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Abstract 
 

This paper presents an efficient approach for 
analyzing harmonic currents generated by a six-pulse 
ac/dc converter in steady state. The approach is carried 
out in time-domain and the interactions between the 
system and the converter are considered in the study.  In 
calculating harmonic currents generated by the 
converter, the Poincaré map based approach is applied 
to increase the computational efficiency and solution 
accuracy. The computed ac-side harmonic components 
of the converter current are then extracted via FFT. 
Solutions obtained by the proposed method are 
compared with those obtained by using a brute force 
time-domain simulation tool, Simulink of Matlab. It is 
shown that the harmonic currents determined by the 
proposed approach well agree with those obtained by 
the simulation tool, but the solution time is significantly 
reduced. In addition, the proposed method also can be 
applied to analyze harmonic currents produced by other 
types of power-electronic devices operating periodically. 
 
1 Introduction 
 

The introduction of line-commutated converters has 
caused a significant increase in harmonic-generating 
loads. These devices are most usual operated as a six-
pulse converter, as shown in Fig. 1, or configured in 
parallel arrangements for high-pulse operations. Major 
applications of these converters are to be used as a front-
end in devices such as ac/dc adjustable speed drives 
(ASDs), HVDC links, and uninterruptible power devices 
(UPSs) [1]. For harmonic studies, usually the converter 
can be simply represented by a harmonic current source 
or a model that takes into account the interaction 
between the ac source network and the converter dc 
system. When the latter situation is considered, a more 
sophisticated converter analysis for the resulting 
harmonic currents as a function of system reactance, 
firing angle, and commutation angle is required [2]. The 
accuracy of converter model also needs to be considered 
to guarantee the convergence of the simulation. 

In recent years, there is a trend to adopt time-domain 
approaches to analyze harmonic currents generated by a 
static converter due to the need of modeling the device 
in details [3]-[5]. Among various time-domain 
approaches, Poincaré map method is one way that leads 

to efficiently analyzing the ac- and dc-side currents of 
the converter because of the periodic operation nature of 
the circuit [6]-[8]. In this paper the authors propose an 
approach that adopts Poincaré map concept to solve the 
converter problem. The solutions obtained by the 
proposed approach are then compared with those 
obtained by the brute-force time-domain simulation tool, 
Simulink. Results indicate that the proposed approach is 
computationally efficient and the solution is relatively 
accurate. Therefore, the proposed approach is useful to 
quantify harmonic currents generated by the ac/dc 
converter and to facilitate the harmonic mitigation 
implementations for complying with harmonic 
standards such as IEC 61000-3-6 and IEEE-519. 

 

Fig. 1.  A typical three-phase ac/dc six-pulse converter 
circuit 

 
In the paper the operation principles of a six-pulse 

converter is firstly described. It is followed by a brief 
overview of the theoretical background and the 
illustration of applying Poincaré map concept to solve 
the converter problem. Next, simulation results obtained 
by the proposed solution method and by the use of 
Simulink are then compared to show the usefulness of 
the proposed method and the solution algorithm. 
 
2 Review of Six-pulse AC/DC Converter 

Operation Principle 
 

As indicated in the converter circuit of Fig. 1, the 
dc-side current, di , is a periodic function when the 

converter is operated in continuous conduction mode. 
At the ac source frequency, the dc-side current repeats 
every one-sixth period, T/6, under ideal operating 
conditions, or repeats every period, T, under 



asymmetrical operations. In the case of ignoring 
commutation, the ac-side source current at each phase, 

ϕi , cba  , ,=ϕ  can be simply determined by the 

thyristor switching functions and the dc-side current, as 
given in (1). 

 daciGi  ,ϕϕ = , ϕ = a, b, c, (1) 

where Gϕ,ac, ϕ = a, b, c, are switching matrices that 
relate the dc and ac sides of the converter with values of 
0 and 1 [4]. When considering commutation, the 
switching process is more conveniently expressed by 
differential equations. The following problem 
formulation describes the correlation between the dc- 
and ac-side currents for one commutation segment that 
occurs at thyristors T1 and T5. 

During the commutation, two thyristors in (T1, T3, 
T5) or in (T2, T4, T6) conduct simultaneously. Fig. 2 
shows the equivalent circuit during commutation from 
T5 to T1. By defining cae vvu −=  and bcd vvu −= , two 

differential equations are obtained as follows. 
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After solving (2) and (3) for di  and ei , the ac-side 

currents during commutation are ea ii = , db ii −= , and 

edc iii −= . The thyristor T5 is turned off after 

commutation, the differential equation describing the 
circuit becomes 
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Solving (4) for di  yields da ii = , db ii −= , and 0=ci . 

 

Fig. 2. Converter equivalent circuit during commutation 
(from T5 to T1). 

 
Since there are six commutation segments in each 

period, each commutation segment is governed by two 
states (i.e. during and after commutation) including the 
three differential equations similar to (2)-(4), a total 
number of 18 equations are required to determine the 
dc-side current di . However, if the converter is 

symmetrically operated with ideal source voltages, only 
one commutation cycle (i.e. T/6 period) is required to 
determine the dc-side current. The dc-side current over 
the remained segments can be obtained in the same way 
as solving (2)-(4). The ac-side current at each phase is 
then calculated from the determined dc-side current. 
Therefore, the required engineering effort for analyzing 
ac-side harmonic currents is greatly simplified. On the 
other hand, if the converter operation is asymmetrical, 
such as uneven loading conditions between converters 
or asymmetrical source-side reactances, it requires 
simulating a complete period for the twelve states 
created by the six commutations. 
 
3 Poincaré Maps 
 

The concept of a Poincaré map arises from the need 
of solving periodically forced linear constant-coefficient 
systems and systems with periodic-coefficient functions 
[9], it samples the response of a periodic system once 
every period. If there is a unique steady-state periodic 
solution for the given initial-valued differential equation, 
eventually two sampled values over two consecutive 
periods would be identical. The sampling process can be 
regarded as a mapping. 

The definition of Poincaré map is expressed as: If 
),()( xtftx =&  is a periodic function with a period of T 

and ),,( 00 xttϕ is a solution that passes through the 

initial value ( ) 00 xtx =  in the function ),( xtf , then  

 ( ) ),,( 00000 xtTtxPt +=ϕ  (5) 

is a Poincaré map of the given periodic differential 
equation. That is, the map moves ( ) 00 xtx =  to the 

solution ),,( 00 xttϕ  at Ttt += 0 . The k-th map of the 

initial value ( ) 00 xtx =  is expressed as 

 ( ) ),,( 0000
)(

0
xtkTtxP k

t += ϕ  (6) 

If a steady-state solution is reached, it is concluded 
that the necessary and sufficient condition for a steady-
state periodic solution passing through 0x  is that 0x  is a 

fixed point of the Poincaré map. A fixed point is defined 
as a steady-state solution, x , that satisfies 

0),()( == xtftx& . If x  is a fixed point of Poincaré map, 

then 

 ( ) ( ) xxPxP k
t

k
t == +1

00
,        k = 1, 2, 3, …. (7) 

To give an effective illustration of how the Poincaré 
map is used to determine the steady-state solution of the 
dc-side current of the converter shown in Fig. 1, the 
progress of reaching the steady-state dc-side current is 
shown in Fig. 3. As indicated in Fig. 3, the first step is 
to determine the fixed point of the dc-side current; that 
is, the point where steady-state current starts. Given the 
initial guess of the fixed point at t=0, 

0d
i , one then 



checks if the dc current )(
001 dd

ipi = at t=T is 

identical to 
0d

i , where 
1d

i  is the Poincaré map of 
0d

i . 

If not, proceed to t=2T and check if )(
102 dd

ipi = . 

The same process repeats until 
dndnnd

iipi ==+ )(
0)1(

 

at t=(n+1)T, where n is the number of maps when 

d
i reaches its steady state. Thus the fixed point is 

dn
i , 

which is the steady-state periodic solution of 
d

i . In Fig. 

3, each current segment represents a pair of thyristors 
under continuous conduction mode and lasts T/6 period. 
If the converter is in symmetrical operation under ideal 
source input, the mapping period can be adjusted to T/6 
instead of T. The solution time required to achieve the 
steady-state solution is considerably decreased. 

 

Fig. 3. Illustration of using Poincaré map to find the 
steady-state dc-side current of the six-pulse converter 

shown in Fig. 1. 
 

In the proposed solution algorithm for calculating the 
converter dc-side current over one commutation 
segment by using Poincaré map based method, the 
mapping period is T/6 when the converter is in 
symmetrical operation. If the converter is 
asymmetrically operated, the mapping period of T is 
chosen and the solution algorithm can be easily 
extended to include six commutation segments for a 
more detailed simulation. Major steps of the solution 
algorithm with the mapping period of T/6 for the 
converter system are listed as follows. 

1. Input converter system parameters including the 
thyristor firing angle and dc-side information 
indicated in Fig. 1. 

2. Determine the source voltage zero-crossing time, zt , 

and the thyristor firing angle time, ft . 

3. Assign the two initial values, 0di  and 0ei  at 

fz ttt +=0  of (2) and (3) for the chosen 

commutation segment. 
4. Solve di  and ei  of (2) and (3) with the initial 

values of 0di  and 0ei  until both currents are identical 

at the end of commutation, where the solution is 

dfed iii == . 

5. Solve di  of (4) with assigning the initial value 

being dfi  obtained at step 4 until 6/0 Ttt += . 

6. Check if di  equals 0di  of step 3. If yes, the fixed 

point of the converter dc-side current is found; stop 
and perform the ac-side current harmonics 
extraction by using FFT. Otherwise, let 0di  be 

)6/( 0 Ttid +  obtained at step 5 and 0ei  be dfi  

obtained at step 4. Return to step 4. 
 

In the proposed converter solution algorithm, a 
commonly used ordinary differential equation (ODE) 
solver provided by Matlab is adopted to solve the 
corresponding differential equations with a fixed time 
step size and a convergence tolerance value. By taking 
advantage of the periodic solution speed of Poincaré 
map concept, the computational burden is greatly 
relieved and an accurate solution is achieved. It can be 
expected that, for the same studied time window, the 
Poincaré map based approach is more computationally 
efficient than other traditional brute-force time-domain 
simulation methods [9]. 
 

4 Simulation Results 
 

To verify the usefulness of the proposed method for 
analyzing the steady-state harmonic currents generated 
by a six-pulse converter system, the CIGRE benchmark 
converter model is adopted for test purpose [10]. 
Though the high-voltage converter is used in the study, 
the proposed solution algorithm is suitable for 
converters at lower voltage levels of applications as well. 
Table 1 gives the benchmark converter system data with 
minor changes for simulation. 

In the simulation, the proposed method for solving 
the converter ordinary differential equations is 
implemented by using Matlab along with its ODE23 
solver. The ODE23 subroutine is provided with a fixed 
time step size of 1/60/3000 (i.e. 3000 points per period) 
and a tolerance value of 0.001 Ampere between two 
consecutive calculated values with a time span of T/6 of 
the single-converter dc-side current. Results obtained by 
the proposed method are also compared with those 
obtained by using Simulink with variable time step [11]. 

 
 Converter Data 

Lc 7.2e-2 H 
Rd 5.0Ω  
Ld 8.3e-1 H 
Ud 495.0 kV, dc 

cba VVV , , 246.5 kV@60Hz 

α 15˚ 

 
Table 1: Parameters of the benchmark converter system 

 



Under the assumptions that converter input voltages 
are ideal and the converter is with symmetrical 
operation, Fig. 4 through Fig. 8 show the dc-side current, 
the converter input current at phase a, converter input 
voltage at phase a, and corresponding harmonic spectra 
obtained by the proposed method for the converter in 
operation. The solutions obtained by Simulink, which 
models the converter circuit in details, are also shown at 
the bottom side of each figure for comparison. 

Results show that the two solution sets have a good 
agreement. By comparing solutions obtained by the 
proposed method with Simulink solutions for Figs. 6 
and 8, the largest error in the harmonic magnitude is 
less than 6% for Fig. 6, while the largest error in 
harmonics is about 7% for Fig. 8. 
 
5 Conclusions 
 

This paper presents an efficient approach for 
analyzing harmonic currents generated by a six-pulse 
converter system. The method used is categorized as a 
time-domain approach. As described in the paper, the 
theory of the proposed solution algorithm for analyzing 
harmonic currents generated by the converter in steady 
state is described in details. The usefulness of the 
approach is demonstrated through simulations for the 
converter. The results are then compared with those 
obtained by the use of Simulink. Both results show a 
close agreement. However, the solution time required 
by the proposed approach is much less than that of the 
brute force time-domain method used by Simulink. It is 
concluded that the proposed method is not only 
computationally efficient, but is also suitable for 
analyzing harmonic currents generated by other types of 
power-electronic devices with periodic operations. 
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Fig. 4. Time-domain dc-side current of the converter 
(top waveform: proposed method; bottom waveform: 

Simulink) 
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Fig. 5. Source-side input current drawn by the converter 

system at phase a  (top: proposed method; bottom: 
Simulink) 
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Fig. 6. Harmonic current spectra of Fig. 5 (left: 

proposed method; right: Simulink). 
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Fig. 7. Converter input voltage at phase a  (top: 

proposed method; bottom: Simulink). 
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Fig. 8. Converter input voltage harmonics of Fig. 7 (left: 
proposed method; right: Simulink) 
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