ПРИБОРЫ И СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

УДК 519.688

М. М. БЕЗРЯДИН, Г. И. ЛОЗГАЧЕВ

ПОСТРОЕНИЕ МОДАЛЬНОГО РОБАСТНОГО РЕГУЛЯТОРА ПРИ ВОЗМУЩАЮЩИХ И ЗАДАЮЩИХ ВОЗДЕЙСТВИЯХ

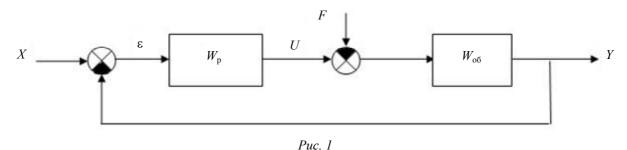
Рассматривается проблема построения модального регулятора на основе критерия, обеспечивающего оптимальное соотношение между качеством управления системой и ее робастными свойствами.

Ключевые слова: алгоритм, модальный регулятор, робастность, качество.

Одна из наиболее актуальных задач современной теории автоматического управления — компенсация внешних возмущений, влияющих на работу системы управления объектами.

В работах [1—4] предложен алгоритм построения регулятора для свободного движения. В настоящей статье рассматривается метод построения модальных робастных регуляторов при наличии задающих и возмущающих воздействий, при этом предполагается, что задающее и возмущающее воздействие имеют волновую структуру [5]. Данный метод распространяется на системы любого порядка, но в отличие от методов, рассмотренных в работах [6, 7], его математический аппарат достаточно прост и сводится к элементарному делению полиномов.

Метод синтеза регулятора. Рассмотрим замкнутую систему автоматического управления, структурная схема которой представлена на рис. 1.



Пусть задана передаточная функция объекта

$$W_{\text{of}}(p) = \frac{P_1(p)}{P_2(p)},$$

где $P_1(p)$ и $P_2(p)$ — полиномы степени m и $n, m \le n$.

Задающее воздействие характеризуется следующим выражением:

$$X(p) = \frac{R_1(p)}{R_2(p)},$$

где $\mathit{R}_{1}(\mathit{p})$ и $\mathit{R}_{2}(\mathit{p})$ — полиномы степени q и r , а внешнее возмущение — выражением

$$F(p) = \frac{G_1(p)}{G_2(p)},$$

где $G_1(p)$ и $G_2(p)$ — полиномы степени g_1 и g_2 .

Пусть задана передаточная функция замкнутой системы в виде частного двух полиномов $Q_1(p)$ и $Q_2(p)$:

$$W_{3,c}(p) = \frac{Q_1(p)}{Q_2(p)},$$

где $Q_1(p)$ и $Q_2(p)$ — полиномы степени l и $k, l \le k$.

Полином $Q_2(p)$ будем считать требуемым. Полином $Q_1(p)$ задан с точностью до коэффициентов, которые определяются в процессе построения передаточной функции регулятора. Ошибка управления может быть представлена выражением

$$\varepsilon(p) = X(p) - Y(p) = X(p) - (U(p) + F(p))W_{ob}(p)$$
.

Введем в рассмотрение полиномы L_1 , L_2 , $N_{\rm oct}$, $L_{\rm oct}$, T_1 , $T_{\rm oct}$, S_1 , $S_{\rm oct}$:

$$\begin{split} \frac{Q_2(p) - Q_1(p)}{P_2(p)} &= L_2(p) + \frac{N_{\text{OCT}}(p)}{P_2(p)}; \\ \frac{Q_1(p)}{P_1(p)} &= L_1(p) + \frac{L_{\text{OCT}}(p)}{P_1(p)}; \\ \frac{Q_2(p) - Q_1(p)}{R_2(p)} &= T_1(p) + \frac{T_{\text{OCT}}(p)}{R_2(p)}; \\ \frac{L_2(p)}{G_2(p)} &= S_1(p) + \frac{S_{\text{OCT}}(p)}{G_2(p)}, \end{split}$$

тогда

$$\varepsilon(p) = \frac{Q_2(p) - Q_1(p)}{Q_2(p)} X(p) - \frac{P_1(p)L_2(p)}{Q_2(p)} F(p).$$

Если исходная динамическая система является полностью управляемой и наблюдаемой, т.е. передаточная функция объекта $W_{\rm of}(p)$ представляет собой несократимую дробь, и выполняется условие $k \ge (2n-1)+r+g_2$, то всегда найдутся коэффициенты полинома $Q_1(p)$, при которых происходит деление без остатка: $Q_2(p)-Q_1(p)$ на $P_2(p)$, $Q_2(p)-Q_1(p)$ на $P_2(p)$ и $Q_1(p)$ на $P_1(p)$. При этом существует передаточная функция регулятора, обеспечивающая воспроизведение задающего воздействия без остаточной ошибки и желаемое расположение корней характеристического полинома [1—3]:

$$W_{\rm p}(p) = \frac{L_{\rm l}(p)}{L_{\rm 2}(p)}.$$

Для построения регулятора сформируем критерий, обеспечивающий необходимое соотношение между качеством управления системой и ее робастными свойствами:

$$I = \beta_1 \int_0^\infty \left(\varepsilon(t)^2 + K\dot{\varepsilon}(t)^2 \right) dt + \beta_2 \frac{1}{\rho}, \tag{1}$$

где K — некоторое число, ρ — мера робастности, β_1 и β_2 — весовые коэффициенты.

Первое слагаемое в уравнении (1) представляет собой интегральный критерий качества, а второе слагаемое характеризует робастные свойства системы.

Зададим характеристический полином замкнутой системы с коэффициентами в виде параметров. Используя алгоритм, описанный в работе [8], можно получить регулятор, коэффициенты которого будут выражены через коэффициенты требуемого полинома. Минимизация критерия (1) позволяет найти значения коэффициентов характеристического полинома, обеспечивающие желаемое соотношение между робастными свойствами системы и качеством управления.

Для систем небольшой размерности, а также в случае если передаточная функция объекта имеет один параметр, критерий может быть выражен в явной форме. Иначе необходимо применить численные методы оптимизации.

Вычисление меры робастности системы. Пусть R_n — множество многочленов степени n над полем действительных чисел. Пусть передаточная функция объекта задана в виде

$$W_{\text{of}}^{*}(p) = \frac{P_{1}^{*}(p)}{P_{2}^{*}(p)},\tag{2}$$

где $P_1^* \in R_m$, $P_2^* \in R_n$ и $m \le n$; P_1^* и P_2^* содержат параметрическую неопределенность, заданную в виде

$$l_i \le q_i^* - q_i \le \overline{l_i} ,$$

где q_i — заданные номинальные значения параметров, q_i^* — реальные значения параметров, l_i и $\overline{l_i}$ — пределы возможных погрешностей определения i-го параметра, $i=\overline{1,s},\ s\leq n+m$.

Необходимо найти передаточную функцию регулятора, обеспечивающего устойчивость замкнутой системы с передаточной функцией

$$W_{3,c}(p) = \frac{W_{oo}^{*}(p)W_{p}(p)}{1 + W_{oo}^{*}(p)W_{p}(p)}$$

при максимальном значения критерия робастности. В качестве такого критерия можно при-

нять
$$\gamma = \min(\overline{l_i} - \underline{l_i})$$
 или $\mu = \sum_{i=1}^s \delta_i(\overline{l_i} - \underline{l_i})$, где δ_i — весовые коэффициенты, $i = \overline{1, s}$, $s \le n + m$.

В качестве критерия робастности можно также выбрать объем (в общем случае n-мерный) области устойчивости системы.

Представим передаточную функцию объекта управления (2) в виде

$$W_{\text{of}}^{*}(p) = \frac{P_{1}^{*}(p) + \Delta P_{1}(p)}{P_{2}^{*}(p) + \Delta P_{2}(p)},$$

где $\Delta P_1(p)$ и $\Delta P_2(p)$ — полиномы, содержащие неопределенность.

В этом случае характеристический полином замкнутой системы

$$D(p) = Q_2(p) + \Delta P_1(p)L(p) + \Delta P_2(p)N(p).$$
(3)

Обозначим коэффициенты полинома D(p) через b_i , $i = \overline{0,k}$, тогда

$$D(p) = b_0 p^k + b_1 p^{k-1} + \dots + b_{k-1} p + b_k$$

Коэффициенты b_i представляют собой функции от коэффициентов a_i , $i = \overline{0,k}$, полинома Q_2 и параметров полиномов $\Delta P_1(p)$ и $\Delta P_2(p)$.

Обозначим через $u_j=(a_1^j,a_2^j,...,a_{k-1}^j,a_k^j)$ совокупность коэффициентов полинома Q_2 . Используя численные методы, можно найти значения $a_1^j,a_2^j,...,a_{k-1}^j,a_k^j$, обеспечивающие максимальное или требуемое значение любого из перечисленных критериев. Например, для вычисления критерия $\gamma=\min(\overline{l_i}-\underline{l_i})$ можно воспользоваться методом, предложенным в работе [9].

Пример. Пусть передаточная функция объекта задана в виде

$$W_{\text{of}}(p) = \frac{-Kp+1}{Tp+1}.$$

Внешнее воздействие представлено единичным скачком. Зададим передаточную функцию замкнутой системы в виде

$$W_{3,c}(p) = \frac{Q_1(p)}{Q_2(p)} = \frac{d_0 p^2 + d_1 p + d_2}{p^2 + a_1 p + a_2}.$$

В качестве расчетных значений примем K=1, T=1. Используя программу, описанную в работе [8], получим выражения для передаточной функции регулятора, при котором характеристический полином замкнутой системы будет равен $Q_2(p)$:

$$W_{p}(p) = \frac{p(-1+a_1+a_2)+a_2}{p(1+a_1+a_2)}.$$

Квадратичный критерий качества, выраженный через коэффициенты a_i характеристического полинома, определяется как

$$I = \frac{(1+a_1+a_2)^2 \left((1+a_1)^2 - 2a_1a_2 + a_2^3 \right)}{8a_1a_2}.$$

Зададим приращение параметрам объекта: $K = 1 + \Delta K$, $T = 1 + \Delta T$, при этом

$$W_{\text{of}}(p) = \frac{-p+1-\Delta Kp}{p+1+\Delta Tp}.$$

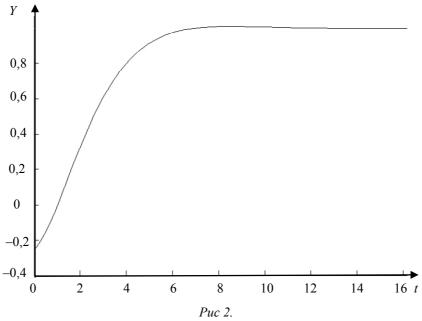
Согласно выражению (3) характеристический полином системы с обратной связью

$$D(p) = p^{2}(1 + \Delta T(1 + a_{1} + a_{2}) + \Delta K(-1 + a_{1} + a_{2})) + p(a_{1} + \Delta Ka_{2}) + a_{2}.$$

Используя условие устойчивости системы, получаем

$$\Delta K > -\frac{a_1}{a_2}, \ \Delta T > -1 - \Delta K (-1 + a_1 + a_2).$$

Минимизируем функционал I. Для этого определим минимум интегрального критерия. При $a_1 \ge 0, a_2 \ge 0$ получим $a_1 = 0,66$ и $a_2 = 0,85$. Используя эти значения как начальные, можем производить настройку робастных свойств системы. Переходный процесс в системе при единичном воздействии и $a_1 = 0,66$, $a_2 = 0,85$ представлен на рис. 2.



Рассмотренный метод построения модального робастного регулятора благодаря алгоритмической простоте достаточно удобен для реализации на компьютере. К достоинствам этого метода можно также отнести возможность получения регулятора в общем виде, что позволяет производить оптимизацию характеристик системы непосредственно по коэффициентам характеристического полинома замкнутой системы.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Лозгачев Г. И.* Синтез модальных регуляторов по передаточной функции замкнутой системы // АиТ. 1995. № 5. С. 49—55.
- 2. *Лозгачев Г. И.* Построение модальных регуляторов для одноконтурных и многосвязных систем // AuT. 2000. № 12. С. 15—21.
- 3. *Дылевский А. В., Лозгачев Г. И.* Синтез линейных систем управления с заданным характеристическим полиномом// Изв. РАН. Сер. Теория и системы управления. 2003. № 5. С. 17—20.
- 4. *Лозгачев Г. И., Безрядин М. М.* Проблема соотношения робастности и качества управления при построении модальных регуляторов // Кибернетика и высокие технологии XXI века: XII Междунар. науч.-техн. конф., 11—12 мая 2011г. Воронеж, 2011. Т. 2. С. 412—416.
- 5. Фильтрация и стохастическое управление в динамических системах / Под ред. К. Т. Леондеса. М.: Мир, 1980. 408 с.
- 6. Bhattacharyya S. P., Chapellat H., Keel L. Robust control: the parametric approach // Upper Saddle River. N. J.: Prentice Hall, 1995.
- 7. Coddard P. J., Clover K. Controller approximation approaches for preserving H^{∞} performance // IEEE Trans. Automat. Control. 1998. Vol. 43, N 7. P. 858—871.
- 8. *Лозгачев* Г. И., *Безрядин* М. М. Программная реализация алгоритма построения модального робастного регулятора по передаточной функции замкнутой системы в случае наличия возмущающего воздействия // Вестн. ВГУ. Системный анализ и информационные технологии. 2010. № 2. С. 50—52.
- 9. Воронов А. А. Введение в динамику сложных управляемых систем. М.: Наука, 1985.