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Abstract 

Pattern recognition has as its objective to classify objects into different categories and 

classes. It is a fundamental component of artificial intelligence and computer vision. 

This thesis investigates the application of an efficient optimization method, known as 

Particle Swarm Optimization (PSO), to the field of pattern recognition and image 

processing. First a clustering method that is based on PSO is proposed. The 

application of the proposed clustering algorithm to the problem of unsupervised 

classification and segmentation of images is investigated. A new automatic image 

generation tool tailored specifically for the verification and comparison of various 

unsupervised image classification algorithms is then developed. A dynamic clustering 

algorithm which automatically determines the "optimum" number of clusters and 

simultaneously clusters the data set with minimal user interference is then developed. 

Finally, PSO-based approaches are proposed to tackle the color image quantization 

and spectral unmixing problems. In all the proposed approaches, the influence of PSO 

parameters on the performance of the proposed algorithms is evaluated. 
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“Obstacles are those frightening things you see when you take your eyes off your 

goal.”  

Henry Ford 

 

“You will recognize your own path when you come upon it, because you will 

suddenly have all the energy and imagination you will ever need.” 

Jerry Gillies  
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Chapter 1 

Introduction 
 

As humans, it is easy (even for a child) to recognize letters, objects, numbers, voices 

of friends, etc. However, making a computer solve these types of problems is a very 

difficult task. Pattern recognition is the science with the objective to classify objects 

into different categories and classes. It is a fundamental component of artificial 

intelligence and computer vision. Pattern recognition methods are used in various 

areas such as science, engineering, business, medicine, etc. Interest in pattern 

recognition is fast growing in order to deal with the prohibitive amount of information 

we encounter in our daily life. Automation is desperately needed to handle this 

information explosion. This thesis investigates the application of an efficient 

optimization method, known as Particle Swarm Optimization, to the field of pattern 

recognition and image processing. PSOs solve optimization problems by simulating 

the social behavior of bird flocks. 

 

1.1 Motivation 
 

There are many difficult problems in the field of pattern recognition and image 

processing. These problems are the focus of much active research in order to find 

efficient approaches to address them. However, the outcome of the research is still 

unsatisfactory.  

Local search approaches were generally used to solve difficult problems in the 

field of pattern recognition and image processing. However, the selected set of 
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problems in this thesis are NP-hard and combinatorial. Hence, evolutionary 

algorithms are generally more suitable to solve these difficult problems because they 

are population-based stochastic approaches. Thus, evolutionary algorithms can avoid 

being trapped in a local optimum and can often find a global optimal solution. A PSO 

is a population-based stochastic optimization algorithm modeled after the simulation 

of the social behavior of bird flocks. PSO is easy to implement and has been 

successfully applied to solve a wide range of optimization problems [Hu 2004]. Thus, 

due to its simplicity and efficiency in navigating large search spaces for optimal 

solutions, PSOs are used in this research to develop efficient, robust and flexible 

algorithms to solve a selective set of difficult problems in the field of pattern 

recognition and image processing. Out of these problems, data clustering is 

elaborately tackled in this thesis specifically image data. The motivation for the focus 

on data clustering is the fact that data clustering is an important process in pattern 

recognition and machine learning. Actually, clustering is a primary goal of pattern 

recognition. Furthermore, it is a central process in Artificial Intelligence. In addition, 

clustering algorithms are used in many applications, such as image segmentation, 

vector and color image quantization, spectral unmixing, data mining, compression, 

etc. Therefore, finding an efficient clustering algorithm is very important for 

researchers in many different disciplines.  

 

1.2 Objectives 
 

The primary objectives of this thesis can be summarized as follows: 

• To show that the PSO can be successfully used to solve difficult problems in 

pattern recognition and image processing. 
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• To develop an efficient clustering algorithm based on PSO. 

• To develop a tool that can aid researchers in the unsupervised image 

classification field to test their algorithms, compare different clustering 

algorithms and generate benchmarks. 

• To develop an efficient dynamic clustering algorithm that can find the 

"optimum" number of clusters in a data set with minimum user interference. 

• To develop a PSO-based approach to tackle the color image quantization 

problem. 

• To develop an efficient end-members selection method based on PSO for 

spectral unmixing of multispectral imagery data.     

 

1.3 Methodology 
 

Algorithms proposed in this thesis are first presented and discussed. Experimental 

results were then generally obtained using various synthetic images with well-known 

characteristics in order to show the accuracy and efficiency of the proposed 

algorithms.  

In addition, natural images from different areas such as medical images and 

remotely sensed satellite images were also used to show the wide applicability of the 

proposed approaches. 

The results of state-of-the-art algorithms when applied to the same test images 

were also reported to show the relative performance of the proposed approaches when 

compared to other well-known approaches. 

For the task of unsupervised image classification, attempts were made to find 

the best values for the PSO parameters. 
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Due to the stochastic nature of the proposed algorithms, all the presented 

results are averages and standard deviations over several simulations. However, due to 

the computational expensive nature of the simulations, results were generally taken 

over 10 or 20 runs. 

 

1.4 Contributions 
 

The main contributions of this thesis are: 

• The development of an efficient clustering algorithm based on the PSO that 

performs better than state-of-the-art clustering algorithms when applied to the 

problem of unsupervised image classification. 

• The development of a simple tool for synthetic image generation and 

verification. This tool can be used as a preliminary test to compare different 

unsupervised image classification algorithms. In addition, it can be used to 

generate a set of benchmark images that can be used by the researchers in the 

field of unsupervised image classification. 

• The development of an efficient dynamic clustering algorithm based on the 

PSO that is able to simultaneously cluster a data set and find the "optimum" 

number of clusters in the data set. 

• The development of an efficient color image quantization algorithm based on 

the PSO which is capable of generating high quality quantized images. 

• The development of an efficient end-members selection method for spectral 

unmixing of multispectral satellite imagery data which is based on the PSO. 

The efficiency of the algorithm is demonstrated by applying it to test imagery 

from various platforms. 
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1.5 Thesis Outline 
 

Chapter 2 briefly reviews the subject of optimization. This is followed by a brief 

discussion of traditional and stochastic optimization methods. Evolutionary 

Algorithms (EAs) (with more emphasis on Genetic Algorithms (GAs)) are then 

presented. This is followed by an elaborated discussion of particle swarm 

optimization and its various modifications. PSO is a model from the swarm 

intelligence paradigm. Therefore in order to provide a complete coverage of swarm 

intelligence background, a brief overview of another swarm intelligence model, Ant 

Colony Systems, is given. 

 Chapter 3 reviews the problems addressed in this thesis in sufficient detail. 

First the clustering problem is defined and different clustering concepts and 

approaches are presented. This is followed by defining image segmentation in 

addition to presenting various image segmentation methods. A survey of color image 

quantization and its approaches is then presented. This is followed by a brief 

introduction to spectral unmixing.  

 Chapter 4 presents a clustering method that is based on PSO. The algorithm 

finds the centroids of a user specified number of clusters, where each cluster groups 

together similar patterns. The application of the proposed clustering algorithm to the 

problem of unsupervised classification and segmentation of images is investigated. To 

illustrate its wide applicability, the proposed algorithm is then applied to synthetic, 

MRI and satellite images. 

 Chapter 5 presents a new automatic image generation tool tailored specifically 

for the verification and comparison of different unsupervised image classification 
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algorithms. The usefulness of the tool is demonstrated in this chapter with reference to 

the well-known K-means clustering algorithm and the PSO-based clustering algorithm 

proposed in the chapter 4. 

 Chapter 6 presents a new dynamic clustering approach based on PSO. This 

approach is applied to unsupervised image classification. The proposed approach 

automatically determines the "optimum" number of clusters and simultaneously 

clusters the data set with minimal user interference. The proposed approach is then 

applied to synthetic, natural and multispectral images. A genetic algorithm and a 

random search version of dynamic clustering are presented and compared to the 

particle swarm version. 

 Chapter 7 presents PSO-based approaches to tackle the color image 

quantization and spectral unmixing problems. The proposed approaches are then 

applied on different image sets to show their applicability and they are compared with 

other state-of-the-art approaches. 

 Chapter 8 highlights the conclusions of this thesis and discusses directions for 

future research. 

 The appendices present a definition of frequently used terms and symbols and 

a list of publications derived from the work introduced in this thesis. 
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Chapter 2 

Optimization and Optimization Methods 

 

This chapter provides a brief overview of optimization. This is followed by a brief discussion 

of traditional and stochastic optimization methods. Evolutionary algorithms (with more 

emphasis on genetic algorithms) are then presented. This is followed by an elaborated 

discussion of particle swarm optimization and its various modifications. A brief overview of 

ant colony systems is then given.   

 

2.1 Optimization 

 

The objective of optimization is to seek values for a set of parameters that maximize 

or minimize objective functions subject to certain constraints [Rardin 1998; Van den 

Bergh 2002]. A choice of values for the set of parameters that satisfy all constraints is 

called a feasible solution. Feasible solutions with objective function value(s) as good 

as the values of any other feasible solutions are called optimal solutions [Rardin 

1998]. An example of an optimization problem is the arrangement of the transistors in 

a computer chip in such a way that the resulting layout occupies the smallest area and 

that as few as possible components are used. Optimization techniques are used on a 

daily base for industrial planning, resource allocation, scheduling, decision making, 

etc. Furthermore, optimization techniques are widely used in many fields such as 

business, industry, engineering and computer science. Research in the optimization 
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field is very active and new optimization methods are being developed regularly 

[Chinneck 2000]. 

 Optimization encompasses both maximization and minimization problems. 

Any maximization problem can be converted into a minimization problem by taking 

the negative of the objective function, and vice versa. Hence, the terms optimization, 

maximization and minimization are used interchangeably in this thesis. In general, the 

problems tackled in this thesis are minimization problems. Therefore, the remainder 

of the discussion focuses on minimization problems. 

 

The minimization problem can be defined as follows [Pardalos et al. 2002] 

Given ℜ→  S :f  where dNℜ⊆S and dN  is the dimension of the 

search space S  

find Sx ∈∗  such that S x xx ∈∀≤∗  ),()( ff                         (2.1) 

 

The variable ∗x  is called the global minimizer (or simply the minimizer) of f  and 

)( ∗xf is called the global minimum (or simply the minimum) value of f . This can be 

illustrated as given in Figure 2.1 where ∗x is a global minimizer of f . The process of 

finding the global optimal solution is known as global optimization [Gray et al. 1997]. 

A true global optimization algorithm will find ∗x  regardless of the selected starting 

point Sx ∈0  [Van den Bergh 2002]. Global optimization problems are generally very 

difficult and are categorized under the class of nonlinear programming (NLP) [Gray et 

al. 1997]. 

Examples of global optimization problems are [Gray et al. 1997]: 
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• Combinatorial problems: where a linear or nonlinear function is defined over a 

finite but very large set of solutions, for example, network problems and 

scheduling [Pardalos et al. 2002]. The problems addressed in this thesis belong 

to this category. 

• General unconstrained problems: where a nonlinear function is defined over 

an unconstrained set of real values. 

• General constrained problems: where a nonlinear function is defined over a 

constrained set of real values. 

Evolutionary algorithms (discussed in Sections 2.4-2.5) have been successfully 

applied to the above problems to find approximate solutions [Gray et al. 1997]. More 

details about global optimization can be found in Pardalos et al. [2002], Floudas and 

Pardalos [1992] and Horst et al. [2000]. 

In Figure 2.1, ∗
Bx  is called the local minimizer of region B  because )( ∗

Bxf  is 

the smallest value within a local neighborhood, B . Mathematically speaking, the 

variable ∗
Bx  is a local minimizer of the region B  if 

 

B x xxB ∈∀≤∗  ),()( ff                (2.2) 

 

where SB ⊂ . Every global minimizer is a local minimizer, but a local minimizer is 

not necessarily a global minimizer.  

 Generally, a local optimization method is guaranteed to find the local 

minimizer ∗
Bx  of the region B  if a starting point 0x  is used with Bx ∈0 . An 

optimization algorithm that converges to a local minimizer, regardless of the selected 

starting point Sx ∈0 , is called a globally convergent algorithm [Van den Bergh 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

10 
 

2002]. There are many local optimization algorithms in the literature. For more detail 

the reader is referred to Aarts and Lenstra [2003] and Korte and Vygen [2002].  

 

 

Figure 2.1: Example of a global minimizer ∗x  as well as a local minimizer ∗
Bx  

 

2.2 Traditional Optimization Algorithms 
 

Traditional optimization algorithms use exact methods to find the best solution. The 

idea is that if a problem can be solved, then the algorithm should find the global best 

solution. One exact method is the brute force (or exhaustive) search method where the 

algorithm tries every solution in the search space so that the global optimal solution is 

guaranteed to be found. Obviously, as the search space increases the cost of brute 

force algorithms increases. Therefore, brute force algorithms are not appropriate for 

the class of problems known as NP-hard problems. The time to exhaustively search an 
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NP-hard problem increases exponentially with problem size. Other exact methods 

include linear programming, divide and conquer and dynamic programming. More 

details about exact methods can be found in Michalewicz and Fogel [2000].   

 

2.3 Stochastic Algorithms 

 

Stochastic search algorithms are used to find near-optimal solutions for NP-hard 

problems in polynomial time. This is achieved by assuming that good solutions are 

close to each other in the search space. This assumption is valid for most real world 

problems [Løvberg 2002; Spall 2003]. Since the objective of a stochastic algorithm is 

to find a near-optimal solution, stochastic algorithms may fail to find a global optimal 

solution. While an exact algorithm generates a solution only after the run is 

completed, a stochastic algorithm can be stopped any time during the run and generate 

the best solution found so far [Løvberg 2002]. 

Stochastic search algorithms have several advantages compared to other 

algorithms [Venter and Sobieszczanski-Sobieski 2002]: 

• Stochastic search algorithms are generally easy to implement. 

• They can be used efficiently in a multiprocessor environment. 

• They do not require the problem definition function to be continuous. 

• They generally can find optimal or near-optimal solutions. 

• They are suitable for discrete and combinatorial problems. 

 

Three major stochastic algorithms are Hill-Climbing [Michalewicz and Fogel 2000], 

Simulated Annealing [Van Laarhoven and Aarts 1987] and Tabu search [Glover 1989; 
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Glover 1990]. In Hill-Climbing, a potential solution is randomly chosen. The 

algorithm then searches the neighborhood of the current solution for a better solution. 

If a better solution is found, then it is set as the new potential solution. This process is 

repeated until no more improvement can be made. Simulated annealing is similar to 

Hill-Climbing in the sense that a potential solution is randomly chosen. A small value 

is then added to the current solution to generate a new solution. If the new solution is 

better than the original one then the solution moves to the new location. Otherwise, 

the solution will move to the new location with a probability that decreases as the run 

progresses [Salman 1999]. Tabu search is a heuristic search algorithm where a tabu 

list memory of previously visited solutions is maintained in order to improve the 

performance of the search process. The tabu list is used to "guide the movement from 

one solution to the next one to avoid cycling" [Gabarro 2000], thus, avoid being 

trapped in a local optimum. Tabu search starts with a randomly chosen current 

solution. A set of test solutions are generated via moves from the current solution. The 

best test solution is set as the current solution if it is not in the tabu list, or if it is in the 

tabu list, but satisfies an aspiration criterion. A test solution satisfies an aspiration 

criterion if it is in the tabu list and it is the best solution found so far [Chu and 

Roddick 2003]. This process is repeated until a stopping criterion is satisfied. 

 

2.4 Evolutionary Algorithms 

 

Evolutionary algorithms (EAs) are general-purpose stochastic search methods 

simulating natural selection and evolution in the biological world. EAs differ from 

other optimization methods, such as Hill-Climbing and Simulated Annealing, in the 
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fact that EAs maintain a population of potential (or candidate) solutions to a problem, 

and not just one solution [Engelbrecht 2002; Salman 1999]. 

Generally, all EAs work as follows: a population of individuals is initialized 

where each individual represents a potential solution to the problem at hand. The 

quality of each solution is evaluated using a fitness function. A selection process is 

applied during each iteration of an EA in order to form a new population. The 

selection process is biased toward the fitter individuals to ensure that they will be part 

of the new population. Individuals are altered using unary transformation (mutation) 

and higher order transformation (crossover). This procedure is repeated until 

convergence is reached. The best solution found is expected to be a near-optimum 

solution [Michalewicz 1996]. A general pseudo-code for an EA is shown in Figure 2.2 

[Gray et al. 1997]. 

Initialize the population 

Evaluate the fitness of each individual in the population 

Repeat 

Apply selection on the population to form a new population 

Alter the individuals in the population using evolutionary operators 

Evaluate the fitness of each individual in the population 

Until some convergence criteria are satisfied 

Figure 2.2: General pseudo-code for EAs 

 

The unary and higher order transformations are called evolutionary operators. The 

two most frequently evolutionary operators are: 

• Mutation, which modifies an individual by a small random change to generate 

a new individual [Michalewicz 1996]. This change can be done by inverting 

the value of a binary digit in the case of binary representations, or by adding 
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(or subtracting) a small number to (or from) selected values in the case of 

floating point representations. The main objective of mutation is to add some 

diversity by introducing more genetic material into the population in order to 

avoid being trapped in a local optimum. Generally, mutation is applied using a 

low probability. However, some problems (e.g. problems using floating point 

representations) require using mutation with high probability [Salman 1999]. 

A preferred strategy is to start with high probability of mutation and dreasing 

it over time.  

• Recombination (or Crossover), where parts from two (or more) individuals are 

combined together to generate new individuals [Michalewicz 1996]. The main 

objective of crossover is to explore new areas in the search space [Salman 

1999].  

There are four major evolutionary techniques: 

• Genetic Programming (GP) [Koza 1992] which is used to search for the fittest 

program to solve a specific problem. Individuals are represented as trees and 

the focus is on genotypic evaluation. 

• Evolutionary Programming (EP) [Fogel 1994] which is generally used to 

optimize real-valued continuous functions. EP uses selection and mutation 

operators; it does not use the recombination operator. The focus is on 

phenotypic evaluation and not on genotypic evaluation. 

• Evolutionary Strategies (ES) [Bäck et al. 1991] which is used to optimize real-

valued continuous functions. ES uses selection, crossover and mutation 

operators. ES optimizes both the population and the optimization process, by 

evolving strategy parameters. Hence, ES is evolution of evolution. 
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• Genetic Algorithms (GA) [Goldberg 1989] which is generally used to optimize 

general combinatorial problems [Gray et al. 1997]. The GA is a commonly 

used algorithm and has been used for comparison purposes in this thesis. The 

focus in GA is on genetic evolution using both mutation and crossover, 

although the original GAs developed by Holland [1962] used only crossover. 

Since later chapters make use of GAs, a detailed explanation of GAs is given 

in Section 2.5. 

 

Due to its population-based nature, EAs can avoid being trapped in a local optimum 

and consequently can often find global optimal solutions. Thus, EAs can be viewed as 

global optimization algorithms. However, it should be noted that EAs may fail to 

converge to a global optimum [Gray et al. 1997]. 

EAs have successfully been applied to a wide variety of optimization 

problems, for example: image processing, pattern recognition, scheduling, 

engineering design, etc. [Gray et al 1997; Goldberg 1989].  

 

2.5 Genetic Algorithms 
 
Genetic Algorithms (GAs) are evolutionary algorithms that use selection, crossover 

and mutation operators. GAs were first proposed by Holland [1962; 1975] and were 

inspired by Darwinian evolution and Mendelian genetics [Salman 1999]. GAs follow 

the same algorithm presented in Figure 2.2. GAs are one of the most popular 

evolutionary algorithms and have been widely used to solve difficult optimization 

problems. GAs have been successfully applied in many areas such as pattern 

recognition, image processing, machine learning, etc. [Goldberg 1989]. In many cases 

GAs perform better than EP and ESs. However, EP and ESs usually converge better 
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than GAs for real valued function optimization [Weiss 2003]. Individuals in GAs are 

called chromosomes. Each chromosome consists of a string of cells called genes. The 

value of each gene is called allele. The major parameters of GAs are discussed in 

Sections 2.5.1-2.5.5. In Section 2.5.6, a brief discussion about a problem that may be 

encountered in GAs is discussed. 

 

2.5.1 Solution Representation 
 
Binary representation is often used in GAs where each gene has a value of either 0 or 

1. Other presentations have been proposed, for example, floating point representations 

[Janikow and Michalewicz 1991], integer representations [Bramlette 1991], gray-

coded representations [Whitley and Rana 1998] and matrix representation 

[Michalewicz 1996]. More detail about representation schemes can be found in 

Goldberg [1989]. Generally, non-binary representations require different evolutionary 

operators for each representation while uniform operators can be used with binary 

representation for any problem [Van den Bergh 2002]. However, according to 

Michalewicz [1991], floating point representations are faster, more consistent and 

have higher precision than binary representations. 

 

2.5.2 Fitness Function 
 
A key element in GAs is the selection of a fitness function that accurately quantifies 

the quality of candidate solutions. A good fitness function enables the chromosomes 

to effectively solve a specific problem. Both the fitness function and solution 

representation are problem dependent parameters. A poor selection of these two 

parameters will drastically affect the performance of GAs. One problem related to 
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fitness functions that may occur when GAs are used to optimize combinatorial 

problems is the existence of points in the search space that do not map to feasible 

solutions. One solution to this problem is the addition of a penalty function term to the 

original fitness function so that chromosomes representing infeasible solutions will 

have a low fitness score, and as such, will disappear from the population [Fletcher 

2000]. 

 

2.5.3 Selection 
 

Another key element of GAs is the selection operator which is used to select 

chromosomes (called parents) for mating in order to generate new chromosomes 

(called offspring). In addition, the selection operator can be used to select elitist 

individuals. The selection process is usually biased toward fitter chromosomes. 

Selection methods are used as mechanisms to focus the search on apparently more 

profitable regions in the search space [Angeline, Using Selection 1998].  Examples of 

well-known selection approaches are: 

• Roulette wheel selection: Parent chromosomes are probabilistically selected 

based on their fitness. The fitter the chromosome, the higher the probability 

that it may be chosen for mating. Consider a roulette wheel where each 

chromosome in the population occupies a slot with slot size proportional to the 

chromosome's fitness [Gray et al. 1997]. When the wheel is randomly spun, 

the chromosome corresponding to the slot where the wheel stopped is selected 

as the first parent. This process is repeated to find the second parent. Clearly, 

since fitter chromosomes have larger slots, they have better chance to be 

chosen in the selection process [Goldberg 1989]. 
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• Rank selection: Roulette wheel selection suffers from the problem that highly 

fit individuals may dominate in the selection process. When one or a few 

chromosomes have a very high fitness compared to the fitness of other 

chromosomes, the lower fit chromosomes will have a very slim chance to be 

selected for mating. This will increase selection pressure, which will cause 

diversity to decrease rapidly resulting in premature convergence. To reduce 

this problem, rank selection sorts the chromosomes according to their fitness 

and base selection on the rank order of the chromosomes, and not on the 

absolute fitness values. The worst (i.e. least fit) chromosome has rank of 1, the 

second worst chromosome has rank of 2, and so on. Rank selection still prefers 

the best chromosomes; however, there is no domination as in the case of 

roulette wheel selection. Hence, using this approach all chromosomes will 

have a good chance to be selected. However, this approach may have a slower 

convergence rate than the roulette wheel approach [Gray et al. 1997]. 

• Tournament selection: In this more commonly used approach [Goldberg 

1989], a set of chromosomes are randomly chosen. The fittest chromosome 

from the set is then placed in a mating pool. This process is repeated until the 

mating pool contains a sufficient number of chromosomes to start the mating 

process.  

• Elitism: In this approach, the fittest chromosome, or a user-specified number 

of best chromosomes, is copied into the new population. The remaining 

chromosomes are then chosen using any selection operator. Since the best 

solution is never lost, the performance of GA can significantly be improved 

[Gray et al. 1997].   
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2.5.4 Crossover 
 

Crossover is "the main explorative operator in GAs" [Salman 1999]. Crossover occurs 

with a user-specified probability, called the crossover probability pc. pc is problem 

dependent with typical values in the range between 0.4 and 0.8 [Weiss 2003]. The 

four main crossover operators are: 

• Single point crossover: In this approach, a position is randomly selected at 

which the parents are divided into two parts. The parts of the two parents are 

then swapped to generate two new offspring. 

Example 2.1 

Parent A: 11001010 

Parent B: 01110011 

Offspring A: 11001011  

 Offspring B: 01110010 

 

•   Two point crossover: In this approach, two positions are randomly selected. 

The middle parts of the two parents are then swapped to generate two new 

offspring. 

Example 2.2 

Parent A: 11001010 

Parent B: 01110011 

Offspring A: 11110010  

Offspring B: 01001011 
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• Uniform crossover: In this approach, alleles are copied from either the first 

parent or the second parent with some probability, usually set to 0.5. 

Example 2.3 

Parent A: 11001010 

Parent B: 01110011 

Offspring A: 11101011  

Offspring B: 01010010 

• Arithmetic crossover: In this approach, which is used for floating point 

representations, offspring is calculated as the arithmetic mean of the parents 

[Michalewicz 1996; Krink and Løvbjerg 2002], i.e.  

Bparent Aparent A offspring )(1 xxx rr −+=                           (2.3) 

Aparent Bparent B offspring )(1 xxx rr −+=                           (2.4) 

where (0,1)~ Ur . 

 

2.5.5 Mutation 
 

In GAs, mutation is considered to be a background operator, mainly used to explore 

new areas in the search space and to add diversity (contrary to selection and crossover 

which reduces diversity) to the population of chromosomes in order to prevent being 

trapped in a local optimum. Mutation is applied to the offspring chromosomes after 

crossover is performed. In a binary coded GA, mutation is done by inverting the value 

of each gene in the chromosome according to a user-specified probability, which is 

called the mutation probability, pm. This probability is problem dependent. Mutation 

occurs infrequently both in nature and in GAs [Løvberg 2002], hence, a typical value 
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for pm is 0.01 [Weiss 2003]. However, a better value for pm is the inverse of the 

number of genes in a chromosome (i.e. chromosome size) [Goldberg 1989].  

One mutation scheme used with floating point representations is the non-

uniform mutation [Michalewicz 1996]. The jth element of chromosome x is mutated as 

follows: 

 

  where,jjj xxx ∆+=  

( )

( )
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x                  (2.5) 

 

where Zmin and Zmax are the lower and upper bound of the search space, (0,1)~ Ur , t 

is the current iteration, tmax is the total number of iterations and b is a user-specified 

parameter determining the degree of iteration number dependency (in this thesis, b 

was set to 5 as suggested by Michalewicz [1996]). Thus, the amount of mutation 

decreases as the run progresses. 

 Kennedy and Spears [1998] observed that a GA using either mutation or 

crossover performed better than a GA using both crossover and mutation operators 

when applied to a set of random problems (especially for problems with a large 

multimodality).   
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2.5.6 The Premature Convergence Problem 
 

Genetic algorithms suffer from the premature suboptimal convergence (simply 

premature convergence or stagnation) which occurs when some poor individuals 

attract the population - due to a local optimum or bad initialization - preventing 

further exploration of the search space [Dorigo et al. 1999]. One of the causes of this 

problem is that a very fit chromosome is generally sure to be selected for mating, and 

since offspring resemble their parents, chromosomes become too similar (i.e. 

population loses diversity). Hence, the population will often converge before reaching 

the global optimal solution, resulting in premature convergence. Premature 

convergence can be prevented by: 

• Using subpopulations: The population of chromosomes is divided into 

separate subpopulations. Each subpopulation is evolved independent of the 

other subpopulations for a user-specified number of generations. Then, a 

number of chromosomes are exchanged between the subpopulations. This 

process helps in increasing diversity and thus preventing premature 

convergence. 

• Re-initializing some chromosomes: A few chromosomes are re-initialized 

from time to time in order to add diversity to the population. 

• Increase the mutation probability: As already discussed, mutation aids in 

exploring new areas in the search space and increases diversity. Therefore, 

increasing pm will help in preventing premature convergence. 

 

In general, any mechanism that can increase diversity will help in preventing 

premature convergence. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

23 
 

 

2.6 Particle Swarm Optimization 

 

A particle swarm optimizer (PSO) is a population-based stochastic optimization 

algorithm modeled after the simulation of the social behavior of bird flocks [Kennedy 

and Eberhart 1995; Kennedy and Eberhart 2001]. PSO is similar to EAs in the sense 

that both approaches are population-based and each individual has a fitness function. 

Furthermore, the adjustments of the individuals in PSO are relatively similar to the 

arithmetic crossover operator used in EAs [Coello Coello and Lechuga 2002]. 

However, PSO is influenced by the simulation of social behavior rather than the 

survival of the fittest [Shi and Eberhart 2001]. Another major difference is that, in 

PSO, each individual benefits from its history whereas no such mechanism exists in 

EAs [Coello Coello and Lechuga 2002]. PSO is easy to implement and has been 

successfully applied to solve a wide range of optimization problems such as 

continuous nonlinear and discrete optimization problems [Kennedy and Eberhart 

1995; Kennedy and Eberhart 2001; Eberhart and Shi, Comparison 1998].  

 

2.6.1 The PSO Algorithm 
 

In a PSO system, a swarm of individuals (called particles) fly through the search 

space. Each particle represents a candidate solution to the optimization problem. The 

position of a particle is influenced by the best position visited by itself (i.e. its own 

experience) and the position of the best particle in its neighborhood (i.e. the 

experience of neighboring particles). When the neighborhood of a particle is the entire 
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swarm, the best position in the neighborhood is referred to as the global best particle, 

and the resulting algorithm is referred to as a gbest PSO. When smaller 

neighborhoods are used, the algorithm is generally referred to as a lbest PSO [Shi and 

Eberhart, Parameter 1998]. The performance of each particle (i.e. how close the 

particle is from the global optimum) is measured using a fitness function that varies 

depending on the optimization problem. 

 

Each particle in the swarm is represented by the following characteristics: 

 

xi: The current position of the particle; 

vi: The current velocity of the particle; 

yi: The personal best position of the particle. 

iŷ : The neighborhood best position of the particle. 

 

The personal best position of particle i is the best position (i.e. the one resulting in the 

best fitness value) visited by particle i so far. Let f denote the objective function. Then 

the personal best of a particle at time step t is updated as 

 





<++
≥+

=+
))(())1(( if     )1(
))(())1(( if         )(
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tftft
tftft

t
iii

iii
i yxx

yxy
y               (2.6) 

 

For the gbest model, the best particle is determined from the entire swarm by selecting 

the best personal best position. If the position of the global best particle is denoted by 

the vector ŷ , then 
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}{ { }))((,)),(()),((min,,,)(ˆ 1010 tftftft ss yyyyyyy KK =∈             (2.7) 

 

where s denotes the size of the swarm.  

The velocity update step is specified for each dimension j ∈ 1,…,Nd, hence, vi,j 

represents the jth element of the velocity vector of the ith particle. Thus the velocity of 

particle i is updated using the following equation: 

 

))()()(())()()(()(1)( 2,21,1 txtŷtrctxtytrctwvtv ji,jjji,ji,jji,ji, −+−+=+                     (2.8) 

 

where w is the inertia weight, 1c  and 2c  are the acceleration constants, and )(1, tr j , 

(0,1)~)(2, Utr j . Equation (2.8) consists of three components, namely 

• The inertia weight term, w, which was first introduced by Shi and Eberhart [A 

modified 1998]. This term serves as a memory of previous velocities. The 

inertia weight controls the impact of the previous velocity: a large inertia 

weight favors exploration, while a small inertia weight favors exploitation [Shi 

and Eberhart, Parameter 1998]. 

• The cognitive component, ii t xy −)( , which represents the particle's own 

experience as to where the best solution is. 

• The social component, )()(ˆ tt ixy − , which represents the belief of the entire 

swarm as to where the best solution is. 

According to Van den Bergh [2002], the relation between the inertia weight and 

acceleration constants should satisfy the following equation in order to have 

guaranteed convergence: 
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21                               (2.9) 

Otherwise, the PSO particles may exhibit divergent of cyclic behavior. For a thorough 

study of the relationship between the inertia weight and acceleration constants, the 

reader is advised to refer to Ozcan and Mohan [1998], Clerc and Kennedy [2001], 

Van den Bergh [2002], Zheng et al. [2003], Yasuda et al. [2003] and Trelea [2003]. 

Velocity updates can also be clamped with a user defined maximum velocity, 

Vmax, which would prevent them from exploding, thereby causing premature 

convergence [Eberhart et al. 1996]. 

 

The position of particle i, xi, is then updated using the following equation: 

 

)1()()1( ++=+ ttt iii vxx                (2.10) 

 

The PSO updates the particles in the swarm using equations (2.8) and (2.10). This 

process is repeated until a specified number of iterations is exceeded, or velocity 

updates are close to zero. The quality of particles is measured using a fitness function 

which reflects the optimality of a particular solution. Figure 2.3 summarizes the basic 

PSO algorithm.   

 

2.6.2 The lbest Model 
 
For the lbest model, a swarm is divided into overlapping neighborhoods of particles. 

For each neighborhood Ni, the best particle is determined, with position iŷ . This 

particle is referred to as the neighborhood best particle. Let the indices of the particles 

wrap around at s and the neighborhood size is l. Then the update equations are:
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For each particle i ∈ 1,...,s do 

   Randomly initialize xi 

   Randomly initialize vi (or just set vi to zero) 

   Set yi = xi 

endfor 

Repeat 

   For each particle i ∈ 1,...,s do 

      Evaluate the fitness of particle i, f(xi) 

      Update yi using equation (2.6) 

      Update ŷ  using equation (2.7) 

      For each dimension  j ∈ 1,...,Nd do 

         Apply velocity update using equation (2.8) 

      endloop 

      Apply position update using equation (2.10) 

   endloop 

Until some convergence criteria is satisfied 

Figure 2.3: General pseudo-code for PSO 

 

 

{ })(),(,),(),(),(,),(),( tttttttN li1li1ii1i1lilii +−++−+−−= yyyyyyy KK           (2.11) 

{ } },))((min1))((|{1)( iiiiii NtftˆfNtˆ ∈∀=+∈+ yyyy                       (2.12) 

))()()(())()()(()(1)( 2,21,1, txtŷtrctxtytrctwvtv ji,ji,jji,ji,jji,ji −+−+=+          (2.13) 
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The position update equation is the same as given in equation (2.10). Neighbors 

represent the social factor in PSO. Neighborhoods are usually determined using 

particle indices, however, topological neighborhoods can also be used [Suganthan 

1999]. It is clear that gbest is a special case of lbest with l = s; that is, the 

neighborhood is the entire swarm. While the lbest approach results in a larger 

diversity, it is still slower than the gbest approach. 

 

2.6.3 PSO Neighborhood topologies 
 
Different neighborhood topologies have been investigated [Kennedy 1999; Kennedy 

and Mendes 2002]. Two common neighborhood topologies are the star (or wheel) and 

ring (or circle) topologies. For the star topology one particle is selected as a hub, 

which is connected to all other particles in the swarm. However, all the other particles 

are only connected to the hub. For the ring topology, particles are arranged in a ring. 

Each particle has some number of particles to its right and left as its neighborhood. 

Recently, Kennedy and Mendes [2002] proposed a new PSO model using a Von 

Neumann topology. For the Von Neumann topology, particles are connected using a 

grid network (2-dimensional lattice) where each particle is connected to its four 

neighbor particles (above, below, right and left particles). Figure 2.4 illustrates the 

different neighborhood topologies.     
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(a) Star topology (b) Ring Topology (c) Von Neumann Topology 

Figure 2.4. A diagrammatic representation of neighborhood topologies  

 

 The choice of neighborhood topology has a profound effect on the propagation 

of the best solution found by the swarm. Using the gbest model the propagation is 

very fast (i.e. all the particles in the swarm will be affected by the best solution found 

in iteration t, immediately in iteration 1+t ). This fast propagation may result in the 

premature convergence problem discussed in Section 2.5.6. However, using the ring 

and Von Neumann topologies will slow down the convergence rate because the best 

solution found has to propagate through several neighborhoods before affecting all 

particles in the swarm. This slow propagation will enable the particles to explore more 

areas in the search space and thus decreases the chance of premature convergence. 

 

2.6.4 The Binary PSO 
 

Kennedy and Eberhart [1997] have adapted the PSO to search in binary spaces. For 

the binary PSO, the component values of xi, yi and iŷ  are restricted to the set {0, 1}. 

The velocity, vi, is interpreted as a probability to change a bit from 0 to 1, or from 1 to 

0 when updating the position of particles. Therefore, the velocity vector remains 

continuous-valued. Since each ℜ∈ji,v , a mapping needs to be defined from vi,j to a 
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probability in the range [0, 1]. This is done by using a sigmoid function to squash 

velocities into a [0, 1] range. The sigmoid function is defined as 

 

ve
vsig −+
=

1
1)(                 (2.14) 

 

The equation for updating positions (equation (2.10)) is then replaced by the 

probabilistic update equation [Kennedy and Eberhart 1997]: 

 





+<
+≥

=+
))1(()( if      1
))1(()( if      0

)1(
tvsigtr
tvsigtr

tx
ji,j3,

ji,j3,
ji,              (2.15) 

 

where (0,1)~)(3, Utr j .  

It can be observed from equation (2.15) that if sig(vi,j) = 0 then xi,j = 0. This 

situation occurs when vi,j < -10. Furthermore, sig(vi,j) will saturate when vi,j > 10 [Van 

den Bergh 2002]. To avoid this problem, it is suggested to set vi,j ∈ [-4,4] and to use 

velocity clamping with Vmax = 4 [Kennedy and Eberhart 2001]. 

 PSO has also been extended to deal with arbitrary discrete representation 

[Yoshida et al. 1999; Fukuyama and Yoshida 2001; Venter and Sobieszczanski-

Sobieski 2002; Al-kazemi and Mohan 2000; Mohan and Al-Kazemi 2001]. These 

extensions are generally achieved by rounding xi,j to its closest discrete value after 

applying position update equation (2.10) [Venter and Sobieszczanski-Sobieski 2002].    
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2.6.5 PSO vs. GA 
   

A PSO is an inherently continuous algorithm where as a GA is an inherently discrete 

algorithm [Venter and Sobieszczanski-Sobieski 2002]. Experiments conducted by 

Veeramachaneni et al. [2003] showed that a PSO performed better than GAs when 

applied on some continuous optimization problems. Furthermore, according to 

Robinson et al. [2002], a PSO performed better than GAs when applied to the design 

of a difficult engineering problem, namely, profiled corrugated horn antenna design 

[Diaz and Milligan 1996]. In addition, a binary PSO was compared with a GA by 

Eberhart and Shi [Comparison 1998] and Kennedy and Spears [1998]. The results 

showed that binary PSO is generally faster, more robust and performs better than 

binary GAs, especially when the dimension of a problem increases. 

 Hybrid approaches combining PSO and GA were proposed by 

Veeramachaneni et al. [2003] to optimize the profiled corrugated horn antenna. The 

hybridization works by taking the population of one algorithm when it has made no 

fitness improvement and using it as the starting population for the other algorithm. 

Two versions were proposed: GA-PSO and PSO-GA. In GA-PSO, the GA population 

is used to initialize the PSO population. For PSO-GA, the PSO population is used to 

initialize the GA population. According to Veeramachaneni et al. [2003], PSO-GA 

performed slightly better than PSO. Both PSO and PSO-GA outperformed both GA 

and GA-PSO.  

 Some of the first applications of PSO were to train Neural Networks (NNs), 

including NNs with product units. Results have shown that PSO is better than GA and 

other training algorithms [Eberhart and Shi, Evolving 1998; Van den Bergh and 

Engelbrecht 2000; Ismail and Engelbrecht 2000]. 
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According to Shi and Eberhart [1998], the PSO performance is insensitive to 

the population size (however, the population size should not be too small). This 

observation was verified by Løvberg [2002] and Krink et al. [2002]. Consequently, 

PSO with smaller swarm sizes perform comparably to GAs with larger populations. 

Furthermore, Shi and Eberhart observed that PSO scales efficiently. This observation 

was verified by Løvberg [2002].  

 

2.6.6 PSO and Constrained Optimization 
 
 
Most engineering problems are constrained problems. However, the basic PSO is only 

defined for unconstrained problems. One way to allow the PSO to optimize 

constrained problems is by adding a penalty function to the original fitness function 

(as discussed in Section 2.5.2). In this thesis, a constant penalty function (empirically 

set to 106) is added to the original fitness function for each particle with violated 

constraints. More recently, a modification to the basic PSO was proposed by Venter 

and Sobieszczanski-Sobieski [2002] to penalize particles with violated constraints. 

The idea is to reset the velocity of each particle with violated constraints. Therefore, 

these particles will only be affected by yi and ŷ . According to Venter and 

Sobieszczanski-Sobieski [2002], this modification has a significant positive effect on 

the performance of PSO. Other PSO approaches dealing with constrained problems 

can be found in El-Gallad et al. [2001], Hu and Eberhart [Solving 2002], Schoofs and 

Naudts [2002], Parsopoulos and Vrahatis [2002], Coath et al. [2003] and Gaing 

[2003]. 
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2.6.7 Drawbacks of PSO 
 
PSO and other stochastic search algorithms have two major drawbacks [Løvberg 

2002]. The first drawback of PSO, and other stochastic search algorithms, is that the 

swarm may prematurely converge (as discussed in Section 2.5.6). According to 

Angeline [Evolutionary 1998], although PSO finds good solutions much faster than 

other evolutionary algorithms, it usually can not improve the quality of the solutions 

as the number of iterations is increased. PSO usually suffers from premature 

convergence when strongly multi-modal problems are being optimized. The rationale 

behind this problem is that, for the gbest PSO, particles converge to a single point, 

which is on the line between the global best and the personal best positions. This point 

is not guaranteed to be even a local optimum. Proofs can be found in Van den Bergh 

[2002]. Another reason for this problem is the fast rate of information flow between 

particles, resulting in the creation of similar particles (with a loss in diversity) which 

increases the possibility of being trapped in local optima [Riget and Vesterstrøm 

2002]. Several modifications of the PSO have been proposed to address this problem. 

Two of these modifications have already been discussed, namely, the inertia weight 

and the lbest model. Other modifications are discussed in the next section.  

The second drawback is that stochastic approaches have problem-dependent 

performance. This dependency usually results from the parameter settings of each 

algorithm. Thus, using different parameter settings for one stochastic search algorithm 

result in high performance variances. In general, no single parameter setting exists 

which can be applied to all problems. This problem is magnified in PSO where 

modifying a PSO parameter may result in a proportionally large effect [Løvberg 

2002]. For example, increasing the value of the inertia weight, w, will increase the 

speed of the particles resulting in more exploration (global search) and less 
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exploitation (local search). On the other hand, decreasing the value of w will decrease 

the speed of the particle resulting in more exploitation and less exploration. Thus 

finding the best value for w is not an easy task and it may differ from one problem to 

another. Therefore, it can be concluded that the PSO performance is problem-

dependent. 

 One solution to the problem-dependent performance of PSO is to use self-

adaptive parameters. In self-adaptation, the algorithm parameters are adjusted based 

on the feedback from the search process [Løvberg 2002]. Bäck [1992] has 

successfully applied self-adaptation on GAs. Self-adaptation has been successfully 

applied to PSO by Clerc [1999], Shi and Eberhart [2001], Hu and Eberhart [Adaptive 

2002], Ratnaweera et al. [2003] and Tsou and MacNish [2003], Yasuda et al. [2003] 

and Zhang et al. [2003].  

 The problem-dependent performance problem can be addressed through 

hybridization. Hybridization refers to combining different approaches to benefit from 

the advantages of each approach [Løvberg 2002]. Hybridization has been successfully 

applied to PSO by Angeline [1998], Løvberg [2002], Krink and Løvbjerg [2002], 

Veeramachaneni et al. [2003], Reynolds et al. [2003], Higashi and Iba [2003] and 

Esquivel and Coello Coello [2003].  

 

2.6.8 Improvements to PSO 
 

The improvements presented in this section are mainly trying to address the problem 

of premature convergence associated with the original PSO. These improvements 

usually try to solve this problem by increasing the diversity of solutions in the swarm. 
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Constriction Factor 

Clerc [1999] and Clerc and Kennedy [2001] proposed using a constriction factor to 

ensure convergence. The constriction factor can be used to choose values for w, c1 and 

c2 to ensure that the PSO converges. The modified velocity update equation is defined 

as follows: 

 

))),()()(())()()(()((1)( 2,21,1 txtŷtrctxtytrctvtv ji,jjji,ji,jji,ji, −+−+=+ χ               (2.16) 

 

where χ  is the constriction factor defined as follows: 

 

ϕϕϕ
χ

42

2
2 −−−

= , 

 

and 4   21 >+= ϕϕ ,cc . 

Eberhart and Shi [2000] showed imperically that using both the constriction 

factor and velocity clamping generally improves both the performance and the 

convergence rate of the PSO. 

 

Guaranteed Convergence PSO (GCPSO) 

The original versions of PSO as given in Section 2.6.1, may prematurely converge 

when yyx ˆii == , since the velocity update equation will depend only on the term 

wvi(t) [Van den Bergh and Engelbrecht 2002; Van den Bergh 2002]. To overcome 

this problem, a new version of PSO with guaranteed local convergence was 

introduced by Van den Bergh [2002], namely GCPSO. In GCPSO, the global best 

particle with index τ is updated using a different velocity update equation, namely 
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))(21)(()()()()1( 2 trttwvtŷtxtv j,j,jj,j, −+++−=+ ρτττ            (2.17) 

 

which results in a position update equation of 

 

))(21)(()()()1( 2 trttwtŷtx j,j,jj, −++=+ ρττ v             (2.18) 

 

The term –xτ resets the particle's position to the global best position ŷ ; )(tw τv  

signifies a search direction, and ))(21)(( 2 trt j,−ρ  adds a random search term to the 

equation. The term )(tρ  defines the area in which a better solution is searched.  

 

The value of )0(ρ  is initialized to 1.0, with )1( +tρ  defined as 
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A failure occurs when 1))-(())(( tˆftˆf yy ≥ (in the case of a minimization problem) 

and the variable #failures is subsequently incremented (i.e. no apparent progress has 

been made). A success then occurs when 1))-(())(( tˆftˆf yy < . Van den Bergh [2002] 

suggests learning the control threshold values fc and sc dynamically. That is, 
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This arrangement ensures that it is harder to reach a success state when multiple 

failures have been encountered. Likewise, when the algorithm starts to exhibit overly 

confident convergent behavior, it is forced to randomly search a smaller region of the 

search space surrounding the global best position. For equation (2.19) to be well 

defined, the following rules should be implemented: 

 

#successes(t+1) > #successes(t) ⇒ #failures(t+1) = 0 

#failures(t+1) > #failures(t) ⇒ #successes(t+1) = 0 

 

Van den Bergh suggests repeating the algorithm until ρ  becomes sufficiently 

small, or until stopping criteria are met. Stopping the algorithm once ρ  reaches a 

lower bound is not advised, as it does not necessarily indicate that all particles have 

converged – other particles may still be exploring different parts of the search space. 

It is important to note that, for the GCPSO algorithm, all particles except for 

the global best particle still follow equations (2.8) and (2.10). Only the global best 

particle follows the new velocity and position update equations. 

According to Van den Bergh [2002] and Peer et al. [2003], GCPSO generally 

performs better than PSO when applied to benchmark problems. This improvement in 

performance is especially noticeable when PSO and GCPSO are applied to unimodal 

functions, but the performance of both algorithms was generally comparable for 

multi-modal functions [Van den Bergh 2002]. Furthermore, due to its fast rate of 

convergence, GCPSO is slightly more likely to be trapped in local optima [Van den 

Bergh 2002]. However, it has gauaranteed local convergence whereas the original 

PSO does not. 
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Multi-start PSO (MPSO) 

Van den Bergh [2002] proposed MPSO which is an extension to GCPSO in order to 

make it a global search algorithm. MPSO works as follows: 

1. Randomly initialize all the particles in the swarm. 

2. Apply the GCPSO until convergence to a local optimum. Save the position of this 

local optimum. 

3. Repeat Steps 1 and 2 until some stopping criteria are satisfied. 

 

In Step 2, the GCPSO can be replaced by the original PSO. Several versions of MPSO 

were proposed by Van den Bergh [2002] based on the way used to determine the 

convergence of GCPSO. One good approach is to measure the rate of change in the 

objective function as follows: 

))((
))1(())((

ratio tˆf
tˆftˆff

y
yy −−

=    

If fratio is less than a user-specified threshold then a counter is incremented. The swarm 

is assumed to have converged if the counter reaches a certain threshold [Van den 

Bergh 2002]. According to Van den Bergh [2002], MPSO generally performed better 

than GCPSO in most of the tested cases. However, the performance of MPSO 

degrades significantly as the number of dimensions in the objective function increases 

[Van den Bergh 2002].  

 

Attractive and Repulsive PSO (ARPSO) 

ARPSO [Riget and Vesterstrøm 2002] alternates between two phases: attraction and 

repulsion based on a diversity measure. In the attraction phase, ARPSO uses PSO to 

allow fast information flow, as such particles attract each other and thus the diversity 
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reduces. It was found that 95% of fitness improvements were achieved in this phase. 

This observation shows the importance of low diversity in fine tuning the solution. In 

the repulsion phase, particles are pushed away from the best solution found so far 

thereby increasing diversity. Based on the experiments conducted by Riget and 

Vesterstrøm [2002] ARPSO outperformed PSO and GA in most of the tested cases. 

 

Selection 

A hybrid approach combining PSO with a tournament selection method was proposed 

by Angeline [Using Selection 1998]. Each particle is ranked based on its performance 

against a randomly selected group of particles. For this purpose, a particle is awarded 

one point for each opponent in the tournament for which the particle has a better 

fitnss. The population is then sorted in decending order according to the points 

accumulated. The bottom half of the population is then replaced by the top half. This 

step reduces the diversity of the population. The results showed that the hybrid 

approach performed better than the PSO (without w and χ ) for unimodal functions. 

However, the hybrid approach performed worse than the PSO for functions with many 

local optima. Therefore, it can be concluded that although the use of a selection 

method improves the exploitation capability of the PSO, it reduces its exploration 

capability [Ven den Bergh 2002]. Hence, using a selection method with PSO may 

result in premature convergence. 

 

Breeding 

Løvberg et al. [2001] proposed a modification to PSO by using an arithmetic 

crossover operator (discussed in Section 2.5.4), referred to as a breeding operator, in 

order to improve the convergence rate of PSO. Each particle in the swarm is assigned 
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a user-defined breeding probability. Based on these probabilities, two parent particles 

are randomly selected to create offspring using the arithmetic crossover operator. 

Offspring replace the parent particles. The personal best position of each offspring 

particle is initialized to its current position (i.e. yi = xi), and its velocity is set as the 

sum of the two parent's velocities normalized to the original length of each parent 

velocity. The process is repeated until a new swarm of the same size has been 

generated. PSO with breeding generally performed better than the PSO when applied 

to multi-modal functions [Løvberg et al. 2001].   

 

Mutation 

Recently, Higashi and Iba [2003] proposed hybriding PSO with Gaussian mutation. 

Similarly, Esquivel and Coello Coello [2003] proposed hybridizing lbest- and gbest- 

PSO with a powerful diversity maintenance mechanism, namely, a non-uniform 

mutation operator discussed in section 2.5.5 to solve the premature convergence 

problem of PSO. According to Esquivel and Coello Coello [2003] the hybrid 

approach of lbest PSO and the non-uniform mutation operator outperformed PSO and 

GCPSO in all of the conducted experiments. 

 

Dissipative PSO (DPSO) 

DPSO was proposed by Xie et al. [2002] to add random mutation to PSO in order to 

prevent premature convergence. DPSO introduces negative entropy via the addition of 

randomness to the particles (after executing equation (2.8) and (2.10)) as follows: 

If (r1(t) < cv) then vi,j(t + 1) = r2(t)Vmax  

If (r3(t) < cl) then xi,j(t + 1) = R(t)  
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where r1(t) ~ U(0,1), r2(t) ~ U(0,1) and r3(t) ~ U(0,1); cv and cv are chaotic factors in 

the range [0,1] and R(t) ~ U(Zmin,Zmax) where Zmin and Zmax are the lower and upper 

bound of the search space. The results showed that DPSO performed better than PSO 

when applied to the benchmarks problems [Xie et al. 2002]. 

 

Differential Evolution PSO (DEPSO) 

DEPSO [Zhang and Xie 2003] uses a differential evolution (DE) operator [Storn and 

Price 1997] to provide the mutations. A trait point )(tiy&&  is calculated as follows: 

 

If (r1(t) < pc OR j = kd) then 

2
))()(())()((

)()( 4321 tytytyty
tŷty j,j,j,j,

jji,

−+−
+=&&                   (2.23) 

 

where r1(t) ~ U(0,1), kd ~ U(1,Nd), and )(1 ty , )(2 ty , )(3 ty  and )(4 ty  are randomly 

chosen from the set of personal best positions. Then, 

))(())(( ifonly  ),()( tftftt iiii yyyy <= &&&& . The rationale behind mutating )(tiy  instead 

of )(tix  is to avoid disorganization of the swarm. 

DEPSO works by alternating between the original PSO and the DE operator 

such that equations (2.8) and (2.10) are used in the odd iterations and equation (2.23) 

is used is in the even iterations. According to Zhang and Xie [2003], DEPSO 

generally performed better than PSO, DE, GA, ES, DPSO and fuzzy-adaptive PSO 

when applied to the benchmark functions. 
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Craziness 

To avoid premature convergence, Kennedy and Eberhart [1995] introduced the use of 

a craziness operator with PSO. However, they concluded that this operator may not be 

necessay. More recently, Venter and Sobieszczanski-Sobieski [2002] reintroduced the 

craziness operator to PSO. In each iteration, a few particles far from the center of the 

swarm are selected. The positions of these particles are then randomly changed while 

their velocities are initialized to the cognitive velocity component, i.e. 

 

))()()((1)( 1,1 txtytrctv ji,ji,jji, −=+                             (2.24) 

 

According to Venter and Sobieszczanski-Sobieski [2002], the proposed craziness 

operator does not seem to have a big influence on the performance of PSO. 

 

The LifeCycle Model 

A self-adaptive heuristic search algorithm, called LifeCycle, was proposed by Krink 

and Løvbjerg [2002]. LifeCycle is a hybrid approach combing PSO, GA and Hill-

Climbing approaches. The motivation for LifeCycle is to gain the benefits of PSO, 

GA and Hill-Climbing in one algorithm. In LifeCycle, the individuals (representing 

potential solutions) start as PSO particles, then depending on their performance (in 

searching for solutions) can change into GA individuals, or Hill-Climbers. Then, they 

can return back to particles. This process is repeated until convergence. The LifeCycle 

was compared with PSO, GA and Hill-Climbing [Krink, and Løvbjerg 2002] and has 

generally shown good performance when applied to the benchmark problems. 

However, PSO performed better than (or comparable to) the LifeCycle in three out of 

five benchmark problems. Another hybrid approach proposed by Veeramachaneni et 
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al. [2003] combining PSO and GA has already been discussed in Section 2.6.5. From 

the experimental results of Krink and Løvbjerg [2002] and Veeramachaneni et al. 

[2003], it can be observed that the original PSO performed well compared to their 

more complicated hybrid approaches.  

 

Multi-Swarm (or subpopulation) 

The idea of using several swarms instead of one swarm was applied to PSO by 

Løvberg et al. [2001] and Van den Bergh and Engelbrecht [2001]. The approach 

proposed by Løvberg et al. [2001] is an extension of PSO with the breeding operator 

discussed above. The idea is to divide the swarm into several swarms. Each swarm 

has its own global best particles. The only interaction between the swarms occurs 

when the breeding selects two particles to mate from different swarms. The results in 

Løvberg et al. [2001] showed that this approach did not improve the performance of 

PSO. The expected reasons are [Jensen and Kristensen 2002]:  

• The authors split a swarm of 20 particles into six different swarms. Hence, 

each swarm contains a few particles. Swarms with few particles have little 

diversity and therefore little exploration power. 

• No action has been taken to prevent swarms from being too similar to each 

other. 

 

The above problems were addressed by Jensen and Kristensen [2002]. The modified 

approach works by using two swarms (each with a size of 20 particles) and keeping 

them away from each other either by randomly spreading the swarm (with the worst 

performance) over the search space or by adding a small mutation to the positions of 

the particles in this swarm. The approach using the mutation technique generally 
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performed better than PSO when applied to the benchmark problems [Jensen and 

Kristensen 2002]. However, one drawback of this approach is the fact that the 

decision of whether two swarms are too close to each other is very problem dependent 

[Jensen and Kristensen 2002].  

 

Self-Organized Criticality (SOC PSO) 

In order to increase the population diversity to avoid premature convergence, Løvberg 

and Krink [2002] extended PSO with Self Organized Criticality (SOC). A measure, 

called criticality, of how close particles are to each other is used to relocate the 

particles and thus increase the diversity of the swarm. A particle with a high criticality 

disperses its criticality by increasing the criticality of a user-specified number of 

particles, CL, in its neighborhood by 1. Then, the particle reduces its own criticality 

value by CL. The particle then relocates itself. Two types of relocation were 

investigated: the first re-initializes the particle, while the second pushes the particle 

with high criticality a little further in the search space. According to Løvberg and 

Krink [2002], the first relocation approach produced better results when applied to the 

tested functions. SOC PSO outperformed PSO in one case out of the four cases used 

in the experiments. However, adding a tenth of the criticality value of a particle to its 

own inertia (w was set to 0.2) results in a significant improvement of the SOC PSO 

compared to PSO [Løvberg and Krink 2002]. 

  

Fitness-Distance Ratio based PSO (FDR-PSO) 

Recently, Veeramachaneni et al. [2003] proposed a major modification to the way 

PSO operates by adding a new term to the velocity update equation. The new term 
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allows each particle to move towards a particle in its neighborhood that has a better 

personal best position. The modified velocity update equation is defined as: 

 

))()(())()(())()(()(1)( 321 txtytxtŷtxtytwvtv ji,j,ji,jji,ji,ji,ji, −+−+−+=+ ηψψψ      (2.25) 

 

where 1ψ , 2ψ  and 3ψ  are user-specified parameters and each )(ty j,η  is chosen by 

maximizing 
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                (2.26) 

 

where |.| represents the absolute value. 

According to Veeramachaneni et al. [2003], FDR-PSO decreases the 

possibility of premature convergence and thus is less likely to be trapped in local 

optima. In addition, FDR-PSO (using 121 ==ψψ  and 23 =ψ ) outperformed PSO 

and several other variations of PSO, namely, ARPSO, DPSO, SOC PSO and Multi 

Swarm PSO [Løvberg et al. 2001], in different tested benchmark problems 

[Veeramachaneni et al. 2003]. 

 

2.7 Ant Systems 
 
Another population-based stochastic approach is Ant Systems. Ant Systems were first 

introduced by Dorigo [1992] and Dorigo et al. [1991] to solve some difficult 

combinatorial optimization problems [Dorigo et al. 1999]. Ant systems were inspired 

by the observation of real ant colonies. In real ant colonies, ants communicate with 
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each other indirectly through depositing a chemical substance, called pheromone. 

Ants use, for example, pheromones to find the shortest path to food. This indirect way 

of communication via pheromones is called stigmergy [Dorigo et al. 1999]. 

 Using Ant Colony Optimization (ACO), a finite size colony of artificial ants 

cooperate with each other via stigmergy to find quality solutions to optimization 

problems. Good solutions result from the cooperation of the artificial ants. ACO was 

applied to a wide range of optimization problems such as the traveling salesman 

problem, and routing and load balancing in packet switched networks with 

encouraging results [Dorigo et al. 1999]. More details about Ant Systems and their 

applications can be found in Bonabeau et al. [1999] and Dorigo and Di Caro [1999]. 

Ant systems and their applications are outside the scope of this thesis.    

 

2.8 Conclusions 
 
This chapter provided a short overview of optimization and optimization methods 

with a special emphasis on PSO. From the discussed methods, PSO (and GA for 

comparison purposes) is used in this thesis to optimize a set of problems in the field of 

pattern recognition and image processing. These problems are introduced in the next 

chapter. 
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Chapter 3 

Problem Definition 

 

This chapter reviews the problems addressed in this thesis in sufficient detail. First the 

clustering problem is defined and different clustering concepts and approaches are discussed. 

This is followed by defining image segmentation in addition to presenting various image 

segmentation methods. A survey of color image quantization and approaches to quantization 

are then presented. This is followed by a brief introduction to spectral unmixing.   

 

3.1 The Clustering Problem 

 

Data clustering is the process of identifying natural groupings or clusters within 

multidimensional data based on some similarity measure (e.g. Euclidean distance) 

[Jain et al. 1999; Jain et al. 2000]. It is an important process in pattern recognition and 

machine learning [Hamerly and Elkan 2002]. Furthermore, data clustering is a central 

process in Artificial Intelligence (AI) [Hamerly 2003]. Clustering algorithms are used 

in many applications, such as image segmentation [Coleman and Andrews 1979; Jain 

and Dubes 1988; Turi 2001], vector and color image quantization [Kaukoranta et al. 

1998; Baek et al. 1998; Xiang 1997], data mining [Judd et al. 1998], compression 

[Abbas and Fahmy 1994], machine learning [Carpineto and Romano 1996], etc. A 

cluster is usually identified by a cluster center (or centroid) [Lee and Antonsson 

2000]. Data clustering is a difficult problem in unsupervised pattern recognition as the 

clusters in data may have different shapes and sizes [Jain et al. 2000]. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

48 
 

 

3.1.1 Definitions 
 

The following terms are used in this thesis: 

• A pattern (or feature vector), z, is a single object or data point used by the 

clustering algorithm [Jain et al. 1999]. 

• A feature (or attribute) is an individual component of a pattern [Jain et al. 

1999]. 

• A cluster is a set of similar patterns, and patterns from different clusters are 

not similar [Everitt 1974]. 

• Hard (or Crisp) clustering algorithms assign each pattern to one and only one 

cluster. 

• Fuzzy clustering algorithms assign each pattern to each cluster with some 

degree of membership. 

• A distance measure is a metric used to evaluate the similarity of patterns [Jain 

et al. 1999]. 

 

The clustering problem can be formally defined as follows (Veenman et al. 2003): 

Given a data set }{ 21 pNp ,,,,, zzzzZ KK=  where zp is a pattern in the Nd-dimensional 

feature space, and Np is the number of patterns in Z,  then the clustering of Z is the 

partitioning of Z into K clusters {C1, C2,…,CK} satisfying the following conditions: 

• Each pattern should be assigned to a cluster, i.e. 

ZC =∪ = k
K
k 1  

• Each cluster has at least one pattern assigned to it, i.e. 
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K,,kk K1   , =≠ φC  

• Each pattern is assigned to one and only one cluster (in case of hard clustering 

only), i.e. 

kkkkkk ≠=∩     whereφCC  

 

3.1.2 Similarity Measures 
 

As previously mentioned, clustering is the process of identifying natural groupings or 

clusters within multidimensional data based on some similarity measure. Hence, 

similarity measures are fundamental components in most clustering algorithms [Jain 

et al. 1999].  

The most popular way to evaluate a similarity measure is the use of distance 

measures. The most widely used distance measure is the Euclidean distance defined as 
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2)()(                           (3.1) 

 

Euclidean distance is a special case (when α = 2) of the Minkowski metric [Jain et al. 

1999] defined as 
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When α = 1, the measure is referred to as the Manhattan distance [Hamerly 2003]. 
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Clustering data of high dimensionality using the Minkowski metric is usually 

not efficient because the distance between the patterns increases with increase in 

dimensionality. Hence, the concepts of near and far become weaker [Hamerly 2003]. 

Furthermore, for the Minkowski metric, the largest-scaled feature tends to dominate 

the other features. This can be solved by normalizing the features to a common range 

[Jain et al. 1999]. One way to do this is by using the cosine distance (or vector dot 

product) which is the sum of the product of each component from two vectors defined 

as 

 

wu

N

j
jw,ju,

wu

d

zz
,

zz
zz

 
  1
∑
==><                  (3.3) 

 

where >< wu ,zz  ∈ [-1,1].  

The cosine distance is actually not a distance but rather a similarity metric. In 

other words, the cosine distance measures the difference in the angle between two 

vectors not the difference in the magnitude between two vectors. The cosine distance 

is suitable for clustering data of high dimensionality [Hamerly 2003]. 

 

Another distance measure is the Mahalanobis distance defined as 

 

T1
M )()()( wuwuwu ,d zzzzzz −Σ−= −                 (3.4) 

 

where Σ is the covariance matrix of the patterns. The Mahalanobis distance gives 

different features different weights based on their variances and pairwise linear 
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correlations. Thus, this metric implicitly assumes that the densities of the classes are 

multivariate Gaussian [Jain et al. 1999]. 

 

3.1.3 Clustering Techniques 
 

Most clustering algorithms are based on two popular techniques known as 

hierarchical and partitional clustering [Frigui and Krishnapuram 1999; Leung et al. 

2000]. In the following, an overview of both techniques is presented with an elaborate 

discussion of popular hierarchical and partitional clustering algorithms. 

 

3.1.3.1 Hierarchical Clustering Techniques 
 

Algorithms in this category generate a cluster tree (or dendrogram) by using heuristic 

splitting or merging techniques [Hamerly 2003]. A cluster tree is defined as "a tree 

showing a sequence of clustering with each clustering being a partition of the data set" 

[Leung et al. 2000]. Algorithms that use splitting to generate the cluster tree are called 

divisive. On the other hand, the more popular algorithms that use merging to generate 

the cluster tree are called agglomerative. Divisive hierarchical algorithms start with 

all the patterns assigned to a single cluster. Then, splitting is applied to a cluster in 

each stage until each cluster consists of one pattern. Contrary to divisive hierarchical 

algorithms, agglomerative hierarchical algorithms start with each pattern assigned to 

one cluster. Then, the two most similar clusters are merged together. This step is 

repeated until all the patterns are assigned to a single cluster [Turi 2001]. Several 

agglomerative hierarchical algorithms were proposed in the literature which differ in 

the way that the two most similar clusters are calculated. The two most popular 
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agglomerative hierarchical algorithms are the single link [Sneath and Sokal 1973] and 

complete link [Anderberg 1973] algorithms. Single link algorithms merge the clusters 

whose distance between their closest patterns is the smallest. Complete link 

algorithms, on the other hand, merge the clusters whose distance between their most 

distant patterns is the smallest [Turi 2001]. In general, complete link algorithms 

generate compact clusters while single link algorithms generate elongated clusters. 

Thus, complete link algorithms are generally more useful than single link algorithms 

[Jain et al. 1999]. Another less popular agglomerative hierarchical algorithm is the 

centroid method [Anderberg 1973]. The centroid algorithm merges the clusters whose 

distance between their centroids is the smallest. One disadvantage of the centroid 

algorithm is that the characteristic of a very small cluster is lost when merged with a 

very large cluster [Turi 2001]. More details about traditional hierarchical clustering 

techniques can be found in Everitt [1974]. 

 Recently, a hierarchical clustering approach to simulate the human visual 

system by modeling the blurring effect of lateral retinal interconnections based on 

scale space theory has been proposed by Leung et al. [2000]. The following paragraph 

provides the reader with a good idea about this approach as described by Leung et al. 

[2000]:  

"In this approach, a data set is considered as an image with each light 

point located at a datum position. As we blur this image, smaller light 

blobs merge into larger ones until the whole image becomes one light blob 

at a low level of resolution. By identifying each blob with a cluster, the 

blurring process generates a family of clustering along the hierarchy." 

 

According to Leung et al. [2000], this approach has several advantages, including: 
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• it is not sensitive to initialization, 

• it is robust in the presence of noise in the data set, and 

• it generates clustering that is similar to that perceived by human eyes. 

 

In general, hierarchical clustering techniques have the following advantages [Frigui 

and Krishnapuram 1999]: 

• the number of clusters need not to be specified a priori, and 

• they are independent of the initial conditions.  

 

However, hierarchical clustering techniques generally suffer from the following 

drawbacks:  

• They are computationally expensive (time complexity is )logO( 2
pp NN  and 

space complexity is )O( 2
pN [Turi 2001]). Hence, they are not suitable for very 

large data sets.  

• They are static, i.e. patterns assigned to a cluster cannot move to another 

cluster. 

• They may fail to separate overlapping clusters due to a lack of information 

about the global shape or size of the clusters.  

 

3.1.3.2 Partitional Clustering Techniques 
 

Partitional clustering algorithms divide the data set into a specified number of 

clusters. These algorithms try to minimize certain criteria (e.g. a square error function) 

and can therefore be treated as optimization problems. However, these optimization 
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problems are generally NP-hard and combinatorial [Leung et al. 2000]. The 

advantages of hierarchical algorithms are the disadvantages of the partitional 

algorithms and vice versa. Because of their advantages, partitional clustering 

techniques are more popular than hierarchical techniques in pattern recognition [Jain 

et al. 2000], hence, this thesis concentrates on partitional techniques. 

  Partitional clustering algorithms are generally iterative algorithms that 

converge to local optima [Hamerly and Elkan 2002]. Employing the general form of 

iterative clustering used by Hamerly and Elkan [2002], the steps of an iterative 

clustering algorithm are:  

 

1. Randomly initialize the K cluster centroids 

2. Repeat 

   (a) For each pattern, zp, in the data set do 

       Compute its membership ) |( pku zm  to each centroid mk and its weight w(zp) 

       endloop 

 

   (b) Recalculate the K cluster centroids, using  

∑
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                (3.5) 

   until a stopping criterion is satisfied. 

 

In the above algorithm, ) |( pku zm  is the membership function which quantifies the 

membership of pattern zp to cluster k. The membership function, ) |( pku zm , must 

satisfy the following constraints: 
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1) ) |( pku zm  ≥ 0,  p = 1,…, Np and k = 1,…, K 

2) 1) |(
1

=∑
=

K

k
pku zm ,  p = 1,…, Np 

 

Crisp clustering algorithms use a hard membership function (i.e. ) |( pku zm ∈{0,1}), 

while fuzzy clustering algorithms use a soft member function (i.e. ) |( pku zm ∈[0,1]) 

[Hamerly and Elkan 2002]. 

The weight function, w(zp), in equation (3.5) defines how much influence 

pattern zp has in recomputing the centroids in the next iteration, where 0)( >pw z  

[Hamerly and Elkan 2002]. The weight function was proposed by Zhang [2000]. 

Different stopping criteria can be used in an iterative clustering algorithm, for 

example: 

• stop when the change in centroid values are smaller than a user-specified 

value, 

• stop when the quantization error is small enough, or 

• stop when a maximum number of iterations has been exceeded. 

 

In the following, popular iterative clustering algorithms are described by defining the 

membership and weight functions in equation (3.5). 

 

The K-means Algorithm 

The most widely used partitional algorithm is the iterative K-means approach [Forgy 

1965]. The objective function that the K-means optimizes is 
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Hence, the K-means algorithm minimizes the intra-cluster distance [Hamerly and 

Elkan 2002]. The K-means algorithm starts with K centroids (initial values for the 

centroids are randomly selected or derived from a priori information). Then, each 

pattern in the data set is assigned to the closest cluster (i.e. closest centroid). Finally, 

the centroids are recalculated according to the associated patterns. This process is 

repeated until convergence is achieved.  

The membership and weight functions for K-means are defined as 
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Hence, K-means has a hard membership function. Furthermore, K-means has a 

constant weight function, thus, all patterns have equal importance [Hamerly and Elkan 

2002]. 

 

The K-means algorithm has the following main advantages [Turi 2001]: 

• it is very easy to implement, and 

• its time complexity is O(Np) making it suitable for very large data sets. 

 

However, the K-means algorithm has the following drawbacks [Davies 1997]: 

• the algorithm is data-dependent,  
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• it is a greedy algorithm that depends on the initial conditions, which may 

cause the algorithm to converge to suboptimal solutions, and 

• the user needs to specify the number of clusters in advance. 

 

The K-medoids algorithm is similar to K-means with one major difference, namely, 

the centroids are taken from the data itself [Hamerly 2003]. The objective of K-

medoids is to find the most centrally located patterns within the clusters [Halkidi et al. 

2001]. These patterns are called medoids. Finding a single medoid requires )O( 2
pN . 

Hence, K-medoids is not suitable for moderately large data sets.  

   

The Fuzzy C-means Algorithm 

A fuzzy version of K-means, called Fuzzy C-means (FCM) (sometimes called fuzzy 

K-means), was proposed by Bezdek [1980; 1981]. FCM is based on a fuzzy extension 

of the least-square error criterion. The advantage of FCM over K-means is that FCM 

assigns each pattern to each cluster with some degree of membership (i.e. fuzzy 

clustering). This is more suitable for real applications where there are some overlaps 

between the clusters in the data set. The objective function that the FCM optimizes is  
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where q is the fuzziness exponent, with q ≥ 1. Increasing the value of q will make the 

algorithm more fuzzy; uk,p is the membership value for the pth pattern in the kth cluster 

satisfying the following constraints: 

1) 0≥pk,u ,  p = 1,…, Np and k = 1,…, K 
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2) 1
1

=∑
=

K

k
pk,u ,  p = 1,…, Np 

 

The membership and weight functions for FCM are defined as [Hamerly and Elkan 

2002] 
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Hence, FCM has a soft membership function and a constant weight function. In 

general, FCM performs better than K-means [Hamerly 2003] and it is less affected by 

the presence of uncertainty in the data [Liew et al. 2000]. However, as in K-means it 

requires the user to specify the number of clusters in the data set. In addition, it may 

converge to local optima [Jain et al. 1999]. 

 Krishnapuram and Keller [1993; 1996] proposed a possibilistic clustering 

algorithm, called possibilistic C-means. Possibilistic clustering is similar to fuzzy 

clustering; the main difference is that in possibilistic clustering the membership values 

may not sum to one [Turi 2001]. Possibilistic C-means works well in the presence of 

noise in the data set. However, it has several drawbacks, namely [Turi 2001], 

• it is likely to generate coincident clusters, 

• it requires the user to specify the number of clusters in advance,  

• it converges to local optima, and  

• it depends on initial conditions.    
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The Gaussian Expectation-Maximization Algorithm 

Another popular clustering algorithm is the Expectation-Maximization (EM) 

algorithm [McLachlan and Krishnan 1997; Rendner and Walker 1984; Bishop 1995]. 

EM is used for parameter estimation in the presence of some unknown data [Hamerly 

2003]. EM partitions the data set into clusters by determining a mixture of Gaussians 

fitting the data set. Each Gaussian has a mean and covariance matrix [Alldrin et al. 

2003]. The objective function that the EM optimizes as defined by Hamerly and Elkan 

[2002] is 
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where )( kp |p mz  is the probability of pz  given that it is generated by a Gaussian 

distribution with centroid km , and )( kp m is the prior probability of centroid km . 

The membership and weight functions for EM are defined as [Hamerly and 

Elkan 2002] 
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Hence, EM has a soft membership function and a constant weight function. The 

algorithm starts with an initial estimate of the parameters. Then, an expectation step is 

applied where the known data values are used to compute the expected values of the 

unknown data [Hamerly 2003]. This is followed by a maximization step where the 
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known and expected values of the data are used to generate a new estimate of the 

parameters. The expectation and maximization steps are repeated until convergence. 

 Results from Veenman et al. [2002] and Hamerly [2003] showed that K-

means performs comparably to EM. Furthermore, Aldrin et al. [2003] stated that EM 

fails on high-dimensional data sets due to numerical precision problems. They also 

observed that Gaussians often collapsed to delta functions [Alldrin et al. 2003]. In 

addition, EM depends on the initial estimate of the parameters [Hamerly 2003; Turi 

2001] and it requires the user to specify the number of clusters in advance. Moreover, 

EM assumes that the density of each cluster is Gaussian which may not always be true 

[Ng et al. 2001]. 

 

The K-harmonic Means Algorithm 

Recently, Zhang and colleagues [1999; 2000] proposed a novel algorithm called K-

harmonic means (KHM), with promising results. In KHM, the harmonic mean of the 

distance of each cluster center to every pattern is computed. The cluster centroids are 

then updated accordingly. The objective function that the KHM optimizes is 
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where α is a user-specified parameter, typically α ≥ 2.   

The membership and weight functions for KHM are [Hamerly and Elkan 

2002] 
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Hence, KHM has a soft membership function and a varying weight function. KHM 

assigns higher weights for patterns that are far from all the centroids to help the 

centroids in covering the data [Hamerly and Elkan 2002]. 

Contrary to K-means, KHM is less sensitive to initial conditions and does not 

have the problem of collapsing Gaussians exhibited by EM [Alldrin et al. 2003]. 

Experiments conducted by Zhang et al. [1999], Zhang [2000] and Hamerly and Elkan 

[2002] showed that KHM outperformed K-means, FCM (according to Hamerly and 

Elkan [2002]) and EM.  

 

Hybrid 2 

Hamerly and Elkan [2002] proposed a variation of KHM, called Hybrid 2 (H2), which 

uses the soft membership function of KHM (i.e. equation (3.16)) and the constant 

weight function of K-means (i.e. equation (3.8)). Hamerly and Elkan [2002] showed 

that H2 outperformed K-means, FCM and EM. However, KHM, in general, 

performed slightly better than H2.  

 

K-means, FCM, EM, KHM and H2 are linear time algorithms (i.e. their time 

complexity is O(Np)) making them suitable for very large data sets. According to 
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Hamerly [2003], FCM, KHM and H2 - all use soft membership functions - are the 

best available clustering algorithms. 

 

Non-iterative Partitional Algorithms 

Another category of unsupervised partitional algorithms includes the non-iterative 

algorithms. The most widely used non-iterative algorithm is MacQueen's K-means 

algorithm [MacQueen 1967]. This algorithm works in two phases: the first phase finds 

the centroids of the clusters, and the second clusters the patterns. Competitive 

Learning (CL) updates the centroids sequentially by moving the closest centroid 

toward the pattern being classified [Scheunders, A Comparison 1997]. These 

algorithms suffer the drawback of being dependent on the order in which the data 

points are presented. To overcome this problem, data points are presented in a random 

order [Davies 1997]. In general, iterative algorithms are more effective than non-

iterative algorithms, since they are less dependent on the order in which data points 

are presented. 

 

3.1.3.3 Other Clustering Techniques 
 

Another type of clustering algorithms includes the Nearest Neighbor clustering 

algorithm proposed by Lu and Fu [1978]. For each unclassified pattern, the algorithm 

finds the nearest classified pattern whose distance from the unclassified pattern is less 

than a pre-specified threshold. The unclassified pattern is then assigned to the cluster 

of the classified pattern. This process is repeated until all the patterns become 

classified or no further assignments can occur [Jain et al. 1999]. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

63 
 

Recently, a new type of clustering algorithms called spectral clustering algorithms 

[Ng et al. 2001; Bach and Jordan 2003] has been proposed by computer vision 

researchers and graph theorists. Spectral clustering is based on spectral graph theory 

[Chung 1997] where a graph representing the data (the graph is analogous to a matrix 

of the distance between the patterns in the data set) is searched by the spectral 

clustering algorithm for globally optimal cuts [Hamerly 2003]. One major advantage 

of spectral clustering is that it can generate arbitrary-shaped clusters. However, 

spectral clustering suffers from two major drawbacks [Hamerly 2003]: 

• It is computationally expensive (its time complexity is )O( 23
pdp NNN + ). 

Hence, they are not suitable for moderately large data sets. 

• It requires the user to specify a kernel width parameter which has a profound 

effect on the result of the spectral clustering algorithm. Choosing a good value 

for this parameter is usually difficult.  

 

The mean shift algorithm [Comaniciu and Meer 2002] also automatically finds the 

number of clusters in a data set and can work with arbitrary shaped clusters. The mean 

shift algorithm starts with a number of kernel estimators in the input space. These 

estimators are then repeatedly moved towards areas of higher density. When all the 

kernels reached stability, all the kernels that are near to each other are grouped 

together. The data is then segmented based on where each kernel started. 

 

The mean shift algorithm has the following problems, [Hamerly 2003]: 

• it has to find a way to group kernels and patterns, and 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

64 
 

• as in spectral clustering, the mean shift algorithm requires the user to specify a 

kernel width parameter which has a profound effect on the result of the 

algorithm. 

 

3.1.4 Clustering Validation Techniques 
 
 

The main objective of cluster validation is to evaluate clustering results in order to 

find the best partitiong of a data set [Halkidi et al. 2001]. Hence, cluster validity 

approaches are used to quantitatively evaluate the result of a clustering algorithm 

[Halkidi et al. 2001].  These approaches have representative indices, called validity 

indices. The traditional approach to determine the "optimum" number of clusters is to 

run the algorithm repetitively using different input values and to select the partitioning 

of data resulting in the best validity measure [Halkidi and Vazirgiannis 2001]. 

 Two criteria that have been widely considered sufficient in measuring the 

quality of data partitioning, are [Halkidi et al. 2001] 

• Compactness: patterns in one cluster should be similar to each other and 

different from patterns in other clusters. The variance of patterns in a cluster 

gives an indication of compactness. 

• Separation: clusters should be well-separated from each other. The Euclidean 

distance between cluster centroids gives an indication of cluster separation. 

 

There are several validity indices; a thorough survey of validity indices can be found 

in Halkidi et al. [2001]. In the following, some representative indices are discussed. 

Dunn [1974] proposed a well known cluster validity index that identifies 

compact and well separated clusters. The main goal of Dunn's index is to maximize 
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inter-cluster distances (i.e. separation) while minimizing intra-cluster distances (i.e. 

increase compactness). The Dunn index is defined as 
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where ),(dist kkk CC is the dissimilarity function between two clusters Ck and Ckk 

defined as 
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where d(u, w) is the Euclidean distance between u and v; diam(C) is the diameter of a 

cluster, defined as 
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,
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An "optimal" value of K is the one that maximizes the Dunn's index. Dunn's 

index suffers from the following problems [Halkidi et al. 2001]: 

• it is computationally expensive, and 

• it is sensitive to the presence of noise.  

 

Several Dunn-like indices were proposed in Pal and Biswas [1997] to reduce the 

sensitivity to the presence of noise. 

Another well known index, proposed by Davies and Bouldin [1979], 

minimizes the average similarity between each cluster and the one most similar to it. 

The Davies and Bouldin index is defined as 
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An "optimal" value of K is the one that minimizes the DB index. 

 Recently, Turi [2001] proposed an index incorporating a multiplier function 

(to penalize the selection of a small number of clusters) to the ratio between intra-

cluster and inter-cluster distances, with some promising results. The index is defined 

as 

 

inter
intra)1)1,2(N( ×+×= cV                (3.20) 

 

where c is a user specified parameter and N(2,1) is a Gaussian distribution with mean 

2 and standard deviation of 1. The "intra" term is the average of all the distances 

between each data point and its cluster centroid, defined as 

∑ ∑
= ∈∀
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This term is used to measure the compactness of the clusters. The "inter" term is the 

minimum distance between the cluster centroids, defined as 

.K,...,kkkK,...,kmin kkk 1  and  11  },{inter 2 +=−=∀−= mm  

This term is used to measure the separation of the clusters. An "optimal" value of K is 

the one that minimizes the V index. 

 According to Turi [2001], this index performed better than both Dunn's index 

and the index of Davies and Bouldin on the tested cases. 

Two recent validity indices are S_Dbw [Halkidi and Vazirgiannis 2001] and 

CDbw [Halkidi and Vazirgiannis 2002]. S_Dbw measures the compactness of a data 
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set by the cluster variance, whereas separation is measured by the density between 

clusters. The S_Dbw index is defined as 

 

)()( KDens_bwKscatS_Dbw +=                          (3.21) 

 

The first term is the average scattering of the clusters which is a measure of 

compactness of the clusters, defined as 
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where )( kCσ is the variance of cluster Ck and )(Zσ is the variance of data set  Z; ||z|| 

is defined as ||z|| = (zTz)1/2, where z is a vector. 

The second term in equation (3.21) evaluates the density of the area between 

the two clusters in relation to the density of the two clusters. Thus, the second term is 

a measure of the separation of the clusters, defined as 
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where bk,kk is the middle point of the line segment defined by mk and mkk. The term 

density(b) is defined as 
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where nk,kk is the total number of patterns in clusters Ck and Ckk (i.e. nk,kk= nk + nkk). 

The function f(z,b) is defined as 
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where 
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∑
=

=
K

k
kK 1
)(1 Cσσ  

An "optimal" value of K is the one that minimizes the S_Dbw index. Halkidi 

and Vazirgiannis [2001] showed that, in tested cases, S_Dbw successfully found the 

"optimal" number of clusters whereas other well-known indices often failed to do so. 

However, S_Dbw does not work properly for arbitrary shaped clusters.  

To address this problem, Halkidi and Vazirgiannis [2002] proposed a multi-

representative validity index, CDbw, in which each cluster is represented by a user-

specified number of points, instead of one representative as is done in S_Dbw. 

Furthermore, CDbw uses intra-cluster density to measure the compactness of a data 

set, and uses the density between clusters to measure their separation. 

More recently, Veenman et al. [2002; 2003] proposed a validity index that 

minimizes the intra-cluster variability while constraining the intra-cluster variability 

of the union of the two clusters. The sum of squared error is used to minimize the 

intra-cluster variability while a minimum variance for the union of two clusters is 

used to implement the joint intra-cluster variability. The index is defined as 

∑
=

=
K

k
kkVarnminIV

1

)(C                (3.22) 

where nk is the number of patterns in cluster Ck and 
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where 2
maxσ  is a user-specified parameter. This parameter has a profound effect on the 

final result. 
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The above validity indices are suitable for hard clustering. Validity indices 

have been developed for fuzzy clustering. The interested reader is referred to Halkidi 

et al. [2001] for more information. 

 

3.1.5 Determining the Number of Clusters 
 

Most clustering algorithms require the number of clusters to be specified in advance 

[Lee and Antonsson 2000; Hamerly and Elkan 2003]. Finding the "optimum" number 

of clusters in a data set is usually a challenge since it requires a priori knowledge, 

and/or ground truth about the data, which is not always available. The problem of 

finding the optimum number of clusters in a data set has been the subject of several 

research efforts [Halkidi et al. 2001; Theodoridis and Koutroubas 1999], however, 

despite the amount of research in this area, the outcome is still unsatisfactory 

[Rosenberger and Chehdi 2000]. In the literature, many approaches to dynamically 

find the number of clusters in a data set were proposed. In this section, several 

dynamic clustering approaches are presented and discussed. 

 ISODATA (Iterative Self-Organizing Data Analysis Technique), proposed by 

Ball and Hall [1967], is an enhancement of the K-means algorithm (K-means is 

sometimes referred to as basic ISODATA [Turi 2001]). ISODATA is an iterative 

procedure that assigns each pattern to its closest centroids (as in K-means). However, 

ISODATA has the ability to merge two clusters if the distance between their centroids 

is below a user-specified threshold. Furthermore, ISODATA can split elongated 

clusters into two clusters based on another user-specified threshold. Hence, a major 

advantage of ISODATA compared to K-means is the ability to determine the number 

of clusters in a data set. However, ISODATA requires the user to specify the values of 
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several parameters (e.g. the merging and splitting thresholds). These parameters have 

a profound effect on the performance of ISODATA making the result subjective [Turi 

2001]. 

 Dynamic Optimal Cluster-seek (DYNOC) [Tou 1979] is a dynamic clustering 

algorithm which is similar to ISODATA. DYNOC maximizes the ratio of the 

minimum inter-cluster distance to the maximum intra-cluster distance. This is done by 

an iterative procedure with the added capability of splitting and merging. However, as 

in ISODATA, DYNOC requires the user to specify a value for a parameter that 

determines whether splitting is needed [Turi 2001]. 

 Snob [Wallace 1984; Wallace and Dowe 1994] uses various methods to assign 

objects to clusters in an intelligent manner [Turi 2001]. After each assignment, a 

means of model selection called the Wallace Information Measure (also known as the 

Minimum Message Length) [Wallace and Boulton 1968; Oliver and Hand 1994] is 

calculated and based on this calculation the assignment is accepted or rejected. Snob 

can split/merge and move points between clusters, thereby allowing it to determine 

the number of clusters in a data set. 

 Bischof et al. [1999] proposed an algorithm based on K-means which uses a 

similar concept to the Wallace Information Measure called the Minimum Description 

Length [Rissanen 1978] framework. The algorithm starts with a large value for K and 

proceeds to remove centroids when this removal results in a reduction of the 

description length. K-means is used between the steps that reduce K. 

Modified Linde-Buzo-Gray (MLBG), proposed by Rosenberger and Chehdi 

[2000], improves K-means by automatically finding the number of clusters in data set 

by using intermediate results. MLBG is an iterative procedure that starts with K 

clusters. In each iteration, a cluster, Ck, maximizing an intra-cluster distance measure 
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is chosen for splitting. Two centroids are generated from the splitting process. The 

first centroid, m1, is initialized to the centroid of the original cluster, Ck. The second 

cluster centroid, m2, is chosen to be the pattern in Ck which is the most distant from 

m1. K-means is then applied on the new K+1 centroids. The new set of centroids is 

accepted if it satisfies an evaluation criterion based on a dispersion measure. This 

process is repeated until no valid partition of the data can be obtained. One of the 

main problems with MLBG is that it requires the user to specify the values of four 

parameters, which have a profound effect on the resultant number of clusters. 

Pelleg and Moore [2000] proposed another K-means based algorithm, called 

X-means that uses model selection. X-means starts by setting the number of clusters, 

K, to be the minimum number of clusters in the data set (e.g. K = 1). Then, K-means 

is applied on the K clusters. This is followed by a splitting process based on the 

Bayesian Information Criterion (BIC) [Kass and Wasserman 1995] defined as 

 

p
d N

NK
|l̂|BIC log

2
)1(

)()(
+

−= CZZC                         (3.23)  

 

where )( CZ |l̂  is the log-likelihood of the data set Z according to model C. If the 

splitting process improves the BIC score the resulting split is accepted, otherwise it is 

rejected. Other scoring functions can also be used. 

These two steps are repeated until a user-specified upper bound of K is reached. 

X-means searches over the range of values of K and reports the value with the best 

BIC score. 

Recently, Huang [2002] proposed SYNERACT as an alternative approach to 

ISODATA. SYNERACT combines K-means with hierarchical descending approaches 
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to overcome the drawbacks of K-means mentioned previously. Three concepts used 

by SYNERACT are:  

• a hyperplane to split up a cluster into two smaller clusters and compute their 

centroids, 

• iterative clustering to assign pixels into available clusters, and  

• a binary tree to store clusters generated from the splitting process.  

 

According to Huang [2002], SYNERACT is faster than and almost as accurate as 

ISODATA. Furthermore, it does not require the number of clusters and initial location 

of centroids to be specified in advance. However, SYNERACT requires the user to 

specify the values of two parameters that affect the splitting process. 

 Veenman et al. [2002] proposed a partitional clustering algorithm that finds 

the number of clusters in a data set by minimizing the clustering validity index 

defined in equation (3.22). This algorithm starts by initializing the number of clusters 

equal to the number of patterns in the data set. Then, iteratively, the clusters are split 

or merged according to a series of tests based on the validity index. According to 

Veenman et al. [2002], the proposed approach performed better than both K-means 

and EM algorithms. However, the approach suffers from the following drawbacks, 

namely 

• it is computationally expensive, and 

• it requires the user to specify a parameter for the validity index (already 

discussed in Section 3.1.4) which has a significant effect on the final results 

(although the authors provide a method to help the user in finding a good 

value for this parameter).   
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More recently, Hamerly and Elkan [2003] proposed another approach based on K-

means, called G-means. G-means starts with a small value for K, and with each 

iteration splits up the clusters whose data do not fit a Gaussian distribution. Between 

each round of splitting, K-means is applied to the entire data set in order to refine the 

current solution. According to Hamerly and Elkan [2003], G-means works better than 

X-means, however, it works only for data having spherical and/or elliptical clusters. 

G-means is not designed to work for arbitrary-shaped clusters [Hamerly 2003]. 

 Gath and Geva [1989] proposed an unsupervised fuzzy clustering algorithm 

based on a combination of FCM and fuzzy maximum likelihood estimation. The 

algorithm starts by initializing K to a user-specified lower bound of the number of 

clusters in the data set (e.g. K = 1). A modified FCM (that uses an unsupervised 

learning process to initialize the K centroids) is first applied to cluster the data.  Using 

the resulting centroids, a fuzzy maximum likelihood estimation algorithm is then 

applied. The fuzzy maximum likelihood estimation algorithm uses an "exponential" 

distance measure based on maximum likelihood estimation [Bezdek 1981] instead of 

the Euclidean distance measure, because the exponential distance measure is more 

suitable for hyper-ellipsoidal clusters. The quality of the resulting clusters is then 

evaluated using a clustering validity index that is mainly based on a hyper-volume 

criterion which measures the compactness of a cluster. K is then incremented and the 

algorithm is repeated until a user-specified upper bound of K is reached. The value of 

K resulting in the best value of the validity index is considered to be the "optimal" 

number of clusters in the data set. Gath and Geva [1989] stated that their algorithm 

works well in cases of large variability of cluster shapes. However, the algorithm 

becomes more sensitive to local optima as the complexity increases. Furthermore, 

because of the exponential function, floating point overflows may occur [Su 2002]. 
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 Lorette et al. [2000] proposed an algorithm based on fuzzy clustering to 

dynamically determine the number of clusters in a data set. In this thesis, the proposed 

algorithm is referred as the Unsupervised Fuzzy Clustering (UFC) algorithm. A new 

objective function was proposed for this purpose, defined as 
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where q is the fuzziness exponent, uk,p is the membership value for the pth pattern in 

the kth cluster, β is a parameter that decreases as the run progresses, and pk is the a 

priori probability of cluster Ck defined as 
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The first term of equation (3.24) is the objective function of FCM which is minimized 

when each cluster consists of one pattern. The second term is an entropy term that is 

minimized when all the patterns are assigned to one cluster. Lorette et al. [2000] use 

this objective function to derive new update equations for the membership and 

centroid parameters. 

 The algorithm starts with a large number of clusters. Then, the membership 

values and centroids are updated using the new update equations. This is followed by 

applying equation (3.25) to update the a priori probabilities. If ε<kp  then cluster k 

is discarded; ε is a user-specified parameter. This procedure is repeated until 
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convergence. The drawback of this approach is that it requires the parameter ε to be 

specified in advance. The performance of the algorithm is sensitive to the value of ε. 

 Similar to UFC, Boujemaa [2000] proposed an algorithm, based on a 

generalization of the competitive agglomeration clustering algorithm introduced by 

Frigui and Krishnapuram [1997]. 

 The fuzzy algorithms discussed above modify the objective function of FCM. 

In general, these approaches are sensitive to initialization and other parameters [Frigui 

and Krishnapuram 1999]. Frigui and Krishnapuram [1999] proposed a robust 

competitive clustering algorithm based on the process of competitive agglomeration. 

The algorithm starts with a large number of small clusters. Then, during the execution 

of the algorithm, adjacent clusters compete for patterns. Clusters losing the 

competition will eventually disappear [Frigui and Krishnapuram 1999]. However, this 

algorithm also requires the user to specify a parameter that has a significant effect on 

the generated result. 

 

3.1.6 Clustering using Self-Organizing Maps 
 
Kohonen's Self Organizing Maps (SOM) [Kohonen 1995] can be used to 

automatically find the number of clusters in a data set. The objective of SOM is to 

find regularities in a data set without any external supervision [Pandya and Macy 

1996]. SOM is a single-layered unsupervised artificial neural network where input 

patterns are associated with output nodes via weights that are iteratively modified 

until a stopping criterion is met [Jain et al. 1999]. SOM combines competitive 

learning (in which different nodes in the Kohonen network compete to be the winner 

when an input pattern is presented) with a topological structuring of nodes, such that 

adjacent nodes tend to have similar weight vectors (this is done via lateral feedback) 
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[Mehrotra et al. 1997; Pandya and Macy 1996]. A general pseudo-code of SOM 

[Pandya and Macy 1996] is shown in Figure 3.1. 

 

Let )(tη  be the learning rate parameter and )(tw∆ be the neighborhood function  

Randomly initialize the weight vectors, wk(0) 

Initialize the learning rate (0)η  and the neighborhood function (0)w∆  

Repeat 

   For each input pattern zp do 

      Select the node whose weight vector is closest (in terms of Euclidean distance) to   

      zp as the winning node 

 

      Use competitive learning to train the weight vectors such that all the nodes within  

      the neighborhood of the winning node are moved toward zp: 
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   Endloop 

   Linearly decrease )(tη and reduce )(tw∆  

Until some convergence criteria are satisfied 

Figure 3.1: General pseudo-code for SOM 

 

In Figure 3.1, )(tη  starts relatively large (e.g. close to 1) then linearly decreases until 

it reaches a small user-specified value. The neighborhood function )(tw∆  defines the 

neighborhood size surrounding the winning node. A large value of  )(tw∆  is used at 

the beginning of the training. This value is then reduced as the training progresses in 
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order to get sharper clusters [Pandya and Macy 1996]. A typical neighborhood 

arrangement is the rectangular lattice shown in Figure 3.2 [Pandya and Macy 1996]. 

 

 

Figure 3.2: Rectangular Lattice arrangement of neighborhoods 

 

  

SOM suffers from the following drawbacks [Jain et al. 1999]: 

• It depends on the initial conditions. 

• Its performance is affected by the learning rate parameter and the 

neighborhood function. 

• It works well with hyper-spherical clusters only. 

• It uses a fixed number of output nodes. 

• It depends on the order in which the data points are presented. To overcome 

this problem, the choice of data points can be randomized during each iteration 

[Pandya and Macy 1996]. 
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3.1.7 Clustering using Stochastic Algorithms 
 

Simulated annealing (discussed in Section 2.3) has been used for clustering [Klein and 

Dubes 1989]. In general, a simulated annealing based clustering algorithm works as 

shown in Figure 3.3 [Jain et al. 1999]. 

  

An initial partition P0 of the data set is randomly chosen  

Repeat 

   A neighbor of P0 is chosen  

   If the new partition is better than P0 then  

      move to the new partition  

   Else 

      move to the new partition with a probability that decreases as the algorithm  

      progresses. 

Until a stopping criterion is satisfied 

Figure 3.3: General simulated annealing based clustering algorithm 

 

One problem with simulated annealing is that it is very slow in finding an optimal 

solution [Jain et al. 1999].  

Tabu search (discussed in Section 2.3) has also been used for hard clustering 

[Al-Sultan 1995] and fuzzy clustering [Delgado et al. 1997] with encouraging results. 

A hybrid approach combining both K-means and tabu search that performs better than 

both K-means and tabu search was proposed by Frnti et al. [1998]. Recently, Chu and 

Roddick [2003] proposed a hybrid approach combining both tabu search and 

simulated annealing that outperforms the hybrid proposed by Frnti et al. [1998]. 
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However, the performance of simulated annealing and tabu search depends on the 

selection of several control parameters [Jain et al. 1999]. 

Most clustering approaches discussed so far perform local search to find a 

solution to a clustering problem. Evolutionary algorithms (discussed in Section 2.4) 

which perform global search have also been used for clustering [Jain et al. 1999]. 

Raghavan and Birchand [1979] used GAs to minimize the squared error of a 

clustering solution. In this approach, each chromosome represents a partition of Np 

patterns into K clusters. Hence, the size of each chromosome is Np. This 

representation has a major drawback in that it increases the search space by a factor of 

K!. The crossover operator may also result in inferior offspring [Jain et al. 1999]. 

 Babu and Murty [1993] proposed a hybrid approach combining K-means and 

GAs that performed better than the GA. In this approach, a GA is only used to feed K-

means with good initial centroids [Jain et al. 1999]. 

 Recently, Maulik and Bandyopadhyay [2000] proposed a GA-based clustering 

where each chromosome represents K centroids. Hence, a floating point 

representation is used. The fitness function is defined as the inverse of the objective 

function of K-means (refer to equation (3.6)). The GA-based clustering algorithm is 

summarized in Figure 3.4. 

 According to Maulik and Bandyopadhyay [2000], this approach outperformed 

K-means on the tested cases. One drawback of this approach is that it requires the user 

to specify the number of clusters in advance.
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1. Initialize each chromosome to contain K randomly chosen centroids from the 

data set 

2. For t = 1 to tmax 

(a) For each chromosome i 

(i) Assign each pattern to the cluster with the closest centroid 

(ii)  Recalculate the K cluster centroids of chromosome i as the means of their 

patterns 

(iii) Calculate the fitness of chromosome i 

 

(b) Apply roulette wheel selection 

(c) Apply single point crossover with probability pc 

(d) Apply mutation with probability pm. The mutation operator is defined as 

xxx )( γ+±= r  

             where (0,1)~ Ur and γ  is a user-specified parameter such that γ ∈(0,1) 

Figure 3.4: General pseudo-code for GA-based clustering algorithm 

 

Lee and Antonsson [2000] used an evolution strategy (ES) to dynamically cluster a 

data set. The proposed ES implemented variable length individuals to search for both 

the centroids and the number of clusters. Each individual represents a set of centroids. 

The length of each individual is randomly chosen from a user-specified range of 

cluster numbers. The centroids of each individual are then randomly initialized. 

Mutation is applied to the individuals by adding/subtracting a Gaussian random 

variable with zero mean and unit standard deviation. Two point crossover is also used 

as a "length changing operator". A (10+60) ES selection is used where 10 is the 
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number of parents and 60 is the number of offspring generated in each generation. 

The best ten individuals from the set of parents and offspring are used for the next 

generation. A modification of the mean square error is used as the fitness function, 

defined as 

 

∑ ∑
= ∈∀

+=
K

k C
kp

kp

dKJ
1

ES )(1
z

m,z                          (3.26) 

 

The modification occurs by multiplying the mean square error by a constant 

corresponding to the square root of the number of clusters. This constant is used to 

penalize a large value of K. According to Lee and Antonsson [2000], the results are 

promising. However, the proposed algorithm needs to be compared with other 

dynamic clustering approaches and its performance needs to be investigated as the 

dimension increases. 

In general, evolutionary approaches have several advantages, namely [Jain et al. 

1999]: 

• they are global search approaches, 

• they are suitable for parallel processing, and 

• they can work with a discontinuous criterion function.  

 

However, evolutionary approaches generally suffer from the following drawbacks 

[Jain et al. 1999]: 

• they require the user to specify the values of a set of parameters (e.g. 

population size, pc, pm, etc.) for each specific problem, and  
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• the execution time of EAs is significantly higher than the execution time of 

other traditional clustering algorithms (e.g. K-means and FCM), especially 

when applied to large data sets. 

 

3.1.8 Unsupervised Image Classification 
 

Image classification is the process of identifying groups of similar image primitives 

[Puzicha et al. 2000]. These image primitives can be pixels, regions, line elements and 

so on, depending on the problem encountered.  

There are two main approaches to image classification: supervised and 

unsupervised. In the supervised approach, the number and the numerical 

characteristics (e.g. mean and variance) of the classes in the image are known in 

advance (by the analyst) and used in the training step, which is followed by the 

classification step. There are several popular supervised algorithms such as the 

minimum-distance-to-mean, parallelepiped and the Gaussian maximum likelihood 

classifiers [Lillesand and Kiefer 1994]. In the unsupervised approach the classes are 

unknown and the approach starts by partitioning the image data into groups (or 

clusters), according to a similarity measure, which can be compared with reference to 

data by an analyst and used to segment the image.  

Therefore, unsupervised classification is a special case of the general clustering 

problem where the data set is an image (or a set of images) and the patterns are the 

pixels of the image(s).  

In general, the unsupervised approach has several advantages over the supervised 

approach, namely [Davies 1997] 
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• For unsupervised approaches, there is no need for an analyst to specify in 

advance all the classes in the image data set. The clustering algorithm 

automatically finds distinct clusters, which dramatically reduces the work of 

the analyst. 

• The characteristics of the objects being classified can vary with time; the 

unsupervised approach is an excellent way to monitor these changes. 

• Some characteristics of objects may not be known in advance. The 

unsupervised approach automatically flags these characteristics. 

 

3.2 Image Segmentation using Clustering 

 

Image segmentation is a fundamental process in several image processing and 

computer vision applications. It can be considered as the first low-level processing 

step in image processing and pattern recognition [Cheng et al. 2001]. Image 

segmentation is defined as the process of dividing an image into disjoint homogenous 

regions. These homogenous regions should represent objects or parts of them 

[Lucchese and Mitra 2001]. The homogeneity of the regions is measured using some 

image property (e.g. pixel intensity) [Jain et al. 1999]. Image segmentation can be 

formally defined as follows: 

Given an image I and a homogeneity predicate P. The segmentation of image I is the 

partitioning of I into K regions, {R1, R2,…,RK}, satisfying the following conditions: 

• Each pixel in the image should be assigned to a region, i.e. 

IRk
K
k =∪ =1  

• Each pixel is assigned to one and only one region, i.e. 
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kkkRR kkk ≠=∩     whereφ  

• Each region satisfies homogeneity predicate P, i.e. 

K,,kRP k K1   True,)( =∀=  

• Two different regions can not satisfy P, i.e. 

kkkRRP kkk ≠=∪     whereFalse)(  

 
There are many techniques for image segmentation in the literature; details can be 

found in Fu and Mui [1981], Pal and Pal [1993], Cheng et al. [2001], Lucchese and 

Mitra [2001] and Turi [2001]. In general, these techniques can be categorized into 

thresholding, edge-based, region growing and clustering techniques [Turi 2001]. Each 

of these categories are discussed in the following sections. 

 

3.2.1 Thresholding Techniques 
 

Thresholding [Gonzalez and Woods 1992; Jain et al. 1995] is the simplest image 

segmentation technique. In its simplest version an image is divided into two segments: 

object and background by specifying a threshold. A pixel above the threshold is 

assigned to one segment and a pixel below the threshold is assigned to the other 

segment. For more sophisticated images multiple thresholds can be used. 

 

3.2.2 Edge-based Techniques 
 

In edge-based techniques [Gonzalez and Woods 1992; Jain et al. 1995; Kwok and 

Constantinides 1997], segmentation is achieved by finding the edges of the regions. 
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This is usually accomplished by moving a mask (e.g. a 3×3 window) over the image 

to detect local changes in the image intensity. 

 

3.2.3 Region growing Techniques 
 

In region growing [Gonzalez and Woods 1992; Jain et al. 1995; Fuh et al. 2000], a set 

of seed pixels are chosen. Neighboring pixels of a seed are agglomerated if they 

satisfy a homogeneity criterion. This is repeated until no more pixels can be added to 

the region. This approach has some problems [Turi 2001]:  

• The selection of the seed pixels which is not a straightforward task. 

• The selection of the homogeneity criterion. 

 

Region splitting and merging divide the image into regions. A region is then split if it 

does not satisfy a homogeneity condition. Regions can also be merged if their 

merging results in a region that satisfies some condition. This is repeated until no 

more splitting and merging can occur [Gonzalez and Woods 1992]. 

 

3.2.4 Clustering Techniques 
 

Image segmentation can be treated as a clustering problem where features describing 

each pixel correspond to a pattern and an image region (i.e. segment) corresponds to a 

cluster [Jain et al. 1999]. This similarity is obvious by comparing the clustering 

problem definition (refer to section 3.1.1) and the image segmentation problem 

definition (refer to section 3.2). Therefore, clustering algorithms have been widely 

used to solve the problem of image segmentation (e.g. K-means [Tou and Gonzalez 
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1974], FCM [Trivedi and Bezdek 1986], ISODATA [Tou and Gonzalez 1974] and 

snob [Wallace and Dowe 1994]). However, it should be noted that the number of 

clusters is usually not known a priori in image segmentation. Therefore, clustering 

algorithms that do not require the user to specify the number of clusters are usually 

preferred.  

In this thesis, the clustering problem and the image segmentation problem are 

considered to be similar. Thus, algorithms are proposed for both problems 

interchangeably. In the following, several representative clustering-based techniques 

are presented. 

 A hybrid approach combining agglomerative hierarchical clustering and 

region-based segmentation was proposed by Amadasun and King [1988]. The image 

is first divided into regions. Homogenous regions are specified and mean feature 

vectors are then determined for each homogenous region. The most similar mean 

feature vectors are merged. This process is repeated until the specified number of 

clusters is reached. One advantage of this approach is that it is computationally 

efficient, because hierarchical clustering is applied on the mean feature vectors 

instead of the image pixels. However, this approach has several drawbacks, namely 

[Turi 2001], 

• it requires the user to specify the number of clusters in advance, 

• it depends on the region size, and 

• it depends on the used homogeneity criterion. 

 

Clustering algorithms are usually applied to feature space, and as such they do not use 

any spatial information (e.g. the relative location of the patterns in the feature space). 

However, for image segmentation spatial information is important because pixels with 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

87 
 

similar features are usually found near each other in the spatial domain [Liew et al. 

2000]. To address this issue, a generalization of K-means that is adaptive and includes 

spatial information was proposed by Pappas [1992]. In this approach, a posteriori 

probability function is defined which constrains the region intensity and imposes 

spatial continuity [Turi 2001]. The iterative algorithm alternates between maximizing 

the a posteriori probability function and calculating the cluster centroids. The cluster 

centroids are initially equal to the K-means cluster centroids. The centroids are 

updated by averaging them over a sliding window. The size of the sliding window is 

progressively decreases [Lucchese and Mitra 2001]. Chang et al. [1994] extends this 

algorithm to color image segmentation. Saber et al. [1996] extends the approach of 

Chang et al. by proposing a hybrid approach combining color image segmentation and 

edge linking. Chen et al. [1998] applied an approach similar to Pappas [1992] to 

biomedical images. A drawback of the generalization of K-means approaches is that 

they require the user to specify the number of clusters in advance [Turi 2001]. 

 A color map image segmentation algorithm combining FCM and a supervised 

neural network was proposed by Wu et al. [1994]. FCM is first applied giving a set of 

prototypes satisfying some validation criteria. A neural network with supervised 

learning is then used to optimize these prototypes. The optimized prototypes are used 

to segment the image using the nearest neighbor rule [Turi 2001]. 

 A fuzzy image clustering algorithm which incorporates spatial contextual 

information was proposed by Liew et al. [2000]. A dissimilarity measure which 

considers the eight neighboring pixels of each pixel was proposed. The dissimilarity 

measure is adaptive in the sense that the effect of the neighboring pixels is suppressed 

in nonhomogenous image regions. In addition, a merging process that merges clusters 

based on their closeness and their degree of overlap is also used to determine the 
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"optimal" number of clusters. According to Liew et al. [2000], due to the 

incorporation of spatial information, this approach is faster, less sensitive to noise and 

more suitable for arbitrary shaped clusters than FCM. 

 Lim and Lee [1990] proposed a two-stage process called thresholding and 

FCM. In the first stage, a coarse segmentation is obtained by smoothing the histogram 

of each color component by a Gaussian convolution. Thresholds are set as the valleys 

of the smoothed histograms (the valleys are obtained using the first and second 

derivative of the smoothed histograms). A safe area around each threshold is 

determined. Each pixel outside these safe areas is assigned to a cluster according to its 

red, green and blue values. Cluster centroids are then calculated. In the second stage, a 

fine segmentation is obtained by assigning pixels in safe areas to their closest clusters 

as determined from the fuzzy membership functions. One advantage of this approach 

is that it dynamically determines the number of clusters. However, the number of 

clusters obtained is significantly affected by the smoothing function parameter and the 

size of the safe area [Turi 2001]. 

 Color image segmentation using competitive learning based on the least-

squares criterion was proposed by Uchiyama and Arbib [1994]. An image 

segmentation approach based on the mean shift algorithm was proposed by 

Comaniciu and Meer [1997]. Shi and Malik [1997] addressed image segmentation 

using clustering as a graph partitioning problem. 

 Zhang et al. [2001] proposed a hybrid approach combining hidden Markov 

random field (HMRF) and the EM algorithm to segment brain magnetic resonance 

(MR) images. A HMRF model is a stochastic process generated by a MRF. The 

HMRF state sequence can be observed through a field of observations [Zhang et al. 

2001]. An advantage of HMRF is that it encodes spatial information, which is very 
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