USER INTERFACES

For articles on related subjects, see HUMAN FACTORS IN COMPUTING SYSTEMS,
INTERACTIVE INPUT DEVICES; INTERACTIVE SYSTEM; and WINDOW ENVIRON-
MENTS.

A user interface is that portion of an interactive computer system that communicates with
the user. Design of the user interface includes any aspect of the system that is visible to the
user. Once, al computer user were specialists in computing, and interfaces consisted of jumper
wires in patch boards, punched cards prepared offline, and batch printouts. Today a wide range
of nonspecialists use computers, and keyboards, mice, and graphical displays are the most com-
mon interface hardware. The user interface is becoming a larger and larger portion of the
software in a computer system—and a more important portion, as broader groups of people use
computers. As computers become more powerful, the critica bottleneck in applying
computer-based systems to solve problems is nhow more often in the user interface, rather than

the computer hardware or software.

Because the design of the user interface includes anything that is visible to the user, inter-
face design extends deep into the design of the interactive system as a whole. A good user
interface cannot be applied to a system after it is built but must be part of the design process
from the beginning. Proper design of a user interface can make a substantial difference in
training time, performance speed, error rates, user satisfaction, and the user’'s retention of
knowledge of operations over time. The poor designs of the past are giving way to elegant sys-
tems. Descriptive taxonomies of users and tasks, predictive models of performance, and expla-
natory theories are being developed to guide designers and evaluators. Haphazard and intuitive

development strategies with claims of ‘‘user friendliness’ are yielding to a more scientific



2.

approach. Measurement of learning time, performance, errors, and subjective satisfaction is

now a part of the design process.

Design of a User Interface

Design of a user interface begins with task analysis—an understanding of the user’s
underlying tasks and the problem domain. The user interface should be designed in terms of
the user’s terminology and conception of his or her job, rather than the programmer’s. A good
understanding of the cognitive and behavioral characteristics of people in genera as well as the
particular user population is thus important. Good user interface design works from the user's
capabilities and limitations, not the machine's; this applies to generic interfaces for large
groups of people as well as to designing specia interfaces for users with physical or other disa-
bilities. Knowledge of the nature of the user’s work and environment is also critical. The task
to be performed can then be divided and portions assigned to the user or machine, based on

knowledge of the capabilities and limitations of each.

Levels of Design

It is useful to consider the user interface at several distinct levels of abstraction and to
develop a design and implementation for each. This simplifies the developer’s task by allow-
ing it to be divided into severa smaller problems. The design of a user interface is often
divided into the conceptual, semantic, syntactic, and lexical levels. The conceptua level
describes the basic entities underlying the user's view of the system and the actions possible
upon them. The semantic level describes the functions performed by the system. This
corresponds to a description of the functional requirements of the system, but it does not
address how the user will invoke the functions. The syntactic level describes the sequences of
inputs and outputs necessary to invoke the functions described. The lexical level determines

how the inputs and outputs are actually formed from primitive hardware operations.



-3-

The syntactic-semantic object-action model is a related approach; it, too, separates the
task and computer concepts (i.e., the semantics in the previous paragraph) from the syntax for
carrying out the task. For example, the task of writing a scientific journal article can be decom-
posed into the sub-tasks for writing the title page, the body, and the references. Similarly, the
title page might be decomposed into a unique title, one or more authors, an abstract, and
several keywords. To write a scientific article, the user must understand these task semantics.
To use a word processor, the user must learn about computer semantics, such as directories,
filenames, files, and the structure of a file. Finally, the user must learn the syntax of the com-
mands for opening a file, inserting text, editing, and saving or printing the file. Novices often
struggle to learn how to carry out their tasks on the computer and to remember the syntactic
details. Once learned, the task and computer semantics are relatively stable in human memory,
but the syntactic details must be frequently rehearsed. A knowledgeable user of one word pro-

cessor who wishes to learn a second one only needs to learn the new syntactic details.

User Interface Management Systems

A user interface management system (UIMS) is a software component that is separate
from the application program that performs the underlying task. The UIMS conducts the
interaction with the user, implementing the syntactic and lexical levels, while the rest of the
system implements the semantic level. Like an operating system or graphics library, a UIMS
separates functions used by many applications and moves them to a shared subsystem. It cen-
tralizes implementation of the user interface and permits some of the effort of designing tools
for user interfaces to be amortized over many applications and shared by them. It also
encourages consistent ‘‘look and fedl’’ in user interfaces to different systems, since they share
the user interface component. A UIMS also supports the concept of dialogue independence,
where changes can be made to the interface design (the user-computer dialogue) without affect-

ing the application code. This supports the development of alternative user interfaces for the



-4 -

same application (semantics), which facilitates both iterative refinement of the interface through
prototyping and testing and, in the future, alternative interfaces for users of different physica
or other disabilities. A UIMS requires a language or method for specifying user interfaces pre-
cisely; this aso allows the interface designer to describe and study a variety of possible user
interfaces before building any. UIMSs are emerging as powerful tools that not only reduce

development effort, but also encourage exploratory prototyping.

Syntactic Level Design: Interaction Styles

The principal classes of user interfaces currently in use are command languages, menus,
forms, natural language, direct manipulation, virtual reality, and combinations of these. Each
interaction style has its merits for particular user communities or sets of tasks. Choosing a style
or a combination of styles is a key step, but within each there are numerous minute decisions

that determine the efficacy of the resulting system.

Command Language

Command language user interfaces use artificial languages, much like programming
languages. They are concise and unambiguous, but they are often difficult for a novice to learn
and remember. However, since they usualy permit a user to combine constructs in new and
complex ways, they can be more powerful for advanced users. For them, command languages
provide a strong feeling that they are in charge and that they are taking the initiative rather
than responding to the computer. Command language users must learn the syntax, but they can
often express complex possibilities rapidly, without having to read distracting prompts. How-
ever, error rates are typically high, training is necessary, and retention may be poor. Error mes-
sages and on-line assistance are difficult to provide because of the diversity of possibilities and
the complexity of relating tasks to computer concepts and syntax. Command languages and

lengthier query or programming languages are the domain of the expert frequent users (power



-5-

users), who often derive satisfaction from mastering a complex set of concepts and syntax.
Command language interfaces are also the style most amenable to programming, that is, writ-

ing programs or scripts of user input commands.

Menu

Menu-based user interfaces explicitly present the options available to a user at each point
in adialogue. Usersread a list of items, select the one most appropriate to their task, type or
point to indicate their selection, verify that the selection is correct, initiate the action, and
observe the effect. If the terminology and meaning of the items are understandable and distinct,
users can accomplish their tasks with little learning or memorization and few keystrokes. The
menu requires only that the user be able to recognize the desired entry from a list rather than
recall it, placing a smaller load on long-term memory. The greatest benefit may be that there
is a clear structure to decision making, since only a few choices are presented at a time. This
interaction style is appropriate for novice and intermittent users. It can also be appealing to fre-
guent users if the display and selection mechanisms are very rapid. A principal disadvantage is
that they can be annoying for experienced users who already know the choices they want to
make and do not need to see them listed. Well-designed menu systems, however, can provide
bypasses for expert users. Menus are also difficult to apply to ‘‘shallow’’ languages, which
have large numbers of choices at a few points, because the option display becomes too big.
For designers, menu selection systems require careful task analysis to ensure that all functions
are supported conveniently and that terminology is chosen carefully and used consistently.
Software tools to support menu selection help in ensuring consistent screen design, validating

completeness, and supporting maintenance.

Form Fill-in

Menu selection usualy becomes cumbersome when data entry is required; form fill-in



-6-

(also caled fill-in-the-blanks) is useful here. Users see a display of related fields, move a cur-
sor among the fields, and enter data where desired, much as they would with a paper form for
an invoice, personnel data sheet, or order form. Seeing the full set of related fields on the
screen at one time in a familiar format is often very helpful. Form fill-in interaction does
require that users understand the field labels, know the permissible values, be familiar with typ-
ing and editing fields, and be capable of responding to error messages. These demands imply

that users must have some training or experience.

Natural Language

The principal benefit of natural language user interfaces is, of course, that the user
aready knows the language. The hope that computers will respond properly to arbitrary
natural language sentences or phrases has engaged many researchers and system developers, but
with limited success thus far. Natural language interaction usually provides little context for
issuing the next command, frequently requires ‘‘clarification dialog,”” and may be slower and
more cumbersome than the alternatives. Therefore, given the state of the art, such an interface
must be restricted to some subset of natural language, and the subset must be chosen
carefully—both in vocabulary and range of syntactic constructs. Such systems often behave
poorly when the user veers even dightly away from the subset. Since they begin by presenting
the illusion that the computer really can ‘‘speak English,’’ the systems can trap or frustrate
novice users. For this reason, the techniques of human factors engineering can help. A human
factors study of the task and the terms and constructs people normally use to describe it can be
used to restrict the subset of natura language in an appropriate way, based on empirical obser-
vation. Human factors study can also identify tasks for which natural language input is good
or bad. Although future research in natural language offers the hope of human-computer com-
munication that is so natural it is *‘just like talking to a person,’”’ such conversation may not

always be the most effective way of commanding a machine. It is often more verbose and less



-7-

precise than computer languages. In settings such as surgery, air traffic control, and emergency
vehicle dispatching, people have evolved terse, highly formatted languages, similar to computer
languages, for communicating with other people. For a frequent user, the effort of learning
such an artificia language is outweighed by its conciseness and precision, and it is often

preferable to natural language.

Direct Manipulation

In a graphical or direct manipulation style of user interface (GUI), a set of objects is
presented on a screen, and the user has a repertoire of manipulations that can be performed on
any of them. This means that the user has no command language to remember beyond the
standard set of manipulations, few cognitive changes of mode, and a reminder of the available
objects and their states shown continuously on the display. Examples of this approach include
painting programs, spreadsheets, manufacturing or process control systems that show a
schematic diagram of the plant, air traffic control systems, some educational and flight simula-
tions, video games, and the Xerox Star desktop and its descendants (Macintosh, Windows, and
various X Window file managers). By pointing at objects and actions, users can rapidly carry
out tasks, immediately observe the results, and, if necessary, reverse the action. Keyboard entry
of commands or menu choices is replaced by cursor motion devices, such as a lightpen, joys
tick, touchscreen, trackball, or mouse, to select from a visible set of objects and actions. Direct
manipulation is appealing to novices, is easy to remember for intermittent users, encourages
exploration, and, with careful design, can be rapid for power users. The key difficulty in
designing such interfaces is to find suitable manipulable graphical representations or visual
metaphors for the objects of the problem domain, such as the desktop and filing cabinet. A
principal drawback of direct manipulation is that it is often difficult to create scripts or

parameterized programs in such an inherently dynamic and ephemeral language.



-8-

In a well-designed direct manipulation interface, the user’s input actions should be as
close as possible to the user’'s thoughts that motivated those actions; the gap between the user’s
intentions and the actions necessary to input them into the computer should be reduced. The
goa is to build on the equipment and skills humans have acquired through evolution and
experience and exploit these for communicating with the computer. Direct manipulation inter-
faces have enjoyed great success, particularly with new users, largely because they draw on
analogies to existing human skills (pointing, grabbing, moving objects in space), rather than

trained behaviors.

Virtual Reality

Virtual reality environments carry the user’s illusion of manipulating real objects and the
benefit of natural interaction still further. By coupling the motion of the user's head to
changes in the images presented on a head-mounted display, the illusion of being surrounded
by a world of computer-generated images, or a virtual environment, is created. Hand-mounted
sensors allow the user to interact with these images as if they were real objects located in space
surrounding him or her. Augmented reality interfaces blend the virtual world with a view of
the real world through a half-silvered mirror or a TV camera, alowing virtual images to be
superimposed on real objects and annotations or other computer data to be attached to real
objects. The state of the art in virtual reality requires expensive and cumbersome equipment
and provides very low resoution display, so such interfaces are currently used mainly where a
feeling of ‘‘presence’’ in the virtual world is of paramount importance, such as training of fire

fighters or treatment of phobias. As the technology improves they will likely find wider use.

Virtual redlity interfaces, like direct manipulation interfaces, gain their strength by
exploiting the user's pre-existing abilities and expectations. Navigating through a conventional
computer system requires a set of learned, unnatural commands, such as keywords to be typed

in, or function keys to be pressed. Navigating through a virtual reality system exploits the



-9-

user's existing, natural ‘‘navigational commands,’’ such as positioning his or her head and
eyes, turning his or her body, or walking toward something of interest. The result is a more
natural user interface, because interacting with it is more like interacting with the rest of the

world.

Other Issues

Blending severa styles may be appropriate when the required tasks and users are diverse.
Commands may lead the user to a form fill-in where data entry is required or pop-up (or pull-
down) menus may be used to control a direct manipulation environment when a suitable visual-
ization of operations cannot be found. The area of computer-supported cooperative work
extends the notion of a single user-computer interface to an interface that supports the colla-

boration of a group of users.

Although interfaces using modern techniques such as direct manipulation are often easier
to learn and use than conventional ones, they are considerably more difficult to build, since
they are currently typicaly programmed in a low-level, ad-hoc manner. Appropriate higher-
level software engineering concepts and abstractions for dealing with these new interaction
techniques are still needed. Direct manipulation techniques for the actual design and building
of direct manipulation interfaces are one solution. Specifying the graphical appearance of the
user interface (the ‘‘look’” via direct manipulation is relatively straightforward and provided by
many current tools, such as Visual Basic, but describing the behavior of the dialogue (the
““fed’’) is more difficult and not yet well supported; predefined or ‘‘canned’’ controls and

widgets represent the current state of the art.

Lexical Level Design: Interaction Tasks, Devices, and Techniques

Lexical design begins with the interaction tasks necessary for a particular application.

These are low-level primitive inputs required from the user, such as entering a text string or



-10 -

choosing a command. For each interaction task, the designer chooses an appropriate interac-
tion device and interaction technique (a way of using a physical device to perform an interac-
tion task). There may be several different ways of using the same device to perform the same
task. For example, one could use a mouse to select a command by using a pop-up menu, a
fixed menu (palette or toolbox), multiple clicking, circling the desired command, or even writ-

ing the name of the command with the mouse.

Input Devices

Input operations range from open-ended word processing or painting programs to simple
repeated ENTER key presses for page turning in an electronic document. While keyboards and
mice have been the standard computer input device, there are increasingly attractive aternatives
for many tasks. High-precision touchscreens have made this durable device more attractive for
public access, home control, process control, and other applications. Joysticks, trackballs, and
data tablets with styluses with numerous variations are also useful for various pointing and
manipulation tasks. Speech input for voice mail and speech recognition for commands are
effective, especially over the telephone and for the physically disabled. Other techniques for
input include keys that can be dynamically labeled, speech, 3D pointing, hand gesture, whole

body motion, and visua line of gaze.

Output Devices

Output mechanisms must be successful in conveying to the user the current state of the
system and what actions are currently available. The CRT display has become the standard
approach, but flat panel (LED, LCD, plasma, electroluminescent, and others) and hardcopy dev-
ices are alternatives. Current high-resolution screens provide approximately 1000 x 1000 pix-
els; but their resolution (in dots per inch) is still far cruder than a typical paper printout or pho-

tograph, and their size, far smaller than a typical user’s desk, bulletin board, or other work sur-



-11 -

face. High-resolution displays can improve the readability of textual displays so that perfor-
mance can match that of typewritten documents. Synthesized or digitized voice output is effec-
tive and economical, especially in telephone applications and for the physically disabled. Voice
mail systems that store and forward digitized voice messages continue to grow in popularity.
Other output media include animated graphics, windows, icons, active value displays, manipul-

able objects, hypertext and hypermedia, head-coupled displays, and non-speech audio.

Conclusions

Human engineering, once seen as the paint put on at the end of a project, is now more
often becoming the sted frame on which the structure is built. Academic and industrial
researchers are exploiting the power of empirical observation and traditional scientific method
in human-computer interaction. The classic experimental methods of psychology are being
applied to deal with the complex cognitive tasks of human performance with information and
computer systems. A reductionist approach required for controlled experimentation yields
small but reliable results. Through multiple replications with similar tasks, subjects, and experi-
mental conditions, generality and validity can be enhanced. Each small experimental result

becomes a tile in the mosaic of human performance with computerized information systems.

At the same time, holistic approaches of participant observation, also known as usability
testing or formative evaluation, are contributing insights that can be immediately applied to
designs and hypotheses that lead to controlled experiments. The simple notion of asking users
to ‘‘think aloud’’ as they use a computer system yields great benefits. Videotapes of users
struggling with a system make a strong impact on designers and identify at least some of the
flaws in a design. Empirical techniques are also beneficially applied for informal evaluations

of early prototypes and rigorous acceptance tests before delivery.

A good vision for successful user interface design is that computer-related idiosyncrasies

vanish, and users are free to concentrate on their tasks. Designers are seeking to reduce the



-12 -

burden of complex syntax and awkward computer concepts, but much work remains. Empirical
studies produce many important small results, provide the basis for refining the emerging
theories, and contribute to practical guidelines. Commercial system designers apply the guide-
lines and their intuition to create elegant systems, but must thoroughly test their designs with

real users.

Bibliography

JD. Foley, ‘‘Interfaces for Advanced Computing,”’ Scientific American, vol. 257, no. 4, pp.
127-135, October 1987.

JD. Foley, A. van Dam, SK. Feiner, and JF. Hughes, Computer Graphics: Principles and
Practice, Addison-Wedey, Reading, Mass., 1990.

H.R. Hartson and D. Hix, ‘‘Human-computer Interface Development: Concepts and Systems

for its Management,”” Computing Surveys, vol. 21, no. 1, pp. 592, 1989.

E.L. Hutchins, J.D. Hollan, and D.A. Norman, ‘‘Direct Manipulation Interfaces,’”’ in User Cen-
tered System Design: New Perspectives on Human-computer Interaction, ed. by D.A.

Norman and S.W. Draper, pp. 87-124, Lawrence Erlbaum, Hillsdale, N.J., 1986.

R.JK. Jacaob, ‘A Specification Language for Direct Manipulation User Interfaces,”” ACM Tran-
sactions on Graphics, vol. 5, no. 4, pp. 283-317, 1986.

J. Johnson and others, *‘ The Xerox Star: A Retrospective,”’ |IEEE Computer, vol. 22, no. 9, pp.
11-29, 1989.

B.A. Myers, “‘User Interface Software Tools,’” ACM Transactions on Computer-Human

Interaction, vol. 2, no. 1, pp. 64-103, March 1995.

D.R. Olsen, User Interface Management Systems: Models and Algorithms, Morgan Kaufmann,

San Francisco, 1992.



-13-

B. Shneiderman, ‘‘Direct Manipulation: A Step Beyond Programming Languages,”’ |EEE Com-

puter, vol. 16, no. 8, pp. 57-69, 1983.

B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer

Interaction, Second Edition, Addison-Wesley, Reading, Mass., 1992.

ROBERT J. K. JACOB (REVISION OF 3RD EDITION ARTICLE BY BEN SHNEIDER-

MAN)



