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Abstract—The Hough transform is a method for Meeting curves by exploiting the duality between points on 
a curve and parameters of that curve. The initial work showed how to detect both analytic curves"-*' and 
non-analytic curves,151 but these methods were restricted to binary edge images. This work was generalized to 
the detection of some analytic curves in grey level images, specifically lines,'*' circles131 and parabolas.'61 The line 
detection case is the best known of these and has been ingeniously exploited in several applications.'7"" We 
show how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between 
image space and Hough transform space. Such a mapping can be exploited to detect instances of that particular 
shape in an image. Furthermore, variations in the shape such as rotations, scale changes or figure ground 
reversals correspond to straightforward transformations of this mapping. However, the most remarkable 
property is that such mappings can be composed to build mappings for complex shapes from the mappings of 
simpler component shapes. This makes the generalized Hough transform a kind of universal transform 
which can be used to find arbitrarily complex shapes. 

Image processing Hough transform Shape recognition Pattern recognition 
Parallel algorithms 

I. INTRODUCTION 

In an image, the pertinent information about an object 
is very often contained in the shape of its boundary. 
Some appreciation of the importance of these boundary 
shapes in human vision can be gained from experiments 
performed on the human visual system, which have 
shown that crude encodings of the boundaries are often 
sufficient for object recognition'10' and that the image 
may be initially encoded as an 'edge image', i.e. an 
image of local intensity or color gradients. Marr'1" has 
termed this edge image a 'primal sketch' and suggested 
that this may be a necessary first step in image 
processing. We describe a very general algorithm for 
detecting objects of a specified shape from an image 
that has been transformed into such an edge 
representation. In that representation, sample points in 
the image no longer contain grey level information, but 
instead each sample point contains a magnitude and 
direction representing the severity and orientation of 
the local grey level change. 

Operators that transform the image in such a way 
are known as edge operators, and many such operators 
are available, all based on different models of the local 
grey level changes. Two of the most used are the 
gradient operator (for example, see Prewitt'12') and the 
Hueckel operator,"3' which model local grey level 
changes as a ramp and a step respectively. 

* The research described in this report was supported in part 
by NIH Grant R23-HL-2153-01 and in part by the Alfred P. 
Sloan Foundation Grant 78-4-15. 

Our generalized Hough algorithm uses edge infor-
mation to define a mapping from the orientation of an 
edge point to a reference point of the shape. The 
reference point may be thought of as the origin of a 
local co-ordinate system for the shape. Then there is an 
easy way of computing a measure which rates how well 
points in the image are likely to be origins of the 
specified shape. Figure 1 shows a few graphic examples 
of the information used by the generalized Hough 
transform. Lines indicate gradient directions. A feature 
of the transform is that it will work even when the 
boundary is disconnected due to noise or occlusions. 
This is generally not true for other strategies which 
track edge segments. 

The original algorithm by Hough'2' did not use 

Ill 

Fig. 1. Kinds of shapes detected with generalized Hough 
transform, (a) Simple shape; (b) composite shape.

Оригинал текста: http://userweb.cs.utexas.edu/~dana/HoughT.pdf
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orientation information of the edge, and was con-
siderably inferior to later work using the edge orien-
tation for parametric curves.'5-6'141 Shapiro"516 17> has 
collected a good bibliography of previous work as 
well as having contributed to the error analysis of the 
technique. 

1.1 Organization 
Section 2 describes the Hough transform for ana-

lytic curves. As an example of the parametric version of 
the transform, we use the ellipse. This example is very 
important due to the pervasiveness of circles in images, 
and the fact that a circle becomes an ellipse when 
rotated about an axis perpendicular to the viewing 
angle. Despite the importance of ellipses, not much 
work has used the Hough transform. The elliptical 
transform is discussed in detail in Section 3. Section 4 
describes the generalized algorithm and its properties. 
Section S describes special strategies for implementing 
the algorithm and Section 6 summarizes its 
advantages. 

2. THE HOUGH TRANSFORM FOR ANALYTIC 
CURVES 

We consider analytic curves of the form f(x,a) = 0 
where x is an image point and a is a parameter vector. 

 

To see how the Hough transform works for such 
curves, let us suppose we are interested in detecting 
circular boundaries in an image. In Cartesian co-
ordinates, the equation for a circle is given by 

(x-a)2 + (y-b)2 = r2. 
Suppose also that the image has been transformed 
into an edge representation so that only the 
magnitude of local intensity changes is known. Pixels 
whose magnitude exceeds some threshold are termed 
edge pixels. For each edge pixel, we can ask the 
question: if this pixel is to lie on a circle, what is the 
locus for the parameters of that circle? The answer is a 
right circular cone, as shown in Fig. 2(a). This can be 
seen from equation (1) by treating x and у as fixed 
and letting, a, b, and г vary. 

The interesting result about this locus in parameter 
space is the following. If a set of edge pixels in an image 
are arranged on a circle with parameters a0, b0, and r0, 
the resultant loci of parameters for each such point will 
pass through the same point (a0,b0,r0) in parameter 
space. Thus many such right circular cones will 
intersect at a common point. 

2.1 Directional information 
We see immediately that if we also use the directional 

information associated with the edge, this reduces the 
parameter locus to a line, as shown in Fig. 2(b). This is 
because the center of the circle for the point (x, y) must 
lie r units along the direction of the gradient. Formally, 
the circle involves 3 parameters. By using the equation 
for the circle together with its derivative, the number of 
free parameters is reduced to one. Formally, what 
happens is the equation 

 

 
Fig. 2. (a) Locus of parameters with no directional infor-
mation. (b) Locus of parameters with directional information. 

where ф(х) is the gradient direction. This suggests the 
following algorithm. 

Hough algorithm for analytic curves in grey level 
images. For a specific curve/(x, a) = 0 with parameter 
vector a, form an array /1(a), initially set to zero. This 
array is termed an accumulator array. Then for each 
edge pixel x, compute all a such that f{\, a) = 0 and 
d//dx(x, a) = 0 and increment the corresponding accu-
mulator array entries: 

А(а): = А(я) + 1. 

After each edge pixel x has been considered, local 
maxima in the array A correspond to curves of/in the 
image. 

If only the equation/*(x, a) = 0 is used, the cost of the 
computation is exponential in the number of para-
meters minus one, that is, where m parameters each 
have M values, the computation is proportional to 

 

(1) 

 
introduces a term Ay/dx which is known since 
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Fig. 3. Using convolution templates to compensate for 
errors. 

M™ ~'. This is because the equation of the curve can be 
used to determine the last parameter. The use of 
gradient directional information saves the cost of 
another parameter making the total effort propor-
tional to Af""2, for m > 2. 

2.2 Compensating for errors 
A problem arises in detecting maxima in the array 

/1(a). Many sources of error effect the computation of 
the parameter vector a so that in general many array 
locations in the vicinity of the ideal point a are 
incremented instead of the point itself. One way of 
handling this problem is to use a formal error model on 
the incrementation step. This model would specify a 
set of nearby points instead of a single point. Sha-
piro'1 s_18) has done extensive work on this subject. 
Another solution to this problem is to replace 
uncom-pensated accumulator values by a function of 
the values themselves and nearby points after the in-
crementation step. The effect of this operation is to 
smooth the accumulator array. We show that, under 
the assumption of isotropic errors, these methods are 
equivalent. 

Returning to the initial example of detecting circles, 
the smoothing of the accumulator array is almost 
equivalent to the change in the incrementing pro-
cedure we would use to allow for uncertainties in the 
gradient direction ф and the radius r. If we recognized 
these uncertainties as: 

 
we would increment all values of a which fall within the 
shaded band of Fig. 3. We let Ar increase with r so that 
uncertainties are counted on a percentage basis. Figure 
3 shows the two-dimensional analog of the general 
three-dimensional case. 

Suppose we approximate this procedure by incre-
menting all values of a which fall inside the square 
domain centered about the nominal center shown in 
Fig. 3, according to some point spread function h. After 
the first contributing pixel which increments center a0 

has been taken into account, the new accumulator 

 

array contents A will be given by Л(.) = *(■-■„) 

where a = (а1(а2,г) and a0 = {al0,a20,r0). If we in-
clude all the contributing pixels for that center, 
denoted by C, the accumulator is 

Thus within the approximation of letting the square 
represent the shaded band shown in Fig. 3, the 

smoothing procedure is equivalent to an accom-
modation for uncertainties in the gradient direction 
and radius. 

3. AN EXAMPLE: ELLIPSES 

The description of the algorithm in Section 2.1 is 
very terse and its implementation often requires con-
siderable algebraic manipulation. We use the example 
of finding ellipses to show the kinds of calculation 
which must be done. Ellipses are an important exam-
ple, as circles, which are a ubiquitous part of many 
everyday objects, appear as ellipses when viewed from 
a distant, oblique angle. 
We use the center of the ellipse as a reference point and 
assume that it is centered at x0, y0 with major and 
minor diameters a and b. For the moment, we will 
assume that the ellipse is oriented with its major axis 
parallel to the x-axis. Later we will relax this require-
ment by introducing an additional parameter for 
arbitrary orientations. For the moment, assume a and 
b are fixed. Then the equation of the ellipse is: 

 

 

 

(2) 

 
Finally for all incremented centers, we sum over a0: 

Fig. 4. Parametrization of an ellipse with major axis parallel 
to x-axis. 
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and finally, given a.b.x.y and d Y/dX, we can determine 
x0 and y0 as: 

 
The four solutions correspond to the four quad-

rants, as shown in Fig. 5. The appropriate quadrant 
can be found from the gradient by testing the signed 
differences dY and dX. 

The final step is to handle rotations by introducing a 
fifth parameter 0. For an arbitrary 0, we calculate 
(X, Y) using 

 

Fig. 5. Four reference point solutions resolvable with gra-
dient quadrant information. 

Notice that to determine the appropriate formulae for 
an arbitrary orientation angle в, we need only rotate 
the gradient angle and the offsets dx and dy. SignX 
and Sign У are functions which return ± 1 depending 
on the quadrant determined by dX and dY. 

3.1 Parameter space image space trade-offs 
Tsuji and Matsumoto"9' recognized that a de-

creased computational effort in parameter space could 
be traded for an increased effort in edge space. It is our 
intent to place these ideas on a formal footing. Later we 
will see that the same kind of trade-off is potentially 
available for the case of arbitrary shapes, but is 
impractical to implement. 

An ellipse has five parameters. Referring to the basic 
algorithm in Section 2.1, we use the equation for the 
ellipse together with its derivative to solve for two of 
these parameters as a function of the other three. Thus 
the algorithm examines every edge point and uses a 
three-dimensional accumulator array so that the com-
putations are of order 0(ed3). Here e is the number of 
edge pixels and we are assuming d distinct values for 
each parameters. Suppose we use pairs of edge points 
in the algorithm. This results in four equations, two 
involving the equation for an ellipse evaluated at the 
different points and two for the related derivatives. 
This leaves one free parameter. Thus the resultant 
computational effort is now 0(e2d). The detailed 
derivation of this form of the Hough algorithm is 
presented in the Appendix. 

If parameter space can be highly constrained so that 
the set of plausible values is small, then the former 
technique will be more efficient, whereas if there are 

 

  

 
and rotate these (X, Y) by в to obtain the correct 
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relatively few edges and large variations in parameters, 
the latter will be more efficient. 

4. GENERALIZING THE HOUGH TRANSFORM 

To generalize the Hough algorithm to non-analytic 
curves we define the following parameters for a 
generalized shape: 

 
where у = (xr, yT) is a reference origin for the shape, в is 
its orientation, and s = (s„ sy) describes two orthog-
onal scale factors. As before, we will provide an 
algorithm for computing the best set of parameters я 
for a given shape from edge pixel data. These para-
meters no longer have equal status. The reference 
origin location, y, is described in terms of a table of 
possible edge pixel orientations. The computation of 
the additional parameters s and в is then accomplished 
by straightforward transformations to this table. [To 
simplify the development slightly, and because of its 
practical significance, we will work with the 
four-dimensional sunspacea = (y,s,в), wheres is a 
scalar] In a sense this choice of parameters includes 
the previous analytic forms to which the Hough 
transform has been applied. Table 1 shows these 
relationships. 

4.1 Earlier work: arbitrary shapes in binary edge 
images 

Merlin and Farber13' showed how to use a Hough 
algorithm when the desired curves could not be 
described analytically. Each shape must have a specific 
reference point. Then we can use the following algor-
ithm for a shape with boundary points В denoted by 
{xB} which are relative to some reference origin y. 

Merlin-Farber Hough algorithm: non-analytic cur-
ves with no gradient direction information я = у. Form 
a two-dimensional accumulator array А(л) initialized 
to zero. For each edge pixel x and each boundary point 
xB, compute a such that я = x —xB and increment 
A(»). Local maxima in А(я) correspond to instances of 
the shape in the image. 

Note that this is merely an efficient implementation 
of the convolution of the shape template where edge 

pixels are unity and others are zero with the cor-
responding image, i.e., 

 



 (15) where E is 

the binary edge image defined by 

 
and T(x) is the shape template consisting of ones where 
x is a boundary point and zeros otherwise, i.e., 

 
This result is due to Sklansky.'201 

The Merlin-Farber algorithm is impractical for real 
image data. In an image with a multitude of edge 
pixels, there will be many false instances of the desired 
shape due to coincidental pixel arrangements. Never-
theless, it is the logical precursor to our generalized 
algorithm. 

4.2 The generalization to arbitrary shapes 
The key to generalizing the Hough algorithm to 

arbitrary shapes is the use of directional information. 
Directional information, besides making the algor-
ithm faster, also greatly improves its accuracy. For 
example, if the directional information is not used in 
the circle detector, any significant group of edge points 
with quite different directions which lie on a circle will 
be detected. This can be appreciated by comparing 
Figs 2(a) and 2(b). 

Consider for a moment the circular boundary 
detector with a fixed radius r0. Now for each gradient 
point x with direction ф, we need only increment a 
single point x+r. For the circle: 

 
Now suppose we have an arbitrary shape like the one 
shown in Fig. 6. Extending the idea of the circle 
detector with fixed radius to this case, for each point x 
on the boundary with gradient direction ф, we incre-
ment a point a = x + r. The difference is that now r = 
a — x which, in general, will vary in magnitude and 
direction with different boundary points. 
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Fig. 6. Geometry for generalized Hough transform. 

The fact that r varies in an arbitrary way means that 
the generalized Hough transform for an arbitrary 
shape is best represented by a table which we call the 
Л-table. 

4.3 The R-table 
From the above discussion, we can see that the 

R-table is easily constructed by examining the 
boundary points of the shape. The construction of 
the table is accomplished as follows. 

Algorithm for constructing an R-table. Choose a 
reference point у for the shape. For each boundary 
point x, compute ф(х) the gradient direction and r = 
y —x. Store r as a function of ф. 

Notice that the mapping the table represents is 
vector-valued and, in general, an index ф may have 
many values of r. Table 2 shows the form of the Л-table 
diagrammatically. 

The Я-table is used to detect instances of the shape S 
in an image in the following manner. 

Generalized Hough algorithm for single shapes. For 
each edge pixel x in the image, increment all the 
corresponding points x + г in the accumulator array A 
where r is a table entry indexed by ф, i.e., r(^). Maxima 
in A correspond to possible instances of the shape S. 

4.4 Examples 
Some simple shapes are rotation-invariant, that is, 

the entries in the incrementation table are invariant 
functions of the gradient direction ф. Figure 7(a) shows 
an example for washers (or bagels). Here there are 
exactly two entries for each ф, one r units in the 
gradient direction and one R units in the direction 
opposite to the gradient direction. In another case the 
entries may be a simple function of ф. Figure 7(b) 

 

shows such an example; hexagons. Irrespective of the 
orientation of the edge, the reference point locus is on a 
line of length / parallel to the edge pixel and (3/2)/ units 
away from it. 

Another example is shown in Fig. 8. Here the points 
on the boundary of the shape are shown in Fig. 8(a). A 
reference point is selected and used to construct the 
R-table. Figure 8(b) shows a synthetic image of four 
different shapes and Fig. 8(c) shows the portion of the 
accumulator array for this image which has the correct 
values of orientation and scale. It is readily seen that 
edge points on the correct shape have incremented the 
same point in the accumulator array, whereas edge 
points on the other shapes have incremented disparate 
points. 

4.5 R-table properties and the general notion of a shape 
Up to this point we have considered shapes of fixed 

orientation and scale. Thus the accumulator array was 
two-dimensional in the reference point co-ordinates. 
To search for shapes of arbitrary orientation в and 
scale 5 we add these two parameters to the shape 
description. The accumulator array now consists of 
four dimensions corresponding to the parameters (y, 
s, в). The K-table can also be used to increment this 
larger dimensional space since different orientations 
and scales correspond to easily-computed transfor-
mations of the table. Additionally, simple transfor-
mations to the K-table can also account for 
figure-ground reversals and changes of reference 
point. 

We denote a particular Л-table for a shape 5 by 
Я(ф). R can be viewed as a multiply-vector-valued 
function. It is easy to see that simple transformations 
to this table will allow it to detect scaled or rotated 
instances of the same shape. For example if the shape is 
scaled by s and this transformation is denoted by Ts, 
then  
i.e., all the vectors are scaled by s. Also, if the object is 
rotated by в and this transformation is denoted by Te, 
then 

 
i.e., all the indices are incremented by — 0 modulo 2л, 
the appropriate vectors r are found, and then they are 
rotated by в. 

To appreciate that this is true, refer to Fig. 9. In this 
figure an edge pixel with orientation ф may be 
considered as corresponding to the boundary point x,,, 
in which case the reference point is y^. Alternatively, 
the edge pixel may be considered as xB on a rotated 
instance of the shape, in which case the reference point 
is at ys which can be specified by translating rA to xB 

and rotating it through + Д0. 
Figure-ground intensity reversals can also be taken 

into account via a simple Л-table modification. The 
indices in the table are changed from ф to (ф + 
п)тод2п. Of course 
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Fig. 7. Simple examples using K-tables; (a) washers; (b) hexagons. 

 
Fig. 8. An example, (a) Points on a shape used to encode K-table. (b) Image containing shape, (c) A plane 
through the accumulator array A(x„ v„ S0,0O), where S0 and в0 are appropriate for the shape in the image 

(S0 = 64, 90 = 0). 
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Fig. 9. Construction for visualizing the R-table transformation for a rotation by Д0. Point A can be viewed as: 
(1) on the shape ( ---- ), or (2) as point В on the shape ( ----- ), rotated by Д0. If (2) is used then the appropriate 

R is obtained by translating R„ to A and rotating it by ДО as shown. 

where Tft denotes the figure-ground transformations. 
Another property which will be useful in describing 
the composition of generalized Hough transforms is 
the change of reference point. If we want to choose a 
new reference point y' such that у — у' = г then the 
modification to the K-table is given by R(<j>) + r, i.e. r is 
added to each vector in the table. 

4.6 Using pairs of edges 
We can also entertain the idea of using pairs of edge 

pixels to reduce the effort in parameter space. Using 
the R-table and the properties of the previous section, 
each edge pixel defines a surface in the 
four-dimensional accumulator space of a = (y,s,0). 
Two edge pixels at different orientations describe the 
same surface rotated by the same amount with respect 
to в. Points where these two surfaces intersect (if any) 
correspond to possible parameters a for the shape. 
Thus in a similar manner to Section 3.1, it is theoreti-
cally possible to use the two points in image space to 
reduce the locus in parameter space to a single point. 
However, the difficulties of finding the intersection 
points of the two surfaces in parameter space will make 
this approach unfeasible for most cases. 

4.7 The Hough transform for composite shapes 
Now suppose we have a composite shape S which 

has two subparts S, and S2. This shape can be detected 
by using the K-tables for 5, and S2 in a remarkably 
simple fashion. If у, y,, y2 are the reference points for 
shapes S, Sj and S2 respectively, we can compute r, = 
У-У1 and r2 = у — y2- Then the composite generalized 
Hough transform И3{ф) is given by 

Ks(0) = [KSlW) + г.] О [KSl(0) + r2]     (20) 

which means that for each index value </>, rt is added to 
K$,(0)> r2 's added to RSl(<t>), and the union of these sets 

is stored in Я5(ф)- Equation 20 is very important as it 
represents a way of composing transforms. 

In a similar manner we can define shapes as the 
difference between tables with common entries, i.e., 

Rs — Rs 

means the shape S defined by St with the common 
entries with S2 deleted. The intersection operation is 
defined similarly. The primary use of the union 
operation is to detect shapes which are composites of 
simpler shapes. However, the difference operation also 
serves a useful function. Using it, K-tables which 
explicitly differentiate between two similar kinds of 
shapes can be constructed. An example would be 
differentiating between the washers and hexagons 
discussed earlier. 

4.8 Building convolution templates 
While equation (20) is one way of composing Hough 

transforms, it may not be the best way. This is because 
the choice of reference point can significantly affect the 
accuracy of the transform. Shapiro"sl617> has shown 
this, emphasizing analytic forms. This is also graphi-
cally shown in Fig. 10. As the reference point becomes 
distant from the shape, small angular errors in ф can 
produce large errors in the vectors Я(ф). 

One solution to this problem is to use the table for 
each subshape with its own best reference point and to 
smooth the resultant accumulator array with a com-
posite smoothing template. Recall that for the case of a 
single shape and isotropic errors (Section 2.2), con-
volving the accumulator array in this fashion was 
equivalent to taking account of the errors during the 
incrementation. 

Where hЈy,) denotes the smoothing template for 
reference point y, of shape S, the composite con-
volution template is given by 

This in practic 
introduce error 
value and is sui 

5. INC 

If we use the 
lator array by u 
lator array are 
perimeter of the 

 

 

(21) 
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Fig. 10. Effects of changing reference point on errors. 
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So finally, we have the following algorithm for the 
detection of a shape S which is the composite of 
subparts S, ..SN. 

Generalized Hough algorithm/or composite shapes. 1. 
For each edge point with direction ф and for each 
value of scale s and orientation 0, increment the 
corresponding points x + r in A where r is in 

адо=г3|г, U/s^) }• 

2. Maxima in A, = A*H correspond to possible 
instances of the shape S. Figure 11 shows a simple 
example of how templates are combined. 

If there are л edge pixels and Af points in the error 
point spread function template, then the number of 
additions in the incrementation procedure is M. Thus 
this method might at first seem superior to the 
convolution method, which requires approximately 
n2M additions and multiplications where M < n2, the 
total number of pixels. However, the following heuristic 
is available for the convolution since A is typicallly very 
sparse. Compute 

/4,(a)   only if А(я) > 0. 

This in practice is very effective, although it may 
introduce errors if the appropriate index has a zero 
value and is surrounded by high values. 

5. INCREMENTATION STRATEGIES 

If we use the strategy of incrementing the accumu-
lator array by unity, then the contents of the accumu-
lator array are approximately proportional to the 
perimeter of the shape that is detectable in the image. 

 
Fig. 11. Example of composite smoothing template con-
struction. (a) Convolution templates for shapes S„ S2, S,. (b) 
Relationships between reference points y,, y2, and y3 in 
composite shape S. (c) Combined smoothing template Я as a 
function of V h2, and h} and >',, y2, and >'3. 

This strategy is biased towards finding shapes where a 
large portion of the perimeter is detectable. Several 
different incrementation strategies are available, de-
pending on the different quality of image data. If 
shorter, very prominent parts of the perimeter are 
detected, as might be the case in partially occluded 
objects, then an alternative strategy of incrementing by 
the gradient modulus value might be more successful, 
i.e., 

А(л): = А(я) + g(x). 

Of course the two strategies can be combined, e.g., 

А(л): = А(ш) + д(х) + с 

where с is a constant. 
Another possibility is the use of local curvature 

information in the incrementation function. Using this 
strategy, neighboring edge pixels are examined to 
calculate approximate curvature, K. This requires a 
more complicated operator than the edge operators we 
have considered, and complicates the table. Now along 
with each value of r the corresponding values of 

 

 

 

 

 

 

(23) 

(24) 

(25) 
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Fig. 12. Dynamic Hough transform. 

weights 'informative' high local curvature edge pixels    curve segment would be 
as follows: „ „_, 

A(x„Xj, . . . ,x.)=  £ 9(*k)+ I <?(x*-x» + i)       (27) 
A(»): = A(») + K. 

 

5.1  Weighting locally consistent information 
Under certain circumstances we may want to weight 

local information that is consistent. For example, in 
searching for the boundary of that object, a connected 
set of edges conforming to the object may be more 
important than a set of unconnected edges. Figure 12 
shows this example. Figure 12(a) might arise in 
situations with very noisy data. Figure 12(b) is an 
example where an object is occluded by another object. 
Wechsler and Sklansky,(6) in the analytic formulation, 
successfully used the related strategy of increasing the 
incrementation factor if there were also neighboring 
edge pixels with the same edge direction. However, we 
would like to measure local consistency in parameter 
space. 

A simple strategy for handling this case is to 
explicitly record the reference points for each edge 
pixel during a first pass. Then on a second pass edge 
pixels can increment by more than unity if neighboring 
edge pixels are incrementing the same reference point. 

A more complicated strategy is to search for con-
nected curve segments in image space which have 
compatible parameters. Such an algorithm, based on 

dynamic programming, is described in Baliard and 
Sklansky."4' The appropriate objective function for a 

 

 

 

 

 
 



where 

g(\k) = the gradient magnitude 

 
and 

4(x*.x*+i) = 0 if Их„) - Ф(*к- i)|modX is 
small and - со otherwise   (29) 

In the dynamic programming algorithm, at each 
iteration step we can build longer compatible curves 
from all the edge points. Thus the incrementation 
function for a point x would represent the longest 
compatible curve from that point. (If a longer curve 
cannot be built at any iteration, we can easily find 
this out.) 

In a parallel implementation of this algorithm the 
contents of the accumulator array could be made to 
vary dynamically. Initially the contents would reflect 
global information, but with successive iterations the 
contents would be weighted in favor of consistent, 
local information. 

5.2 More complex strategies 
When searching for a composite object, different 

parts may have different importance. This is readily 
accommodated by associating a weight w,- with each 
table RSi so that each entry in Rs. increments by a 
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factor n>,- instead of unity. 
The composite object may be searched for in a 

sequential manner. Applying the table sequentially 
could greatly improve the efficiency of the com-
putations by limiting areas for subsequent suitable 
incrementations. Furthermore, standard me-
thods'21'22' could be used to stop the process once the 
shape had been located to the desired confidence level. 

Even more complex strategies are possible wherein 
the process is integrated into a larger system. Here 
contextual information can be used to relegate all the 
previous operations including (a) building composite 
templates, (b) choosing weights, (c) choosing appli-
cation sequences, and (d) adjusting weights in new 
contexts. 


