Traffic analysis in MPLS networks with the aim of optimizing traffic

Content


Introduction

In the information age, communication is one of the most important tools for humanity. It develops, modernizes and penetrates into all spheres of human life, while adapting to them.

Communication is used by different segments of the population and different organizations, on this basis, they all have different requirements for its quality. Thus, modern operators and service providers should have a sufficiently flexible and multifunctional network capable of providing the necessary types and levels of service, as well as different types and priority-differentiated traffic. Based on this, there is a need to implement traffic optimization methods that should provide the required classes of service for different types of traffic through the redistribution of network resources. With the introduction of QoS (Quality of Service) applications on the Internet, many new networking technologies have been developed. Since the channels in the communication networks at the transport level are often overloaded, the introduction and improvement of such a system is relevant in our time.

The most common of these systems is Multiprotocol label switching (MPLS) technology, which is used at the transport level and gives an opportunity to provide highly efficient data transmission with support for QoS (Quality of Service) technology.

1. Theme relevance

Today, the development of the telecommunications industry is one of the most rapid in the world. Along with the rapid growth of telecommunications networks, new IP services such as IPTV, VoIP and others are developing. In this regard, IP traffic has increased significantly in recent years . Therefore, implementing service classes for different types of traffic is a necessary task.

Connection of work with scientific programs, plans, topics master's Qualification work is carried out during 2017-2019.according to the scientific direction of the Department of Automation and telecommunications of Donetsk national technical University.

2. Goal and tasks of the research

The aim of the work is to find ways to improve the performance of MPLS network through more efficient allocation of bandwidth resources of trunk communication channels between a set of specified paths, as well as load redistribution in the conditions of traffic changes in the network.

The main objectives of the study:

3. The idea of work

Redistribution of resources in the main communication channels by means of forecasting models.

The scientific novelty of this work is to offer an improved method of modeling processes in control systems of telecommunication networks, as well as obtaining further development of systems by forecasting algorithms using Traffic Engineering mechanisms.

Research object: System of effective capacity management in telecommunication networks.

Research subject: Traffic optimization system in MPLS networks.

4. Traffic Engineering (TE)

Traffic Engineering (TE) is the management of traffic flow through the network in order to fulfill certain conditions: network load distribution, channel redundancy, congestion prevention, balancing. Conventional routing protocols, such as OSPF, EIGRP, IS-IS, do not provide the necessary ability to manage traffic based on the metrics that create the network, so they are increasingly using TE technology [6].

MPLS technology also supports traffic engineering methods. In this case, the modified signaling and routing protocols containing the prefix TE (Traffic Engineering) are used. In General, this version of MPLS was called MPLS TE.

The following Traffic engineering mechanisms exist in MPLS:

In the MPLS TE technology, information about the found rational path is used completely – that is, not only the first transit node is remembered, as in the main IP routing mode, but all intermediate nodes of the path along with the initial and final, that is, routing is performed from the source. Therefore, it is sufficient that only the border LSR networks are engaged in the search for those tunnels, and the internal LSR networks only supply them with information about the current state of the network, which is necessary for decision-making [7].

After finding the path, regardless of whether it was found by an edge LSR or by an external system, it must be installed. To do this, MPLS TE uses a special signaling Protocol, which is able to distribute information about the explicit (explicit) route over the network. Currently, MPLS TE uses two such protocols: RSVP with extension and CR-LDP. The messages of these protocols are transmitted from one host to another according to the IP addresses of the route. MPLS supports two types of explicit paths:

Figure 1 shows both types of tunnels.

Two types of TE tunnels in MPLS technology

Figure 1 – Two types of TE tunnels in MPLS technology

Tunnel 1 is an example of a strict tunnel in which the external system specifies the start, end nodes of the tunnel, as well as all intermediate nodes, that is, the sequence of IP addresses for LER1, LSR1, LSR2, LSR3, LER3 devices. Thus, the problem of traffic engineering is solved by choosing a path with sufficient unused bandwidth.

When tunnel 2 is established (free), only the start and end nodes are specified, that is, the LER5 and LER2 devices. Intermediate devices LSR4 and LER2 is automatically the starting node of the tunnel 2, i.e., the LER5 device, and then use the signaling Protocol device 5 according to this LER and the destination devices on the need of the tunnel lining.

In addition to the concept of traffic management (TE), another important advantage of using MPLS is traffic protection and its fault tolerance. In IP networks, fault information is transmitted via IGP over the entire network. After the IGP convergence it is possible to calculate a new shorter path and the fault is corrected. An error in traffic planning can cause the network to overload.

Conclusion

Bandwidth is the most important resource of modern technology. The use of TE mechanisms allows more efficient use of the channel resource, as well as to optimize traffic in MPLS networks. The tasks focused on traffic optimization are aimed at improving the quality of service (QoS) of information networks. Thus, the Central function of traffic optimization is effective network bandwidth management. This leads to the meeting of QoS requirements, thereby ensuring the specified quality of services provided to users.


When writing this essay master's work has not yet been completed. Final completion: June 2019. The full text of the work and materials on the topic can be obtained from the author or his supervisor after the specified date.

References

  1. П.П. Воробиенко, Л.А. Никитюк, П.И. Резниченко Телекоммуникационные и информационные сети: Учебник для высших учебных заведений – К: САММИТ-КНИГА, 2010. – 640 с.
  2. Семенов Ю.А. Telecommunication technologies – телекоммуникационные технологии [Электронный ресурс] – Режим доступа к статье: http://book.itep.ru/
  3. Гольдштейн А.Б. Проблемы перехода к мультисервисным сетям (Статья) // Журнал Вестник связи. – М., 2002. -– №12.
  4. Сподах К.М. Глобальные сети [Электронный ресурс] – Режим доступа к статье: http://revolution.allbest.ru/...
  5. Будылдина Н.В. Телекоммуникационные сети с многопротокольной коммутацией по меткам. Построение и оптимизация. Монография / Н.В. Будылдина, В.П. Шувалов – М.: УрТИСИ ГОУ ВПО СибГУТИ, 2005. – 264 с.
  6. Олифер В.Г. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов 3-е изд. / В.Г. Олифер, Н.А. Олифер – СПб: Питер, 2008 – 958 с.
  7. Гольдштейн А. Б. Механизм эффективного туннелирования в сети MPLS. Вестник связи. № 2 – 2004.
  8. В. Олвейн Структура и реализация современной технологии MPLS. Пер.с англ. – Издательский дом Вильяме. Москва-Санкт-Петербург-Киев, 2004. – 67 с.
  9. Семенов Ю.А. Протокол резервирования ресурсов RSVP [Электронный ресурс. – Режим доступа: http://book.itep.ru/...
  10. Зайченко Ю.П. Структура и оптимизация сетей ЭВМ / Ю.П. Зайченко, Ю.В. Гонта – Киев: Техника, 1986. – 168 с.
  11. Базовые сервисы технологии MPLS [Электронный ресурс] – Режим доступа к статье: http://www.rublin.org.ua/...
  12. Сети для самых маленьких. Часть десятая. Базовый MPLS [Электронный ресурс] – Режим доступа: http://linkmeup.ru/...
  13. Лассерре М. Межсоединение локальных сетей посредством MPLS / Журнал сетевых решений LAN. № 1. – январь 2004.
  14. Кучерявый Е.А. Управление трафиком и качество обслуживания в сети Интернет / Е.А. Кучерявый. – Санкт–Петербург: Наука и техника, – 2004. – 336 с.
  15. Fortz В. Optimizing OSPF/IS-IS Weights in a Changing World / В. Fortz, Thorup M. – IEEE Journal on Selected Areas in Communications, Vol. 20, No. 4, May 2006.
  16. Вишневский В.М. Математические модели исследования алгоритмов маршрутизации в сетях передачи данных. Информационные процессы / В.М. Вишневский, Е.В. Ливнер, Е.В. Федотов – Том 1, №2, 2001.
  17. Garcia J.M. Optimal LSP Placement with QoS Constraints in DiffServ/MPLS Networks/ITC 18 / Garcia J.M., Rachdi A., Brun O. Charzinski J., Lehnert R., and Tran-Gia P. (Editors), Elsevier Science B.V., 2013.
  18. Дешко И.П. Возможности технологии MPLS для построения масштабируемых телекоммуникационных сетей нового поколения. Вопросы кибернетики. Устройство и системы: межвузов. сб. научн.тр.. / И.П. Дешко, А.В. Кириченок, В.Н. Серегин – Моск. Гос. Ин-т радиотехники, электроники и автоматики (технический университет). – М., 2013. – с.27-31.
  19. Hoebeke R. MPLS: Adding Value to Networking. Alcatel Telecommunication Review / R. Hoebeke, M. Aissaoui, T. Nguyen – З Quarter 2012.
  20. Xiao X. Traffic Engineering with MPLS in the Internet / X. Xiao, A. Hannan, В. Bailey, Ni L. – IEEE Network, March/April 2010.
  21. Donner A. An MPLS Networking Concept for Satellite Constellations. ITC18 / Donner A., Beriolo M., Charzinski J., Werner M., Lehnert R. and Tran-Gia P. (Editors), Elsevier Science B.V., 2013
  22. Zhou B. Formulation of the Traffic Engineering Problems in MPLS Based IP Networks / B. Zhou, J. Hu and M. K. Girish – Proceedings ISCC 2000. Fifth IEEE Symposium on Computers and Communications(ISCC), Antibes, France, 2000, pp. 214.
  23. Cerav-Erbas S.K. Traffic engineering in MPLS networks with multiple objectives: modeling and optimization, Industrial and Systems Engineering, Manisa, Turkei. – 2004.