator of Equation 3. The reduction
technique is an efficient method to break down the
dependency among the data. The computation com-
plexity of the sequential addition of n elements is
O(n). However, using parallel computing can sig-
nificantly improve the computation complexity to
O(log n) [15][16]. Several CUDA reduction meth-
ods are available, such as in [17][18][15]. The CUDA
reduction method used in this work is similar to [15]
and is shown in Algorithm 2. First, a segment of
the input is loaded into the device-shared memory.
This device shared memory can facilitate fast access
to the image pixels [19][20]. The reduction process is
then performed over the shared memory. Each cal-
culated partial sum of every segment stored in the
shared memory is loaded to the output in the global
memory. As illustrated in Algorithm 2, the CUDA
block ID (blockIdx.x) is used as an index to store the
partial sum from the device-shared memory to the
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Figure 2: The Block Diagram of The Proposed Parallel Fuzzy C-Means

global memory. Fig. 3 demonstrates the reduction
process performed on GPGPU using shared memory.

The actual reduction for the illustrated example in
Fig. 3, reduces the addition operations from adding
16 elements to only 2 elements. Another example
from the conducted experiments of this work is an
image with a size of 1 MB (1048576 bytes) that was
reduced to (1048576/128 << 1), which equals 4 KB
(4096 bytes).

The third kernel to be called in this phase (calcu-
lating cluster centers from the membership function
phase) is another reduction kernel that calculates the
partial sum of the denominator of Equation 3. Fi-
nally, the last CUDA kernel calculates both final sum-
mations from the previous two kernels and computes
the final result. Only one thread is defined for this
kernel. The reason for this one thread kernel is that
instead of transferring the reduced arrays from the
previous kernels to the host memory to calculate the
final summations, in this proposed method the device
is allowed to carry out the final summation only with
one thread. Lastly, all the previous four CUDA ker-
nels are called in iterative loops that are equal to the

predefined number of clusters. This is to calculate
the cluster centers from the membership functions as
shown in Fig. 2.

Figure 3: Sum Reduction Example on GPGPU.
There are four CUDA block dimension in this

example.
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Algorithm 2: Sum Reduction on GPGPU Using CUDA

Input: A large set A = {a1, a2, . . . , an} where n = pixels
Output: A reduced small set B = {b1, b2, . . . , bm} where m = n/blockDim << 1

1 global idx← blockIdx.x ∗ blockDim.x + threadIdx.x
2 local idx← threadIdx.x
3 start← 2 ∗ blockIdx.x ∗ blockDim.x
4 shared partialSum[2 ∗MAX THREAD]
5 //Loading segment from the input into the shared memory:
6 if (start + local idx) < n then
7 partialSum[local idx] = A[start + local idx]

8 else
9 partialSum[local idx] = 0.0

10 if (start + local idx + blockDim.x) < n then
11 partialSum[local idx + blockDim.x] = A[start + local idx + blockDim.x]

12 else
13 partialSum[local idx + blockDim.x] = 0.0

14 //Reduction over the device shared memory:
15 for stride← blockDim.x to 0 ; stride/ = 2 do
16 if local idx < stride then
17 partialSum[local idx]+ = partialSum[local idx + stride]

18 //Storing the output into the device global memory:
19 if local idx == 0&&(global idx ∗ 2) < n then
20 B[blockIdx.x] = partialSum[local idx]

4.3 Calculating membership functions
from cluster centers

Only one CUDA kernel is defined to compute mem-
bership functions from the cluster centers. Rather
than defining CUDA threads and block dimensions,
the implementation in this kernel is quite similar
to the sequential algorithm. The spawned CUDA
threads are defined equally to the image pixels, which
implies fine-grained granularity. Thus, one thread
will handle one pixel. In correspondence to the previ-
ous phase of the proposed work 2, this kernel will be
called in an iterative loop equally to the predefined
number of clusters. At this stage, the computed new
membership function arrays will be transferred to the
host. The host will determine if the new membership
function satisfies the condition as shown in Fig. 2.
If the condition is satisfied, finally the cluster center
arrays will be transferred back to the host. Defuzzifi-
cation is performed and the the final segmented image
is obtained.

5 Implementation and Results

In this section, the implementation design of the pro-
posed method is introduced in the first subsection.
The functionality of the proposed method is proven

using both qualitative and quantitative evaluations
in the next subsections. The performance analysis is
discussed in the final subsection.

5.1 Implementation

The proposed method was implemented using C lan-
guage and CUDA. First, the sequential FCM algo-
rithm was implemented in C. Our sequential C ver-
sion was derived from a Java version available online
at [21]. The sequential FCM in C was tested on Intel
Core i5-480 CPU, Windows 7 Ultimate platform.

In the proposed parallel FCM, the image pixels,
memberships, and cluster center arrays are defined
in a 1-D pattern. The reason is to ensure coalesced
memory transactions in the GPGPU. In addition,
defining those input arrays in 1-D pattern will ease
the number of CUDA block and grid sizes calcula-
tions. The CUDA block and grid sizes are conse-
quently defined in 1-D patterns corresponding to the
input arrays. Therefore, the form of the input has a
significant effect on the performance of CUDA ker-
nels because of the coalescing access [8][22]. Figure 4
illustrates examples on the indices of arrays are modi-
fied when converting multi-dimensional arrays to 1-D
arrays. In this work, the image array was converted
from 2-D to 1-D, and the membership array was con-
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verted from 3-D to 1-D. The details of the parallel
platform used in this experiment are shown in Table
2.

Figure 4: Converting Multidimensional Arrays to
One Dimensional

Table 2: Platform of the experiments

CPU: AMD Phenom(tm) II X4 810 Processor.
Kernel: Linux x86 64 GNU.
GPU: NVIDIA Tesla C2050.
CUDA: CUDA compilation tools, release 5.0.

5.2 Functionality Evaluation

The proposed GPGPU-based FCM is tested on digi-
tal brain phantom simulated dataset from the Brain
Web MR Simulator [23] with the size of 20kB to seg-
ment white matter (WM), gray matter (GM) and
cerebrospinal fluid (CSF) soft tissues regions. Skull
stripping [24] has been carried out on the brain phan-
tom images to remove skull and other non-brain soft
tissues, so that only brain soft tissues are used in the
proposed parallel Fuzzy C-Means (FCM) segmenta-
tion process. When applying the proposed FCM on
the brain soft tissues, four clusters are manually se-
lected to represent the WM, GM, and CSF soft tis-
sues regions and the final cluster represent the back-
ground region. Therefore in the proposed parallel
FCM, there are four cluster center values being as-
sociated with the aforementioned regions. The func-
tionality of the proposed method is then proven using
both qualitative and quantitative evaluations in the
following subsections.

5.2.1 Qualitative evaluation

The qualitative evaluation is performed for both the
segmented results of the proposed parallel FCM and
the sequential FCM. This is to evaluate the similar-
ity of the segmented result of the proposed parallel
FCM with the segmented result produced by the se-
quential FCM, visually. In Fig. 5, the experiment

Figure 5: Representative Results of The 101st, 91st

and 96th Axial Slice of Brain Tissue Phantom Using
Sequential Fuzzy C-Means and The Proposed

GPGPU-Based Fuzzy C-Means.

results are presented. It can be seen that the result
of the proposed method is identical to the result of
the sequential FCM.

5.2.2 Quantitative evaluation

The quantitative evaluation is used to compare the
results of the proposed parallel Fuzzy C- FCM and
sequential FCM. Evaluation metrics such as Dice Co-
efficient Similarity (DSC) [25] and performance anal-
ysis are used. DSC is used to evaluate if the accuracy
of the segmented results of the proposed method is
statistically similar to the segmented results of the se-
quential FCM based on the ground truth. While per-
formance analysis is to compare the execution time
and speed up of the proposed method with the se-
quential FCM. DSC is defined as in Equation 5.

DSC =
2(PR ∩GT )

PR +GT
(5)

Where PR is the segmented results of each method
while GT is the ground truth provided with the
dataset [23]. The DSC was implemented in C to be
compatible with the implementation of the proposed
method. An example of the ground truth is presented
in Fig. 6e.
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(a)

(b) (c) (d)

(e)

Figure 6: (a) The 96th Axial Slice of Brain Tissues
Phantom and The Corresponding Ground Truth
Images (b) White Matter (c) Gray Matter (d)

Cerebrospinal Fluid (e) Background.

Fig. 7 illustrates the percentage of DSC of the pro-
posed parallel FCM and sequential FCM for white
matter (WM), gray matter (GM), cerebrospinal fluid
(CSF) and background regions for 91th, 96th, 101th

and 111th axial slices of brain tissues phantom. The
accuracy of the segmented results of both the pro-
posed method and sequential FCM are statistically
similar.

5.3 Performance analysis

Once the functionality of the parallel approach is con-
firmed, performance analysis in terms of execution
time and speedup was performed. As mentioned in
Section 4.3, fine-grained granularity is adopted in this
work in which one CUDA thread is spawned to ma-
nipulate one pixel. The total number of the spawned
concurrent threads are equal to the image size to be
segmented which indicates to the design scalability.
The execution time was measured in both sequential
and parallel approach for the process of calculating
clusters centers and memberships. The initialization
process was excluded from the measurements in both
approaches. The function gettimeofday() was used
to measure the elapsed time. For the sake of verifi-
cation, the cudaEventRecord() function from CUDA
API was also used to test the execution time. Table
3 presents the execution time of both the sequential
FCM and the proposed parallel FCM on GPGPU.

The results of the execution time listed in Table 3
and the corresponding speedup illustrated in Fig. 8,
are the average execution time and speedup of 30
runs.

From Table 3, it is shown that we have conducted
experiments on various sizes of dataset from 20KB up
to 1MB. In order to evaluate the execution time of
the proposed parallel FCM in larger size dataset, we
have enlarged the original phantom dataset 6KB (the
original dataset size) up to 1MB. This enlargement is
done only on the basis to evaluate the execution time
of the proposed method in a larger size dataset.

Table 3: The Execution Time of Sequential Fuzzy
C-Means and The Proposed Parallel Fuzzy C-Means

In Seconds.

Dataset Size
(Byte)

Sequential FCM
(sec)

Parallel FCM
(sec)

20KB 57 0.102
40kB 114 0.195
60KB 177 0.321
80KB 231 0.505
100KB 287 0.632
120KB 341 0.864
140KB 394 0.977
160KB 446 0.986
180KB 503 1.22
200KB 558 1.45
300KB 845 2.18
500KB 1420 2.4
700KB 1955 2.9
1000KB 2798 4.2

Fig. 8 shows the speedup results of the proposed
parallel FCM over the sequential FCM. The horizon-
tal red line in the middle of the chart represents the
number of processing elements in the GPGPU device
(Tesla C2050) used in the experiments. Generally,
when the speedup exceeds the number of the utilized
processors in parallel computing then this speedup
is referred to as superlinear speedup. In fact, the
speedup may equal to the number of the parallel pro-
cessors only in the ideal situation because of the ex-
ternal overheads, such as data transferring, synchro-
nization, and scheduling [26]. However, superlinear
speedup can be achieved in some circumstances, such
as in low-level computations because of memory hi-
erarchies and cache effect [27].

The superlinear speedup obtained in this work can
be justified by the high speed of GPGPUs in manip-
ulating floating points compared with CPUs. In fact,
GPGPUs are highly optimized for floating-point com-
putations. The Intel i5 CPU used in the experiments
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Figure 7: Percentage of Dice Similarity Coefficient for 91th, 96th, 101th, and 111th Axial Slices of Brain
Tissues Phantom Images

Figure 8: Speed Up of The Proposed Parallel Fuzzy C-Means on Tesla C2050 of 448 Processing Elements
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can achieve 23 GFLOPs (Giga Floating Point Oper-
ations per Second) [28]. Meanwhile, the Tesla C2050
GPU used in this work can achieve 1030 GFLOPs
[29].

In Fig. 8, superlinear speedup is obtained when the
data size varies from 20 KB to 80 KB. When the data
size is larger than 80 KB up to 300 KB, the speedup
varies from 400- to 448-fold. Superlinear speedup oc-
curs again when the data size goes beyond 300 KB.

The results of the proposed parallel FCM shows
unusual behavior of the speedup with respect to the
number of the spawned threads even though the su-
perlinear speedup provides outstanding performance.
This behavior of the speedup poses some open ques-
tions. By referring to Fig. 8, we would like to list
down the following open questions:

1. When the data size varies from 20KB to 100KB,
superlinear speedup of the parallel FCM is
achieved although the number of the spawned
concurrent threads is considerably small?

2. Does the nature of FCM algorithm have any
role to play in obtaining superlinear speedup on
GPGPU?

3. When the data size varies from 100KB to approx-
imately 360KB, the results show no superlinear
speedup, why?

4. The superlinear speedup happened again when
the data size exceeds 360KB and the achieved
results are much better compared with the ones
mentioned in question 1. What will the speedup
behavior be when the data size exceeds 1MB?

5. The proposed parallel FCM was tested on
NVIDIA Tesla C2050 device of 448 process-
ing elements, will the superlinear speedup and
speedup behavior with respect to the spawned
threads number occur on other GPGPU devices
of different specifications? Or, is the nature of
FCM algorithm only fitting Tesla C2050 such
that this outstanding performance is achieved?

6 Conclusion and Future
Works

GPGPUs are vary practical parallel models because
they are affordable and not expensive. In this work,
we proposed an efficient GPU-based implementation
for Fuzzy C-Means algorithm. The functionality of
the proposed parallel FCM has been verified and
proven by conducting qualitative and quantitative

evaluations. The empirical results show that the par-
allel FCM works precisely as the traditional sequen-
tial FCM. In addition, high performance and super-
linear speedup of approximately 674 folds have been
achieved compared with sequential FCM.

In future, it would be interesting to explore the
open questions mentioned in Section 5.3 and find
some answers by using FCM algorithm as a case study
on several GPGPU devices. Recently, new CUDA
devices have been released featured with the capabil-
ity of launching dynamic parallel kernels. Generally
speaking, dynamic kernels or (nested kernels) enables
to multiple levels reduction concurrently. It would be
also an interesting topic in the future to implement
FCM on such powerful devices.
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