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Abstract  

Ventilation networks in coal mines serve the criti- 
cal task of maintaining a low concentration of ex- 
plosive or noxious gases (e.g., methane). Due to 
the objective of controlling fluid flows, mine ven- 
tilation networks are high-order nonlinear systems. 
Previous efforts on this topic were based on multi- 
variable linear models. The designs presented here 
are for a nonlinear model. Two control algorithms 
are developed. One employs actuation in all the 
branches of the network and achieves a global reg- 
ulation result. The other employs actuation only 
in branches not belonging to the tree of the graph 
of the network and achieves regulation in a (non- 
infinitesimal) region around the operating point. 
The approach proposed for mine ventilation net- 
works is also applicable to other types of fluid net- 
works like gas and water distribution networks, ir- 
rigation networks, and building ventilation. 

1 Introduction 

Coal as a source of fossil fuel energy should re- 
main in abundance for a considerable time after 
petroleum reserves are exhausted. One of the 
principal difficulties in underground coal mines is 
the presence of poisonous and explosive gases like 
methane. Accidents claiming the lives of cod min- 
ers have been numerous through the history and 
continue to this day. 

Modern coal mines contain elaborate ventilation fa- 
cilities that allow to regulate the concentration of 
methane. In such ventilation systems the objective 
is usually not to directly control the concentrations 
but to control the air flow rates through individual 
branches of the ventilation network. The ac tue  
tion available ranges from a few fans/compressors 
strategically located through the network (and of- 
ten directly connected to the outside environment), 
to actively controlled “doors” that are in many of 
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the branches of the network. The problem of con- 
trolling mine ventilation received considerable at- 
tention in the 1970’s and the 1980’s [l, 2, 6, 7, 8, 91. 

I t  is clear that a mine ventilation network is a multi- 
variable control problem where acting in one branch 
can affect the flow in the other branches in an unde- 
sirable way. For this reason, mine ventilation needs 
to he approached in a model-based fashion, as a 
fluid flow network (in much of the same way one 
would model an electric circuit) and as a multivari- 
able control problem. 

Pioneering work on this topic was performed by 
Koci6 [5] who considered a linearized lumped- 
parameter dynamic model of a mine ventilation net- 
work and developed a methodology for designing 
linear feedback laws for it. He discovered struc- 
tural properties that allowed him to decouple the 
problem into SISO problems and avoid the use of 
generic, highly complicated MIMO control tools. 
However, he did not take advantage of the graph 
theoretic properties of the network, which forced 
him to both neglect the nonlinearities (essential in 
this fluid flow problem) and to employ dynamic 
output-feedback compensators where static output 
feedback would suffice. We provide these improve- 
ments in this article. 

The control model of a mine ventilation network 
consists of Kirchhoff’s current and voltage laws (at- 
gebraic equations) and fluid dynamical equations 
of individual branches (differential equations). The 
branches are modeled using lumped parameter a p  
proximations of incompressible Navier-Stokes equa- 
tions that take a form whose electric equivalent is 
an RL characteristic with a nonlinear resistance. To 
be precise, the pressure drop over a branch is a p  
proximated to be proportional to the square of the 
air flow rate (nonlinear resistive term) and to the 
air flow acceleration (linear inductive term). 

A model written using Kirchhoff’s algebraic equa- 
tions and the branch characteristic differential 
equation constitute a non-minimal representation 
of the control model. It is clear that, due to the 
mass conservation at the branching points (nodes) 
of the network, airflows in many of the branches 
will be inter-dependent. Hence, the minimal sys- 
tem representation will be of lower order than the 
number of branches. 

This intuition becomes systematic when one em- 
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ploys graph theoretic concepts from circuit the- 
ory [3]. Each network can be divided into a set of 
branches called a tree (they connect all the nodes of 
the graph without creating any loops) and the com- 
plement of the tree, called a cc-tree, whose branches 
are referred to as the links. The minimal system 
representation of the dynamics of the network is 
given by the flow through the links. 

While it is to possible to control the airflows only 
in independent branches-the links-and therefore 
necessary to put actuators only in those branches, 
the physical possibility to put actuators also in the 
tree branches allow to approach the control prob- 
lem in two distinct ways. The f i s t  approach that we 
pursue actuates all the branches and yields a global 
stability result for this nonlinear system. The sec- 
ond approach actuates only the independent, link 
branches and yields a regional (around the operat- 
ing point in the state space) result. 

A peculiarity of the problem is that, while the 
model is &ne in the control inputs, they do not a p  
pear in an additive manner. Since the inputs to the 
system are resistivities of the branches (modulated 
by the openings of "doors" in the branches), the 
control inputs are always multiplied by quadratic 
nonlinearities. 

2 Model  of Mine  Ventilation Network 
System 

2.1 P i p e  Flow Dynamics and Kirchhoff's 
Laws for Mine Ventilation Networks 
In order to develop the model of a mine ventilation 
network, we first establish the dynamical equation 
of one branch. For simplicity, we make the following 
assumptions: Al.  the air is incompressible; A2. the 
temperatures in all branches are identical. Under 
assumptions A1 and A2, one branch of the mine 
ventilation network is described with the following 
equations 15, 10, 111 

where Q, is airflow quantity through a branch j ,  
R, are aerodynamic resistances, H, are pressure 
drops of the branches, K, are inertia coefficients, 
3 = 1 , .  . . ,n and n is the number of network 
branches. 

Like an electrical network, a mine ventilation net- 
work must satisfy Kirchhoff's current law, i.e., the 
airflow out of any node is equal to the flow into that 
node. Mathematically, Kirchhoff's current law for 
mine ventilation networks can he expressed as: 

n 
EQQ = EQ,,Q ,- - 0 , i = 2 , . . . , n c - l ,  (2) 

,=I 

where n, is the number of nodes in the network, 
Q is a vector of airflow quantities, EQ = [EQ.,] is 

a full rank matrix of order (nc - 2) x n and the 
values of EQ,, are defined as follows: EQ,, _= 1 if 
branch j is connected to node i and the air flow 
goes away from node i ,  EQ,, = -1 if it goes into 
node i, EQ,, = 0 if branch j is not connected to 
node i. 

Let us assume that the mine ventilation network 
employs one main fan that is connected with the 
ambient outside of the mine. Also let node 1 be 
connected to the fan branch. Then the airflow in 
the fan branch can be expressed as 

(3) 
,=I 

where Qm is airflow quantity through fan ( w i n )  
branch, eQm = (eQml,. . ,eo,,] is 1 x n matrix, in- 
cludes the values of eOm,, that are defined as those 
of matrix EQ. 

Similarly, a mine ventilation network also satisfies 
Kirchhoff's voltage law, i.e., the sum of the pressure 
drops around any loop in the network must be equal 
to zero, or mathematically, 

" 

j=1 

where Hi is the pressure drop of the branch j ,  E 
is a number of the links in the network, 1 = N - 
n, + 1, N = n + 1 is the number of branches with 
fan branch; H is a vector of pressure drops, EH = 
[EH~,]  is ( l - k )  x n  mesh matrix, in which each mesh 
is formed by a link and a unique chain in the tree 
connecting two endpoints of the link, k is number 
of meshes, containing fan branch. The elements of 
E H ; ~  are defined as follows: E H ; ~  = 1 if branch j 
is contained in mesh i and has the same direction, 
E ~ i j  = -1 if branch j is contained in mesh i and 
has the opposite direction, E ~ i j  = 0 if branch j is 
not contained in mesh i. 

Considering meshes, containing the fan branch, ex- 
press the pressure drop in it as 

n 

,=1 

where H ,  is the pressure drop of the fan branch, 
e H m  = [eHml, . . , eHmn] is k x n matrix, includes 
the values of e H m J  which defined as E H .  

The dynamics of the fan branch can he expressed 
as 

Hm = d - G Q m ,  (6) 

where d denotes the equivalent pressure drop gen- 
erated by fan, and Q, is the resistance coefficient 
in the fan branch. 



2.2 Non-Minimal Model of the Network 
In order to establish the state equation, one has 
to find independent variables as states of the sys- 
tem. By virtue of the concepts of a tree and a link, 
they can easily he found. So the first step is to 
describe the tree of the mine ventilation network 
such that the fan branch is contained in it,  and 
take the airflow quantities of link branches as state 
variables. For convenience of analysis, we label the 
link branches from 1 to 1. Define 

so that Q, and H ,  matrices describe airflow quan- 
tity and pressure drop, respectively, in the links, 
and Q. and Ha matrices describe them in the tree 
branches, excluding the fan branch. 

With the notation 

9% = diag(Qj IQjI), K = diag(Kj) = [ 2 
(1) can he rewritten as 

] 
(8) 

(9) Q = -KQ:R + KH. 

Proposition 2.1 There exist matrices A, B, C,  
YRQ; YQ and Yd of appmpriate dimensiolls so that 
the full order model of mine ventilation network can 
be ezpressed as 

Q = A Q i R +  B Q + C d,  

H = Y R Q Q ~ R  + YQQ + &d, 

(10) 

(11) 
where Q is the state, R and d are the inputs, and 
H is the output of the system. 

Proof: 
he represented in the form: 

The matrices EH, EQ, eH, and eq ,  can 

EH = [EHc E H ~ ] ,  EQ = [ E Q ~  EQ.1, (12) 

eH, = IeH,, eH,.l? eQ, = IeQ,e eQm=l> (13) 
where 

[ ] = 4 x 1 ,  eq,, = 11 . . 01 1 (14) 

[ ] = I ( N - L ) x ( N - l ) i  
-eq,, 1 

E Q ~  = I ( N - I - I ) ~ ( N - I - ~ ) ,  eQ,. = 0. (15) 

Let us now express the tree airflow quantities 
through link airflows. From (2), (7) and (12), we 
have 

so 
Qa = -E-’ Q,EQ,Q= = -EQ,Q=. (17) 

Now express the link pressure drops through the 
fan branch pressure drop and tree pressure drops. 
From (4), ( 5 ) ,  (13) and (15), we can get 

H,  + [ ] H, = [ y ] H,. (18) eH,. 

From this equation one can find H,  as: 

H,  = - [ EHn ] H,, + [ y ] H,. (19) eH,, 

Using (6), rewrite (19) as 

Hc = SH,H, + R,SQQ + Sdd, (20) 

where 

With (9), (15) and (20), differentiating ( Z ) ,  we have 

Ha = C R Q Q ~ R  + ~ Q Q  + Cdd,  (23) 

where 

CRQ = (EQ&SH, + K,)-’EQK (24) 

CQ = -(EQ&~H, + K,)-’EQ~K,R,SQ, (25) 

6 = -(EQ&SH~ + Ka)-’EQcKcSd. (26) 
One should mention, that the inverse of matrix 
EQ.K,SH, +KO, from equations (24)-(26), exists, 
which will he shown in Lemma 2.1. After substitu- 
tion (23) into (ZO), it can be expressed as 

Hc = S H ~ C R Q Q ~ R  + ( S H L Q  + R,SQ)Q 
+ ( s d  + SHa<d)d. (27) 

With (7), (23) and (27), we have ( l l ) ,  where 

Substituting (11) into (9), rewrite it as (lo), where 

A = -K(I  - YRQ), B = KYQ, C = K&. 

m 
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Lemma 2.1 The inverse of EQ,K,SH, + K, ex- 
ists. 

Proof: We number the branches in the follow- 
ing way: the links are enumerated from 1 to 1 ,  the 
first branch connects with the fan branch, and the 
tree branches are enumerated from 1 to N ,  where 

' the fan branch is the last one. The loop and the 
node equations, including the fan branch, can be 
expressed as 

[ EQc ] [ Q": ] = 0. (31) 
-eQm. -eQ,. Q, 

It can he shown [3, p. 4931, that 

From (15) and (32), EQ is of full rank. So EQK'~' 
can he factorized by singular value decomposition 
141 as 

E ~ K ' / =  = UCV, (33) 

01 ... 0 0  

0 " '  One-' 

.=[ 0 '.. 0 :I. 
U* # 0, z = 1, .. . ,n, - 2. (34) 

With (33) and (34), we can write 

E ~ K E ~ T  = U C V V ~ C ~ U ~  = U C C ~ U ~ .  

So we have 
det (EQKEg) # 0. (35) 

Substituting (13) and (15) into (35), we get 

det (EQ,K,Ezc + K,) # 0. (36) 

With (15), (U), (32) and (36), we have 

det (EQ,~SH,  + K,) 
= det (EQeKcEgc + K,) # 0. (37) 

So the inverse of EQ,K,SH, + K. exists. 

2.3 Minimal Model  of the Network 
In the previous subsection we have established the 
full model of mine ventilation network, which is of 
order n .  The states of the system are not indepen- 
dent, so one needs to find the minimal represen- 
tation. In this subsection, we establish a minimal 
model of the mine ventilation network. 

R = [RT RTlT,  

CRQ = [CRQC <RQa], CQ = [CQc <Qa11 .(41) 
where the dependence on Qc in (39) should be un- 
derstood in the sense of (17). 

Proposi t ion 2.2 There exist matrices A,, Aca, Be 
and C, of appropriate dimensions so that the min- 
imal model of mine ventilation network system can 
be expressed as 

Qc = A,Q:,R, + A,,Q?,R, + &Q, + C d ,  (42) 

(43) 
Ha = CRQ.Q:,R~ + CRQ,Q%Q$& 

+(<se - CQ,EQ,)Q. + Cddr 

where Q, is a state; R,, R, and d are the control 
inputs, and Ha is the system output. 

Proof:  Substituting (39) into (27), we get 

Hc = SH~CRQ,Q:~R~ + SH.CRQ.Q$(Q~)R, 
+[SH~(CQ, - CQ.EQ.) 

+ ( s d  + SHaCd)d. (44) 
+Rm(SQ, - SQ.EQ,)IQc 

From (9), we have 

Qc = -KcQzDR, + K,H,. (45) 

Substituting now (44) into (45), we get equation 
(42) with 

A, = -Kc + KcS~oC~~,I A,, = K ~ H ~ C R Q . ,  
(46) 

(47) 
(48) 

Bc = Kc[SHo(<Qc -cQ,EQ,) +8n(sQ, -sQ, EQ. )I 9 

cc = Kc(sd + SHaCd). 

Efom (17), (23) and (41), we have (43). 

The pressure drop in the fan branch can be de- 
scribed as 

H, = d - R,eQ,,Q,. (49) 

3 Design wi th  Auxiliary Controllers 

In this section, we use R,, R, and d as controls. 
The inputs R. and d are referred to as auxiliary 
inputs [5] (thus a subscript "a") .  As we shall see 
in the next section, they are not necessary, i.e., the 
system can he successfully controlled with R, alone, 



but the auxiliary inputs applied for more effective 
control. Let us choose control laws as 

R, = (K~QL)-'  (KJL  + XQ,,), (50) 

R, = ( K ~ Q ~ J '  (KA, + XQ,,), (51) 
d = Hmv+RmQm, (52) 

where H,,, H,, and Ha, are the reference (equi- 
librium) values of H,, H, and Ha respectively, 
Q,. = Qc - QcT,  Qoe = Q, - Q,?, in which Qcr 
and Q,, are the reference (equilibrium) values of 
Q, and Q. respectively and X is a constant, that 
will be defined later. Clearly, H, and Q? need to  
satisfy Kirchhoff's laws for the mine ventilation net- 
work. 

With the control laws given by (50)-(52), we have 
the following result. 

Theorem 3.1 For the system described by  (10) 
and ( l l ) ,  under the control laws (50)-(52), the fol- 
lowing msults hold. 

Z,J H(t )  I H, = [HZ, H:IT; 

ii) Q = Qr = [Qg, QTrIT is eqonentially stable; 

iii) suppose that Qi(0) 2 0,  Qiv > 0 and X < 
mini Ki&,,Qi,, then Ri(t) > 0,Vt 2 0,  where 
i = l  ... , ,n. 

ProoE i) Differentiating (2), we have 

EQQ = 0. (53) 

substituting (9), (12), (38) and (39) into (53), we 
get 

EQ= (-K,Q:,R, + K,H,)-K,Q?~R,+K,H, = 0. 
( 5 4  

Substituting (19) into equation (54) and rearrang- 
ing it, we have 

EQ.K,Q:DR, + K ~ Q Z D R ~  
= EQ.K,SH,H, + EQ.K,&H, + KoHa. (55) 

Finally, substituting (50) and (51) into (55), we get 
the following result: 

XEQ,Q,, + XQ.. + EQ.K,Hw + K d L  
= EQ.K,SH,H, + EQ.K,S~H, + K,H,. (56) 

From Kirchhoff's law for airflow quantities (2) we 
can see that EQ~Q,.+Q,, = 0, so substituting this 
into (56) and taking into account (19), we rewrite 
(56) in the form 

EQ~K,SH,H,, + K J L ,  = EQ.K,SH,H~ + K,H,. 
(57) 

Subtracting EQ,K,SH,H,, + K,H,, on both sides 
of (57), we get 

( E Q ~ K ~ S H ,  + K,) (Ha - Har) = 0,  (58) 

From lemma 2.1, the inverse of ( E Q , K ~ S H ~  + K,) 
exists, so 

Comparing (6) and (52) ,  it is easy to see, that 
Ha = Har. (59) 

H, = Hmv. (60) 

substituting (59) and (60) into (19), we have 

H, = Her. (61) 

With (59), (60) and (61), we get H = H,. 

ii) After substitution (50) and (51) into (9), the 
closed loop system becomes 

Q = -XQ.. (62) 

Since Q = o,, then Q. = -,IQ., which implies ii) 

iii) From (62), the solutions are 

Q.6 = Q,i(O)e-", i = 1 I ,  . . n. (63) 

Substituting (59)-(61) and (63) into (50), 

Remark  3.1 In a practical mine ventilation im- 
plementation, the minimal branch resistance &(t) ,  
corresponding to the actuator "door" fully open, 
will be not zero, but some positive value that is 
due to  the resistance of the tunnel walls. 

4 Design without Auxiliary Controllers 

In this section we achieve the control objective with 
R, alone. Choose the control law as 

R, = (KCQ%-' ( K H ,  + XQce), (66) 

R, = ( K , Q ? ~ ~ ) - '  KJL, (67) 
d = Hmv+RmQm,. (68) 
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Note that & and d are constant. With (7) and 
(8), the expression for airflow quantities (9) can be 
rewritten as 

Qc = -K,Q:,R, + KcHc, 

Q, = -K,Q:,R, + K,H.. 

(69) 

(70) 

Qc = -AQc:.. (71) 

Substituting (66) into (69), 

This equation clearly indicates exponential stahil- 
ity. However, this stability can be ensured only 
if the control law (66) is guaranteed to  be imple 
mentable. A control law that employs negative val- 
ues of resistance would not be implementable in a 
mine ventilation network. Thus we need to study 
feasibility of the feedback (66). While the pressure 
drop H, in (66) is preferable for implementation 
because pressure is easier to  measure than the flow 
rate, for a feasibility study we have to express H, 
as a function of the state Q,. This will allow us to 
find the function R,(Q,). 

With (71), differentiating (17), weget airflow quan- 
tities for the tree branches 

Qa = -EQ.Q. = AEQ.Q... (72) 

Now let us find the pressure drops. By (70) and 
(72), Ha can he written as 

Ha = A K i l E ~ , Q c e  + Q:&. (73) 

Using (73), we rewrite (19) as 

Hc = SH,  (AK;’EQ.Qc. + 
- %sdeQ,,Qc. (74) 

After substitution (74) into (66), the control law 
becomes 

Rc(&c) = (K&D)-’ [-Kc%~deqmCQc 
+ K c S H ~ Q : D ( Q ~ ) R ~ ~  + K&‘ddr 
A (1 + K , S H ~ K ~ * E Q , )  Qc,] . (75) 

We are now ready to  estimate the feasibility region 
of the feedback system. 

Let F = {Qc E RN-“.+’ IRd(Q,) 2 R p , i  = 
1,. . . , N - n, + 1) be the feasible control set, where 
a?’’ is the minimum feasible control values. De 
fine also the sets B, = {llQell 5 T ) .  Using these 
designations we can now establish the following re 
sult for the system, consisting of the model (42), 
(43) and the control laws (68), (67) and (75). 

Theorem 4.1 Let T*  be the largest T such that 
B, C 7. Then, Q = Q? is ezponentially stable 
with the region of attraction that includes B,. . 

~ 
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Proof: Consider the Lyapunov function 

whose level sets are B,. For all &. c B,. we have 
R,, 2 R P ,  so the ,closed-loop system can be ex- 
pressed as 

0.. = -A&,., (77) 
Differentiating (76) along (77), we obtain 

V = QTeQce = -AI/Qeel12 = -2AV. (78) 

From (78), we conclude that Q = Qp is exponen- 
tially stable. 
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