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Abgract—The Hough transorm isamethod for Megting curves by explaiting the duality between pointson
acurve and parametersof that curve Theinitial work showed how to detect both analytic curves' -*' and
non-analytic curves™ but these methods were resricted to binary edge images Thiswork was generalized to
the detection of someanalytic curvesin grey level images spedifically lines™*' drdes™ and parabolas'™ Theline
detection caseis the best known of these and has been ingeniously exploited in several applications'™ " We
show how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between
image gpace and Hough transform space. Such a mapping can be exploited to detect ingances of that particular
shapein an image. Furthermore, variations in the shape such asrotations, scale changes or figure ground
reversals correspond to straightforward transfor mations of this mapping. However, the most remarkable
property isthat such mappings can be composed to build mappingsfor complex shapesfrom the mappings of
smpler component shapes. This makes the generalized Hough transform a kind of universal transform

which can be used to find arbitrarily complex shapes.

I mage processing Hough trandform
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1. INTRODUCTION

In an image, the pertinent information about an object
is very often contained in the shape of its boundary.
Some appreciation of the importance of these boundary
shapesin human vision can be gained from experiments
performed on the human visual system, which have
shown that crude encodings of the boundaries are often
sufficient for object recognition'’® and that the image
may be initially encoded as an 'edge image, i.e. an
image of local intensity or color gradients. Marr'™ has
termed this edge image a 'primal sketch' and suggested
that this may be a necessary first step in image
processing. We describe a very general algorithm for
detecting objects of a specified shape from an image
that has been transformed into such an edge
representation. In that representation, sample pointsin
the image no longer contain grey level information, but
instead each sample point contains a magnitude and
direction representing the severity and orientation of
thelocal grey level change.

Operators that transform the image in such a way
are known as edge operators, and many such oper ators
are available, all based on different models of the local
grey level changes. Two of the most used are the
gradient operator (for example, see Prewitt'®®) and the
Hueckel operator,”® which model local grey level
changesasaramp and a step respectively.

* Theresear ch desribed in thisreport was supported in part
by NIH Grant R23-HL-2153-01 and in part by the Alfred P.
Sloan Foundation Grant 78-4-15.
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Our generalized Hough agorithm uses edge infor-
mation to define a mapping from the orientation of an
edge point to a reference point of the shape. The
reference point may be thought of as the origin of a
locd co-ordinate system for the shape. Then thereis an
essy way of computing a messure which rates how well
points in the image are likely to be origins of the
specified shgpe. Figure 1 shows afew graphic examples
of the information used by the generalized Hough
transform. Lines indicate gradient directions. A festure
of the transform is that it will work even when the
boundary is disconnected due to noise or occlusions.
This is generally not true for other strategies which
track edge segments.

The origina algorithm by Hough

2 did not use

(b)

Fig. 1. Kinds of shapes detected with generdized Hough
trandform, (a) Smple shepe; (b) composite shape:
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orientation information of the edge, and was con-
siderably inferior to later work using the edge orien-
tation for parametric curves.>-**! Shapiro™® 1> has
collected a good hibliography of previous work as
well as having contributed to the error anaysis of the
technique.

1.1 Organization

Section 2 describes the Hough transform for ana-
Iytic curves. As an example of the parametric verson of
the transform, we use the dlipse. This exampleis very
important due to the pervasiveness of circlesin imeges,
and the fact that a circle becomes an elipse when
rotated about an axis perpendicular to the viewing
angle. Despite the importance of elipses, not much
work has used the Hough transform. The elliptica
transform is discussed in detail in Section 3. Section 4
describes the generalized agorithm and its properties.
Section S describes specid dtrategies for implementing
the agorithm and Section 6 summarizes its
advantages.

2. THE HOUGH TRANSFORM FOR ANALYTIC
CURVES

We consider andytic curves of the form f(x,@ = 0
where x isan image point and ais a parameter vector.

(x,y)

1kl

b
I1n, 9}

Fig. 2. (a) Locusof parameters with no directiond infor-
metion. (b) Locusof parameterswith directiond information.
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To see how the Hough transform works for such
curves, let us suppose we are interested in detecting
circular boundaries in an image. In Cartesian co-
ordinates, the equation for acircleis given by
(x-a)® + (y-b)2=r2

Suppose dso that the image has been transformed
into an edge representation so that only the
magnitude of local intendity changes is known. Pixels
whose magnitude exceeds some threshold are termed
edge pixels. For each edge pixel, we can ask the
question: if this pixel isto lieon acircle, what is the
locus for the parameters of that circle? The answer isa
right circular cone, as shown in Fig. 2(a). This can be
seen from equation (1) by treating x and y as fixed
and letting, a, b, and r vary.

The interesting result about this locus in parameter
spaceisthefollowing. If asat of edge pixdsin animage
are aranged on a circle with parameters &y, by, and ro,
the resultant loci of parameters for each such point will
pass through the same point (ag,bg,rg) in parameter
space. Thus many such right circular cones will
intersect at a common point.

@

2.1 Directional information

We seeimmediatdly that if we aso use the directional
information associated with the edge, this reduces the
parameter locusto aline, as shown in Fig. 2(b). Thisis
because the center of the circle for the point (x, y) must
lie r units along the direction of the gradient. Formally,
the circle involves 3 parameters. By using the equation
for the circle together with its derivetive, the number of
free parameters is reduced to one. Formaly, what
happensis the equation

Y iaal=
a_x{rrl]' o D

introduces a term Ay/dx which is known since

dy n
(Tx' = lan [Ml’ - —2']

where ¢h(x) is the gradient direction. This suggests the
following algorithm.

Hough algorithm for analytic curves in grey leve
images. For a specific curve/(x, @) = 0 with parameter
vector g, form an array /1(3), initialy set to zero. This
array is termed an accumulator array. Then for each
edge pixel x, compute al a such that f{\, a) = 0 and
d//dx(x, @ = 0 and increment the corresponding accu-
mulator array entries:

A(@): = A() + 1.

After each edge pixel x has been considered, loca
maximain the array A correspond to curves of/in the
image.

If only the equation/*(x, 8) = 0 is usad, the cogt of the
computation is exponentia in the number of para-
meters minus one, that is, where m parameters each
have M values, the computation is proportional to



cdhe

hema
chto

Generdizing the Hough transform to detect arbitrary shepes 113

Domasn of
N

Uyl

Fig. 3. Using convolution templates to compensate for
errors.

MT™ ~' This is because the equation of the curve can be
used to determine the last parameter. The use of
gradient directional information saves the cost of
another parameter making the total effort propor-
tional to Af"™2, for m> 2.

2.2 Compensating for errors

A problem arises in detecting maxima in the array
/1(a). Many sources of error effect the computation of
the parameter vector a so that in general many array
locations in the vicinity of the ideal point a are
incremented instead of the point itself. One way of
handling this problem is to use aforma error modd on
the incrementation step. This model would specify a
set of nearby points instead of a single point. Sha-
piro? =¥ has done extensive work on this subject.
Another solution to this problem is to replace
uncom-pensated accumulator values by a function of
the values themselves and nearby points after the in-
crementation step. The effect of this operation is to
smooth the accumulator array. We show that, under
the assumption of isotropic errors, these methods are
equivalent.

Returning to the initial example of detecting circles,
the smoothing of the accumulator array is amost
equivalent to the change in the incrementing pro-
cedure we would use to alow for uncertainties in the
gradient direction ¢ and theradiusr. If we recognized
these uncertainties as:

d(x) + Ap
r+ Ar(r)

we would increment dl vaues of awhich fdl within the
shaded band of Fig. 3. Welet Ar increase with r so that
uncertainties are counted on a percentage basis. Figure
3 shows the two-dimensiona analog of the genera
three-dimensional case.

Suppose we approximate this procedure by incre-
menting all values of a which fall inside the square
domain centered about the nominal center shown in
Fig. 3, according to some point spread function h. After
the first contributing pixel which increments center &,
has been taken into account, the new accumulator

array contents A will be given by JI(.) = *(m-m,,)

where a = (aya,,r) and g = {ap,a0,lo). If wein- @
clude al the contributing pixels for that center,
denoted by C, the accumulator is

A=) = C(ng)h(a —=;). 3)

Findly for dl incremented centers, we sum over &y
Thus within the approximation of letting the square
represent the shaded band shown in Fig. 3, the

Ala) = T Claghin —ag). (4)
But C(ag) = A(s), s0 that

Afn) =Y Alng)h{a—2,)
— A%
= Ala) (3}

smoothing procedure is equivalent to an accom-
modation for uncertainties in the gradient direction
and radius.

3. AN EXAMPLE: ELLIPSES

The description of the algorithm in Section 2.1 is

very terse and its implementation often requires con-
siderable agebraic manipulation. We use the example
of finding dlipses to show the kinds of caculation
which must be done. Ellipses are an important exam-
ple, as circles, which are a ubiquitous part of many
everyday objects, appear as dlipses when viewed from
adistant, oblique angle.
We use the center of the dllipse as areference point and
assume that it is centered at X, Yo with mgjor and
minor diameters a and b. For the moment, we will
assume that the elipse is oriented with its major axis
pardle to the x-axis. Later we will relax this require-
ment by introducing an additional parameter for
arbitrary orientations. For the moment, assume a and
b are fixed. Then the equation of the dllipseis:

(x—x0)  (y—yo)
g

1. (6)

Fg. 4. Parametrization of an dlipsewith mgjor axispardld
to x-axis.
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Let X = x=x;, Y = y~y,, then

xZ yl

?‘ + F =1 (7)
Differentiating with respect to X

2X _ 2Y dY

st~ ®

But dY/dX is known from the edge pixel information!
LetdY/dX = ¢, then from (8)

2 az i )
X*= b—-ic ¥e. 9)
Substituting n (7)

yl 2
b—,(n%:’);l (10)

b!
Y=1 3 (11)
(l T ‘)
by
so that
2
xosa g & (12)

.
J+ )
and finally, given a.b.xy and d Y/dX, we can determine
Xg and y, as:

al

Xom Xt ——
\/(.”a‘_ﬁ‘)

2

Yo=Y X —7— v
J0+5)
bl

The four solutions correspond to the four quad-
rants, as shown in Fig. 5. The appropriate quadrant
can be found from the gradient by testing the signed
differences dY and dX.

The find step isto handle rotations by introducing a
fifth parameter 0. For an arbitrary 0, we calculate

(X, Y) using

(13)

(14)

{clan(¢—8-;>

and rotate these (X, Y) by 6 to obtain the correct

Fig. 5. Four reference point solutions resolvable with gra-
dient quadrant information.

{xg, ¥o). In ALGOL we would implement this as:

procedure  HoughElhpse (integer X X .. YooY muo
DonioPnas TrssePmars Dol mass X1 Vs Xgu Yo, dx, dy; real angle, .
integer array A, P).
begin,
for x: = x,, step dx 10 x,, do
Or ¥: = Vs St€p Ay 10 Yoo, dO
in
dX = P(x +delta, y)~P(x, y);
dY: = P(x, y +delta)— Plx. y),
for a: = a,,, step da until o, do
for b: = b, step db until b, do
for 8: = 0, step 80 unul 0, do

begin; 4y x
angle: = arctan! — |-6~-.
dX 2
{1 = tanfangle).
; ; a?
dx: = Sign X{d.\.d))—f(—Tj.
1+
v a*?
:
dy: = SignY (dX.dY) . 3
/14 )
\Y b

Rotate-by-Theta(dx.dy);

Xoi =X +dx;

Yo:=y +dy;

Alxg, yo. 8,0, b). = Alxg, yo. B2, b) + 1,

end.

Notice that to determine the appropriate formulae for
an arbitrary orientation angle s, we need only rotate
the gradient angle and the offsets dx and dy. SignX
and Sign ¥ are functions which return + 1 depending
on the quadrant determined by dX and dY.

3.1 Parameter spaceimage spacetrade-offs

Tsuji and Matsumoto"® recognized that a de-
creased computationa effort in parameter space could
be traded for an increased effort in edge space. It isour
intent to place these ideas on aformd footing. Later we
will see that the same kind of trade-off is potentially
available for the case of arbitrary shapes, but is
impractical to implement.

An dlipse has five parameters. Referring to the basic
algorithm in Section 2.1, we use the equation for the
elipse together with its derivative to solve for two of
these parameters as a function of the other three. Thus
the agorithm examines every edge point and uses a
three-dimensional accumulator array so that the com-
putations are of order O(ed®). Here e is the number of
edge pixds and we are assuming d distinct vaues for
each parameters. Suppose we use pairs of edge points
in the algorithm. This results in four equations, two
involving the equation for an ellipse evaluated at the
different points and two for the related derivatives.
This leaves one free parameter. Thus the resultant
computational effort is now O(€’d). The detailed
derivation of this form of the Hough algorithm is
presented in the Appendix.

If parameter space can be highly congtrained so that
the set of plausible vaues is smal, then the former
technique will be more efficient, wheressif there are
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Table |. Analytic curves described in terms of the generalized shape parameters x,. \,,

S,.5,.80
Analytic form Parameters Equation
Line S, xcosfl + ysinfl = §
Circle X0V S (x—x,P +(y—y) =5
Parabola X Ve S.. 8 (y=y) =45, (x—x)"
‘ (y=y) ix=x)
Elli Xy 5..8,.0 ———————=1*
w SRS

* Plus rotation by 8

Generdizing the Hough transform to detect arbitrary shapes |

relatively few edges and large variaions in parameters,
the latter will be more efficient.

4. GENERALIZING THE HOUGH TRANSFORM

To generdize the Hough agorithm to non-analytic
curves we define the following parameters for a
generalized shape:

a = {y,s.8)

wherey = (x,, yy) isareference origin for the shgpe, ¢ is
its orientation, and s = (s,, s,) describes two orthog-
onal scale factors. As before, we will provide an
agorithm for computing the best set of parameters s
for a given shape from edge pixel data. These para-
meters no longer have equal status. The reference
origin location, vy, is described in terms of a table of
possible edge pixel orientations. The computation of
the additiona parameters s and 6 is then accomplished
by straightforward transformations to this table. [To
smplify the development dightly, and because of its
practica dgnificance, we will work with the
four-dimensional sunspacea = (y,s,6), wheres is a
scalar] In a sense this choice of parameters includes
the previous analytic forms to which the Hough
transform has been applied. Table 1 shows these
relationships.

4.1 Earlier work: arbitrary shapes in binary edge
images

Merlin and Farber™ showed how to use a Hough
algorithm when the desired curves could not be
described analyticaly. Each shape must have a specific
reference point. Then we can use the following algor-
ithm for a shape with boundary points B denoted by
{xg} which arerelative to some reference origin y.

Merlin-Farber Hough algorithm: non-analytic cur-
ves with no gradient direction information st = y. Form
a two-dimensional accumulator array A(x) initiaized
to zero. For each edge pixe x and each boundary point
Xg, compute a such that ss = x —xg and increment
A(»). Local maximain A(xz) correspond to instances of
the shape in the image.

Note that thisis merely an efficient implementation
of the convolution of the shape template where edge

13

pixels are unity and others are zero with the cor-
responding image, i.e.,



Alxp = T{x)*5{x) (15 whereEis
the binary edge image defined by
11f x 15 an edge pixel
A= J[o otherwise
and T(X) is the shape template consisting of ones where
X isaboundary point and zeros otherwise, i.e.,

00 lifxisin B
=10 otherwise .
Thisresult is due to Sklansky.'**

The Merlin-Farber algorithm is impractical for red
image data. In an image with a multitude of edge
pixels, there will be many fase instances of the desired
shape due to coincidentd pixel arrangements. Never-
theless, it is the logical precursor to our generalized
algorithm.

4.2 The generalization to arbitrary shapes

The key to generalizing the Hough agorithm to
arbitrary shapes is the use of directiona information.
Directiona information, besides making the algor-
ithm faster, also greatly improves its accuracy. For
example, if the directiona information is not used in
the circle detector, any significant group of edge points
with quite different directions which lie on a circle will
be detected. This can be appreciated by comparing
Figs 2(a) and 2(b).

Consider for a moment the circular boundary
detector with a fixed radius ro. Now for each gradient
point x with direction ¢, we need only increment a
single point x+r. For the circle:

{rl=ro (16)
Angle(r) = ¢{x) . (17)

Now suppose we have an arbitrary shape like the one
shown in Fig. 6. Extending the idea of the circle
detector with fixed radius to this case, for each point x
on the boundary with gradient direction ¢, we incre-
ment apoint a= x +r. The difference is that now r =
a— x which, in generd, will vary in magnitude and
direction with different boundary points.
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Fig. 6. Geometry for generdized Hough transform.

The fact that r variesin an arbitrary way means that
the generalized Hough transform for an arbitrary
shape is best represented by a table which we call the
JI-table.

43 The R-table

From the above discussion, we can see that the
R-table is easly constructed by examining the
boundary points of the shape. The construction of
the table is accomplished as follows.

Algorithm for congtructing an R-table. Choose a
reference point y for the shape. For each boundary
point x, compute ¢(x) the gradient directionand r =
y —X. Storer as afunction of ¢.

Notice that the mapping the table represents is
vector-valued and, in general, an index ¢ may have
many vaues of r. Table 2 shows the form of the JI-teble
diagrammatically.

The sI-tableis used to detect ingtances of the shape S
in an image in the following manner.

Generalized Hough algorithm for single shapes. For
each edge pixel x in the image, increment al the
corresponding points x + r in the accumulator array A
wherer isatable entry indexed by ¢, i.e, r("). Maxima
in A correspond to possible instances of the shape S

44 Examples

Some simple shapes are rotation-invariant, that is,
the entries in the incrementation table are invariant
functions of the gradient direction ¢. Figure 7(8) shows
an example for washers (or bagels). Here there are
exactly two entries for each ¢, one r units in the
gradient direction and one R units in the direction
opposite to the gradient direction. In another case the
entries may be asimple function of ¢. Figure 7(b)

Table 2. R-1able format

! ¢ Ry,

0 0 (r[n—r-—:x,x'mﬂ.é(l)=0]-
| Ad {rla —r=x, xin B, $(x) = Ad}
2 24A¢ frla—r=x, xinB, ¢ix)~ 24¢

shows such an example; hexagons. Irrespective of the
orientation of the edge, the reference point locusison a
line of length / paralld to the edge pixd and (3/2)/ units
away fromiit.

Another example is shown in Fig. 8. Here the points
on the boundary of the shape are shown in Fig. 8(8). A
reference point is sdected and used to construct the
R-table. Figure 8(b) shows a synthetic image of four
different shapes and Fig. 8(c) shows the portion of the
accumulator array for this image which has the correct
vaues of orientation and scale. It is readily seen that
edge points on the correct shape have incremented the
same point in the accumulator array, wheress edge
points on the other shapes have incremented disparate
points.

4.5 R-table properties and the general notion of a shape

Up to this point we have considered shapes of fixed
orientation and scae. Thus the accumulator array was
two-dimensiona in the reference point co-ordinates.
To search for shapes of arbitrary orientation ¢ and
scde 5 we add these two parameters to the shape
description. The accumulator array now consists of
four dimensions corresponding to the parameters (y,
s, ). The K-table can aso be used to increment this
larger dimensional space since different orientations
and scales correspond to easily-computed transfor-
mations of the table. Additiondly, smple transfor-
mations to the K-table can aso account for
figure-ground reversals and changes of reference
point.

We denote a particular Ji-table for a shape 5 by
A(p). R can be viewed as a multiply-vector-vaued
function. It is easy to see that smple transformations
to this table will dlow it to detect scaled or rotated
ingtances of the same shepe. For example if the shapeis
scaled by s and this transformation is denoted by T,
then
i.e, dl the vectors are scaled by s. Also, if the object is
rotated by ¢ and this transformation is denoted by T,
then

TJR(#)] = Rot(R[($—6)mod2x],6}  (19)

i.e, dl the indices are incremented by — O modulo 211,
the appropriate vectors r are found, and then they are
rotated by s.

To appreciate that thisis true, refer to Fig. 9. In this
figure an edge pixel with orientation ¢ may be
conddered as corresponding to the boundary point x,,,
in which case the reference point is y™. Alternatively,
the edge pixel may be consdered as xz on a rotated
ingtance of the shape, in which case the reference point
is & ys which can be specified by trandating rp to Xg
and rotating it through + J10.

Figure-ground intensity reversals can adso be taken
into account via a smple JI-table modification. The
indices in the table are changed from ¢ to (¢ +
n)moo2n. Of course

Tl T [R($)]) = Rig)
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Fig. 7. Smple examples using K-tables; (a) washers; (b) hexagons.

Fig. 8. An example, (a) Points on a shape used to encode K-table. (b) Image containing shape, (c) A plane
through the accumulator array A(X,, v,, So,00), where § and &, are appropriate for the shapein theimage
(S5=64,9%=0).
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Fg. 9. Congrudtion for visudizing the R- tabletrare‘orrrmonforarotajmby)lo Point Acanbevienved as

(1)mlheshape( E%g{)t(g)ne;ntmﬁesfwe

where Ty, denotes the figure-ground transformations.
Another property which will be useful in describing
the composition of generalized Hough transforms is
the change of reference point. If we want to choose a
new reference point y such that y — y' = r then the
modification to the K-tebleisgiven by R(<j>) +r,i.eris
added to each vector in the teble.

46 Using pairsof edges

We can dso entertain the idea of using pairs of edge
pixels to reduce the effort in parameter space. Using
the R-table and the properties of the previous section,
each edge pixel defines a surface in the
four-dimensional accumulator space of a = (y,s,0).
Two edge pixels at different orientations describe the
same surface rotated by the same amount with respect
to 6. Pointswhere these two surfaces intersect (if any)
correspond to possible parameters a for the shape.
Thus in a similar manner to Section 3.1, it is theoreti-
caly possible to use the two points in image space to
reduce the locus in parameter space to a single point.
However, the difficulties of finding the intersection
points of the two surfaces in parameter space will make
this approach unfeasible for most cases.

4.7 The Hough transformfor composite shapes

Now suppose we have a composite shape S which
has two subparts S, and S,. This shape can be detected
by using the K-tables for 5, and S; in a remarkably
smple fashion. If y, y,, y» are the reference points for
shapes S, § and S, respectively, we can compute r, =
VV1andr,=y— Yy, Then the composte generalized
Hough transform 5{¢) is given by

K(0) =[KsW) +r] O [Kg(0) +1]  (20)

which meansthat for each index vdue </>, r;isadded to
K$,(0)> "2 * added to Ry(<t>), and the union of these sets

---- ), rotated by J10. If (2) isused then the gppropriate
by trandaing R,, to Aand rotaln&,t by 1O as shown.

isstored in A5(gh)- Equation 20 is very important asit
represents away of composing transforms.

In asimilar manner we can define shapes as the
difference between tables with common entries, i.e.,

Rs—R, @)

means the shape S defined by S with the common
entries with S, deleted. The intersection operation is
defined similarly. The primary use of the union
operation is to detect shapes which are composites of
smpler shapes. However, the difference operation also
serves a useful function. Using it, K-tables which
explicitly differentiate between two similar kinds of
shapes can be congtructed. An example would be
differentiating between the washers and hexagons
discussed earlier.

4.8 Building convolution templates

While equation (20) is one way of composing Hough
transforms, it may not be the best way. Thisis because
the choice of reference point can sgnlflcantly affect the
accuracy of the transform. Shapiro"®” has shown
this, emphasizing anaytic forms. Thisis aso graphi-
cally shown in Fig. 10. As the reference point becomes
distant from the shape, small angular errorsin ¢ can
produce large errors in the vectors S(¢).

One solution to this problem is to use the table for
each subshape with its own best reference point and to
smooth the resultant accumulator array with a com-
posite smoothing template. Recdl that for the case of a
single shape and isotropic errors (Section 2.2), con-
volving the accumulator array in this fashion was
equivalent to taking account of the errors during the
incrementation.

Where hJy,) denotes the smoothing template for
reference point y, of shape S the composite con-
volution template is given by

This in practic
introduce error
valueandissui

5.INC

If we use the
lator array by u
lator array are
perimeter of the
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lal

Fig. 10. Effectsof changing reference point on errors.

N

i~
So finally, we have the following algorithm for the
detection of a shape S which is the composite of
subpartss, ..Sy.

Generalized Hough algorithm/or composite shapes. 1.
For each edge point with direction ¢ and for each
value of scale s and orientation O, increment the
corresponding pointsx +r in Awherer isin

ano=r3r, U/S") }*

2. Maxima in A, = A*H correspond to possible
instances of the shape S. Figure 11 shows a smple
example of how templates are combined.

If there are a edge pixels and Af pointsin the error
point spread function template, then the number of
additions in the incrementation procedure is M. Thus
this method might at first seem superior to the
convolution method, which requires approximately
n’M additions and multiplications where M < n? the
total number of pixels. However, the following heuristic
isavailablefor the convolution since A istypicallly very
sparse. Compute

/4,(@) onlyif A=) >0.
()
Thisin practice is very effective, although it may
introduce errors if the appropriate index has a zero
value and is surrounded by high values.

5. INCREMENTATION STRATEGIES

If we use the strategy of incrementing the accumu-
lator array by unity, then the contents of the accumu-
lator array are approximately proportional to the
perimeter of the shapethat is detectablein theimage.
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Fig. 11. Example of composite smoothing template con-
gruction. (@) Convolution templates for shapes S, Sy, S.. (b)
Relationships between reference points y,, v, and ys in
composite shape S. () Combined smoothing template 51 asa
function of V hy, and hyand >',, y,, and >'s.

This strategy is biased towar ds finding shapes where a
large portion of the perimeter is detectable. Several
different incrementation strategies are available, de-
pending on the different quality of image data. If
shorter, very prominent parts of the perimeter are
detected, as might be the case in partially occluded
objects, then an alter native strategy of incrementing by
the gradient modulus value might be more successful,
ie,

A(): = A(n) + g(x). (24)

Of cour se the two strategies can be combined, e.g.,
A(): = A(w) +0(x) + ¢ (25

wherec isa constant.

Another possibility is the use of local curvature
information in the incrementation function. Using this
strategy, neighboring edge pixels are examined to
calculate approximate curvature, K. This requires a
mor e complicated operator than the edge operators we
have considered, and complicates the table. Now along
with each value of r the corresponding values of



curvature
must be
stored.
Then the
increment
ation



D. H.BALIARD

Original shape

llll Eorly iterations of olgorithm

emphasize gtobal informatson

Later iterotons of olgorithm
emphasize consistent 1ocol poris

Fig. 12. Dynamic Hough transform.

weights 'informative' high local curvature edge pixels
asfollows:

A(»): = A(») + K.
(26)

5.1 Weighting locally consstent information

Under certain circumstances we may want to weight
local information that is consistent. For example, in
searching for the boundary of that object, a connected
set of edges conforming to the object may be more
important than a set of unconnected edges. Figure 12
shows this example. Figure 12(a) might arise in
situations with very noisy data. Figure 12(b) is an
example where an object is occluded by another object.
Wechder and Sklansky,® in the andytic formulation,
successfully used the rdated strategy of increasing the
incrementation factor if there were aso neighboring
edge pixels with the same edge direction. However, we
would like to measure local consistency in parameter
space.

A simple strategy for handling this case is to
explicitly record the reference points for each edge
pixel during afirst pass. Then on a second pass edge
pixes can increment by more than unity if neighboring
edge pixels areincrementing the same reference point.

A more complicated strategy is to search for con-
nected curve segments in image space which have
compatible parameters. Such an agorithm, based on

curve segment would be

99_5

A(X,, XJ,...,x.)= £9(*K)+ | <2AX*-x» 4 1) 27)

dynamic programming, is described in Baiard and
Sklansky."* The appropriate objective function for a




where

g(\,) = the gradient magnitude
i24)
and

A(x* x*+i) = 0if Ux,,) - O(*- i)|mody is
small and - co otherwise  (29)

In the dynamic programming algorithm, at each
iteration step we can build longer compatible curves
from al the edge points. Thus the incrementation
function for a point x would represent the longest
compatible curve from that point. (If alonger curve
cannot be built & any iteration, we can eadly find
thisout.)

In aparale implementation of this algorithm the
contents of the accumulator array could be made to
vary dynamicaly. Initialy the contents would reflect
globa information, but with successive iterations the
contents would be weighted in favor of consistent,
local information.

5.2 More complex strategies

When searching for a composite object, different
parts may have different importance. Thisis readily
accommodated by associating aweight w,- with each
table Rg so that each entry in R.. increments by a
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factor n>,- ingead of unity.

The composite object may be searched for in a
sequential manner. Applying the table sequentialy
could greatly improve the efficiency of the com-
putations by limiting areas for subsequent suitable
incrementations.  Furthermore, standard me-
thods??? could be used to stop the process once the
shape had been located to the desired confidence level.

Even more complex srategies are possible wherein
the process is integrated into a larger system. Here
contextual information can be used to relegate al the
previous operations including (a) building composite
templates, (b) choosing weights, (c) choosing appli-
cation sequences, and (d) adjusting weights in new
contexts.
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