
Particle Swarm Optimization Methods for Pattern

Recognition and Image Processing

by

Mahamed G. H. Omran

Submitted in partial fulfillment of the requirements for the degree Philosophiae

Doctor in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

Pretoria

November 2004

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

ii

Particle Swarm Optimization Methods for Pattern Recognition and Image
Processing

by
Mahamed G. H. Omran

Abstract

Pattern recognition has as its objective to classify objects into different categories and

classes. It is a fundamental component of artificial intelligence and computer vision.

This thesis investigates the application of an efficient optimization method, known as

Particle Swarm Optimization (PSO), to the field of pattern recognition and image

processing. First a clustering method that is based on PSO is proposed. The

application of the proposed clustering algorithm to the problem of unsupervised

classification and segmentation of images is investigated. A new automatic image

generation tool tailored specifically for the verification and comparison of various

unsupervised image classification algorithms is then developed. A dynamic clustering

algorithm which automatically determines the "optimum" number of clusters and

simultaneously clusters the data set with minimal user interference is then developed.

Finally, PSO-based approaches are proposed to tackle the color image quantization

and spectral unmixing problems. In all the proposed approaches, the influence of PSO

parameters on the performance of the proposed algorithms is evaluated.

Key terms: Clustering, Color Image Quantization, Dynamic Clustering, Image Processing,

Image Segmentation, Optimization Methods, Particle Swarm Optimization, Pattern

Recognition, Spectral Unmixing, Unsupervised Image Classification.

Thesis supervisor: Prof. A. P. Engelbrecht

Thesis co-supervisor: Dr. Ayed Salman
Department of Computer Engineering, Kuwait University, Kuwait

Department of Computer Science

Degree: Philosophiae Doctor

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

iii

“Obstacles are those frightening things you see when you take your eyes off your

goal.”

Henry Ford

“You will recognize your own path when you come upon it, because you will

suddenly have all the energy and imagination you will ever need.”

Jerry Gillies

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

iv

Acknowledgments

I address my sincere gratitude to God as whenever I faced any difficulty I used to pray

to God to help me and He always was there protecting and saving me.

Then, I would like to express my warm thanks to Professor Andries

Engelbrecht, who spared no effort in supporting me with all care and patience. I

enjoyed working with him, making every moment I spent in the research work as

enjoyable as can be imagined.

I would like also to thank my co-supervisor Dr. Ayed Salman from Kuwait

University for his continuous guidance, encouragement and patience throughout the

PhD journey. I will never forget the long hours we spent together discussing various

ideas and methods.

Last but not least, I would love to thank my family for their support and care,

especially my mother Aysha and my father Ghassib. May God bless and protect them

both hoping that God will help me to repay them part of what they really deserve. I

also thank my two sisters Ala'a and Esra'a for their help in preparing this thesis.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

v

Contents

Chapter 1

Introduction..1

1.1 Motivation..1
1.2 Objectives ..2
1.3 Methodology ..3
1.4 Contributions..4
1.5 Thesis Outline ..5

Chapter 2

Optimization and Optimization Methods...7

2.1 Optimization ..7
2.2 Traditional Optimization Algorithms ..10
2.3 Stochastic Algorithms..11
2.4 Evolutionary Algorithms ...12
2.5 Genetic Algorithms..15

2.5.1 Solution Representation ..16
2.5.2 Fitness Function ..16
2.5.3 Selection..17
2.5.4 Crossover ..19
2.5.5 Mutation..20
2.5.6 The Premature Convergence Problem ..22

2.6 Particle Swarm Optimization...23
2.6.1 The PSO Algorithm ..23
2.6.2 The lbest Model ..26
2.6.3 PSO Neighborhood topologies ...28
2.6.4 The Binary PSO ..29
2.6.5 PSO vs. GA...31
2.6.6 PSO and Constrained Optimization ..32
2.6.7 Drawbacks of PSO..33
2.6.8 Improvements to PSO...34

2.7 Ant Systems ...45
2.8 Conclusions..46

Chapter 3

Problem Definiton..47

3.1 The Clustering Problem ...47
3.1.1 Definitions...48
3.1.2 Similarity Measures ..49
3.1.3 Clustering Techniques ..51
3.1.4 Clustering Validation Techniques...64
3.1.5 Determining the Number of Clusters..69
3.1.6 Clustering using Self-Organizing Maps..75

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

vi

3.1.7 Clustering using Stochastic Algorithms..78
3.1.8 Unsupervised Image Classification...82

3.2 Image Segmentation using Clustering ...83
3.2.1 Thresholding Techniques..84
3.2.2 Edge-based Techniques ..84
3.2.3 Region growing Techniques ...85
3.2.4 Clustering Techniques ..85

3.3 Color Image Quantization..89
3.3.1 Pre-clustering approaches ...91
3.3.2 Post-clustering approaches..94

3.4 Spectral Unmixing ...97
3.4.1 Linear Pixel Unmixing (or Linear Mixture Modeling)...............................98
3.4.2 Selection of the End-Members..100

3.5 Conclusions..103

Chapter 4

A PSO-based Clustering Algorithm with Application to Unsupervised Image

Classification..104

4.1 PSO-Based Clustering Algorithm..104
4.1.1 Measure of Quality ...104
4.1.2 PSO-Based Clustering Algorithm...105
4.1.3 A Fast Implementation..107

4.2 Experimental Results ...108
4.2.1 gbest PSO versus K-Means...111
4.2.2 Improved Fitness Function ...114
4.2.3 gbest PSO versus GCPSO...115
4.2.4 Influence of PSO Parameters ..116
4.2.5 gbest PSO versus state-of-the-art clustering algorithms122
4.2.6 Different Versions of PSO ..126
4.2.7 A Non-parametric Fitness Function..128
4.2.8 Multispectral Imagery Data ..129
4.2.9 PSO for Data Clustering ...134

4.3 Conclusions..134

Chapter 5

SIGT: Synthetic Image Generation Tool for Clustering Algorithms.........................136

5.1 Need for Benchmarks ..136
5.2 SIGT: Synthetic Image Generation Tool ...138

5.2.1 Synthetic Image Generator ...139
5.2.2 Clustering Verification Unit ...141

5.3 Experimental Results ...144
5.4 Conclusions..146

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

vii

Chapter 6

Dynamic Clustering using Particle Swarm Optimization with Application to

Unsupervised Image Classification..153

6.1 The Dynamic Clustering using PSO (DCPSO) Algorithm..............................153
6.1.1 Validity Index ...158
6.1.2 Time Complexity ..158

6.2 Experimental results...159
6.2.1 Synthetic images ...162
6.2.2 Natural images ..163
6.2.3 Comparison with GA and RS ...166
6.2.4 Swarm Size ...167
6.2.5 The Termination Criteria ..168
6.2.6 pini and Nc ..171
6.2.7 Comparison of gbest-, lbest- and lbest-to-gbest-PSO...............................173
6.2.8 Multispectral Imagery Data ..174

6.3 Conclusions..175

Chapter 7

Applications ...177

7.1 A PSO-based Color Image Quantization Algorithm177
7.1.1 The PSO-based Color Image Quantization (PSO-CIQ) Algorithm..........178
7.1.2 Experimental Results ..181

7.2 A PSO-based End-Member Selection Method for Spectral Unmixing of
Multispectral Satellite Images..192

7.2.1 The PSO-based End-Member Selection (PSO-EMS) Algorithm192
7.2.2 Experimental Results ..195

7.3 Conclusions..207

Chapter 8

Conclusion ...208

8.1 Summary ..208
8.2 Future Research ...210

Bibliography ..213

Appendix A

Definition of Terms and Symbols..238

Appendix B

Derived Publications..239

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

viii

List of Figures

Figure 2.1: Example of a global minimizer ∗x as well as a local minimizer ∗

Bx10

Figure 2.2: General pseudo-code for EAs..13

Figure 2.3: General pseudo-code for PSO ...27

Figure 2.4. A diagrammatic representation of neighborhood topologies29

Figure 3.1: General pseudo-code for SOM..76

Figure 3.2: Rectangular Lattice arrangement of neighborhoods77

Figure 3.3: General simulated annealing based clustering algorithm..........................78

Figure 3.4: General pseudo-code for GA-based clustering algorithm.........................80

Figure 4.1: The PSO clustering algorithm ...107

Figure 4.2: Data set consisting of synthetic, MRI and LANDSAT images...............110

Figure 4.3: PSO Performance on Synthetic Image ..112

Figure 4.4: The Segmented Synthetic Images ...113

Figure 4.5: The Segmented MRI Images...113

Figure 4.6: The Segmented Lake Tahoe Images ...113

Figure 4.7: Effect of swarm size on synthetic image...118

Figure 4.8: Effect of swarm size on MRI image..119

Figure 4.9: The Landsat MSS test images of Lake Tahoe...132

Figure 4.10: The Thematic Maps for Lake Tahoe Image Set133

Figure 5.1: The synthetic image generator algorithm..140

Figure 5.2: The clustering verification algorithm..143

Figure 6.1: The DCPSO algorithm ..156

Figure 6.2: Natural Images ..160

Figure 6.3: 6-Clusters thematic map obtained using DCPSO....................................175

Figure 7.1: The PSO-CIQ algorithm..180

Figure 7.2: Quantization results for the Lenna image using PSO-CIQ184

Figure 7.3: Quantization results for the peppers image using PSO-CIQ..................185

Figure 7.4: Quantization results for the jet image using PSO-CIQ186

Figure 7.5: Quantization results for the mandrill image using PSO-CIQ.................187

Figure 7.6: The PSO-EMS algorithm ..195

Figure 7.7: AVHRR Image of UK, Size: 847x1009 , 5 bands, 10-bits per pixel199

Figure 7.8: Species concentration maps resulting from the application of ISO-

UNMIX to unmix the Lake Tahoe test image set ..200

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

ix

Figure 7.9: Species concentration maps resulting from the application of PSO-EMS

to unmix the Lake Tahoe test image set...201

Figure 7.10: Species concentration maps resulting from the application of ISO-

UNMIX to unmix the UK test image set ...202

Figure 7.11: Species concentration maps resulting from the application of PSO-EMS

to unmix the UK test image set..203

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

x

List of Tables

Table 4.1: Comparison between K-means and PSO..112

Table 4.2: 2-component versus 3-component fitness function115

Table 4.3: PSO versus GCPSO..116

Table 4.4: Effect of inertia weight on the synthetic image ..120

Table 4.5: Effect of inertia weight on the MRI image...120

Table 4.6: Effect of acceleration coefficients on the synthetic image121

Table 4.7: Effect of acceleration coefficients on the MRI image121

Table 4.8: Effect of sub-objective weight values on synthetic image123

Table 4.9: Effect of sub-objective weight values on MRI image124

Table 4.10: Comparison between K-means, FCM, KHM, H2, GA and PSO for fitness

function defined in equation (4.6)..125

Table 4.11: Comparison of different PSO versions ...127

Table 4.12: Comparison between K-means, FCM, KHM, H2, GA and PSO for fitness

function defined in equation (4.7)..130

Table 4.13: Comparison between different non-parametric fitness function131

Table 4.14: Comparison between K-means, gbest PSO and lbest-to-gbest PSO when

applied to multispectral image set..131

Table 5.1: Synthetic image details and classification accuracy.................................148

Table 5.2: Synthetic images, Histograms and Thematic Maps..................................149

Table 5.2 (continued). ..150

Table 5.2 (continued). ..151

Table 5.2 (continued). ..152

Table 6.1: Additional synthetic images used along with the corresponding histograms

..161

Table 6.2: Experiments on synthetic images ...163

Table 6.3: Experiments on natural images...164

Table 6.4: Samples of segmented images resulting from DCPSO using V165

Table 6.4: Samples of segmented images resulting from DCPSO using V (continued)

..166

Table 6.5: Comparison of PSO-, GA- and RS- versions of the proposed approach..167

Table 6.6: Comparison of PSO- and GA- versions of the proposed approach using a

swarm size s = 20...168

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

xi

Table 6.7: Effect of termination criterion TC1 on the DCPSO using a swarm size s =

20 and TC2= 2 ..170

Table 6.8: Effect of termination criterion TC2 on the DCPSO using a swarm size s =

20 and TC1= 50 ..171

Table 6.9: Effect of pini on the DCPSO using a swarm size s = 20172

Table 6.10: Effect of Nc on the DCPSO using a swarm size s = 20173

Table 6.11: Comparison of gbest-, lbest- and lbest-to-gbest- PSO versions of DCPSO

using V (s = 20) ..174

Table 7.1: Comparison between SOM, GCMA and PSO-CIQ183

Table 7.2: Effect of Vmax on the performance of PSO-CIQ using Lenna image (16

colors) ..188

Table 7.3: Effect of the swarm size on the performance of PSO-CIQ using Lenna

image (16 colors) ...189

Table 7.4: Effect of the number of PSO iterations on the performance of PSO-CIQ

using Lenna image (16 colors)...189

Table 7.5: Effect of pkmeans on the performance of PSO-CIQ using Lenna image (16

colors) ..190

Table 7.6: Effect of the number of K-means iterations on the performance of PSO-

CIQ using Lenna image (16 colors)...191

Table 7.7: Comparison of gbest-, lbest- and lbest-to-gbest- PSO versions of PSO-CIQ

using Lenna image (16 colors)...191

Table 7.8: Comparison between ISO-UNMIX and PSO-EMS198

Table 7.9: Effect of Vmax on the performance of PSO-EMS using Lake Tahoe image

set ...198

Table 7.10: Effect of the swarm size on the performance of PSO-EMS using Lake

Tahoe image set ...204

Table 7.11: Effect of the number of PSO iterations on the performance of PSO-EMS

using Lake Tahoe image set...204

Table 7.12: Effect of pkmeans on the performance of PSO-EMS using Lake Tahoe

image set ..205

Table 7.13: Effect of the number of K-means iterations on the performance of PSO-

EMS using Lake Tahoe image set ...206

Table 7.14: Comparison of gbest-, lbest- and lbest-to-gbest- PSO versions of PSO-

EMS using Lake Tahoe image set ...206

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

1

Chapter 1

Introduction

As humans, it is easy (even for a child) to recognize letters, objects, numbers, voices

of friends, etc. However, making a computer solve these types of problems is a very

difficult task. Pattern recognition is the science with the objective to classify objects

into different categories and classes. It is a fundamental component of artificial

intelligence and computer vision. Pattern recognition methods are used in various

areas such as science, engineering, business, medicine, etc. Interest in pattern

recognition is fast growing in order to deal with the prohibitive amount of information

we encounter in our daily life. Automation is desperately needed to handle this

information explosion. This thesis investigates the application of an efficient

optimization method, known as Particle Swarm Optimization, to the field of pattern

recognition and image processing. PSOs solve optimization problems by simulating

the social behavior of bird flocks.

1.1 Motivation

There are many difficult problems in the field of pattern recognition and image

processing. These problems are the focus of much active research in order to find

efficient approaches to address them. However, the outcome of the research is still

unsatisfactory.

Local search approaches were generally used to solve difficult problems in the

field of pattern recognition and image processing. However, the selected set of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

2

problems in this thesis are NP-hard and combinatorial. Hence, evolutionary

algorithms are generally more suitable to solve these difficult problems because they

are population-based stochastic approaches. Thus, evolutionary algorithms can avoid

being trapped in a local optimum and can often find a global optimal solution. A PSO

is a population-based stochastic optimization algorithm modeled after the simulation

of the social behavior of bird flocks. PSO is easy to implement and has been

successfully applied to solve a wide range of optimization problems [Hu 2004]. Thus,

due to its simplicity and efficiency in navigating large search spaces for optimal

solutions, PSOs are used in this research to develop efficient, robust and flexible

algorithms to solve a selective set of difficult problems in the field of pattern

recognition and image processing. Out of these problems, data clustering is

elaborately tackled in this thesis specifically image data. The motivation for the focus

on data clustering is the fact that data clustering is an important process in pattern

recognition and machine learning. Actually, clustering is a primary goal of pattern

recognition. Furthermore, it is a central process in Artificial Intelligence. In addition,

clustering algorithms are used in many applications, such as image segmentation,

vector and color image quantization, spectral unmixing, data mining, compression,

etc. Therefore, finding an efficient clustering algorithm is very important for

researchers in many different disciplines.

1.2 Objectives

The primary objectives of this thesis can be summarized as follows:

• To show that the PSO can be successfully used to solve difficult problems in

pattern recognition and image processing.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

3

• To develop an efficient clustering algorithm based on PSO.

• To develop a tool that can aid researchers in the unsupervised image

classification field to test their algorithms, compare different clustering

algorithms and generate benchmarks.

• To develop an efficient dynamic clustering algorithm that can find the

"optimum" number of clusters in a data set with minimum user interference.

• To develop a PSO-based approach to tackle the color image quantization

problem.

• To develop an efficient end-members selection method based on PSO for

spectral unmixing of multispectral imagery data.

1.3 Methodology

Algorithms proposed in this thesis are first presented and discussed. Experimental

results were then generally obtained using various synthetic images with well-known

characteristics in order to show the accuracy and efficiency of the proposed

algorithms.

In addition, natural images from different areas such as medical images and

remotely sensed satellite images were also used to show the wide applicability of the

proposed approaches.

The results of state-of-the-art algorithms when applied to the same test images

were also reported to show the relative performance of the proposed approaches when

compared to other well-known approaches.

For the task of unsupervised image classification, attempts were made to find

the best values for the PSO parameters.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

4

Due to the stochastic nature of the proposed algorithms, all the presented

results are averages and standard deviations over several simulations. However, due to

the computational expensive nature of the simulations, results were generally taken

over 10 or 20 runs.

1.4 Contributions

The main contributions of this thesis are:

• The development of an efficient clustering algorithm based on the PSO that

performs better than state-of-the-art clustering algorithms when applied to the

problem of unsupervised image classification.

• The development of a simple tool for synthetic image generation and

verification. This tool can be used as a preliminary test to compare different

unsupervised image classification algorithms. In addition, it can be used to

generate a set of benchmark images that can be used by the researchers in the

field of unsupervised image classification.

• The development of an efficient dynamic clustering algorithm based on the

PSO that is able to simultaneously cluster a data set and find the "optimum"

number of clusters in the data set.

• The development of an efficient color image quantization algorithm based on

the PSO which is capable of generating high quality quantized images.

• The development of an efficient end-members selection method for spectral

unmixing of multispectral satellite imagery data which is based on the PSO.

The efficiency of the algorithm is demonstrated by applying it to test imagery

from various platforms.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

5

1.5 Thesis Outline

Chapter 2 briefly reviews the subject of optimization. This is followed by a brief

discussion of traditional and stochastic optimization methods. Evolutionary

Algorithms (EAs) (with more emphasis on Genetic Algorithms (GAs)) are then

presented. This is followed by an elaborated discussion of particle swarm

optimization and its various modifications. PSO is a model from the swarm

intelligence paradigm. Therefore in order to provide a complete coverage of swarm

intelligence background, a brief overview of another swarm intelligence model, Ant

Colony Systems, is given.

 Chapter 3 reviews the problems addressed in this thesis in sufficient detail.

First the clustering problem is defined and different clustering concepts and

approaches are presented. This is followed by defining image segmentation in

addition to presenting various image segmentation methods. A survey of color image

quantization and its approaches is then presented. This is followed by a brief

introduction to spectral unmixing.

 Chapter 4 presents a clustering method that is based on PSO. The algorithm

finds the centroids of a user specified number of clusters, where each cluster groups

together similar patterns. The application of the proposed clustering algorithm to the

problem of unsupervised classification and segmentation of images is investigated. To

illustrate its wide applicability, the proposed algorithm is then applied to synthetic,

MRI and satellite images.

 Chapter 5 presents a new automatic image generation tool tailored specifically

for the verification and comparison of different unsupervised image classification

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

6

algorithms. The usefulness of the tool is demonstrated in this chapter with reference to

the well-known K-means clustering algorithm and the PSO-based clustering algorithm

proposed in the chapter 4.

 Chapter 6 presents a new dynamic clustering approach based on PSO. This

approach is applied to unsupervised image classification. The proposed approach

automatically determines the "optimum" number of clusters and simultaneously

clusters the data set with minimal user interference. The proposed approach is then

applied to synthetic, natural and multispectral images. A genetic algorithm and a

random search version of dynamic clustering are presented and compared to the

particle swarm version.

 Chapter 7 presents PSO-based approaches to tackle the color image

quantization and spectral unmixing problems. The proposed approaches are then

applied on different image sets to show their applicability and they are compared with

other state-of-the-art approaches.

 Chapter 8 highlights the conclusions of this thesis and discusses directions for

future research.

 The appendices present a definition of frequently used terms and symbols and

a list of publications derived from the work introduced in this thesis.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

7

Chapter 2

Optimization and Optimization Methods

This chapter provides a brief overview of optimization. This is followed by a brief discussion

of traditional and stochastic optimization methods. Evolutionary algorithms (with more

emphasis on genetic algorithms) are then presented. This is followed by an elaborated

discussion of particle swarm optimization and its various modifications. A brief overview of

ant colony systems is then given.

2.1 Optimization

The objective of optimization is to seek values for a set of parameters that maximize

or minimize objective functions subject to certain constraints [Rardin 1998; Van den

Bergh 2002]. A choice of values for the set of parameters that satisfy all constraints is

called a feasible solution. Feasible solutions with objective function value(s) as good

as the values of any other feasible solutions are called optimal solutions [Rardin

1998]. An example of an optimization problem is the arrangement of the transistors in

a computer chip in such a way that the resulting layout occupies the smallest area and

that as few as possible components are used. Optimization techniques are used on a

daily base for industrial planning, resource allocation, scheduling, decision making,

etc. Furthermore, optimization techniques are widely used in many fields such as

business, industry, engineering and computer science. Research in the optimization

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

8

field is very active and new optimization methods are being developed regularly

[Chinneck 2000].

 Optimization encompasses both maximization and minimization problems.

Any maximization problem can be converted into a minimization problem by taking

the negative of the objective function, and vice versa. Hence, the terms optimization,

maximization and minimization are used interchangeably in this thesis. In general, the

problems tackled in this thesis are minimization problems. Therefore, the remainder

of the discussion focuses on minimization problems.

The minimization problem can be defined as follows [Pardalos et al. 2002]

Given ℜ→ S :f where dNℜ⊆S and dN is the dimension of the

search space S

find Sx ∈∗ such that S x xx ∈∀≤∗),()(ff (2.1)

The variable ∗x is called the global minimizer (or simply the minimizer) of f and

)(∗xf is called the global minimum (or simply the minimum) value of f . This can be

illustrated as given in Figure 2.1 where ∗x is a global minimizer of f . The process of

finding the global optimal solution is known as global optimization [Gray et al. 1997].

A true global optimization algorithm will find ∗x regardless of the selected starting

point Sx ∈0 [Van den Bergh 2002]. Global optimization problems are generally very

difficult and are categorized under the class of nonlinear programming (NLP) [Gray et

al. 1997].

Examples of global optimization problems are [Gray et al. 1997]:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

9

• Combinatorial problems: where a linear or nonlinear function is defined over a

finite but very large set of solutions, for example, network problems and

scheduling [Pardalos et al. 2002]. The problems addressed in this thesis belong

to this category.

• General unconstrained problems: where a nonlinear function is defined over

an unconstrained set of real values.

• General constrained problems: where a nonlinear function is defined over a

constrained set of real values.

Evolutionary algorithms (discussed in Sections 2.4-2.5) have been successfully

applied to the above problems to find approximate solutions [Gray et al. 1997]. More

details about global optimization can be found in Pardalos et al. [2002], Floudas and

Pardalos [1992] and Horst et al. [2000].

In Figure 2.1, ∗
Bx is called the local minimizer of region B because)(∗

Bxf is

the smallest value within a local neighborhood, B . Mathematically speaking, the

variable ∗
Bx is a local minimizer of the region B if

B x xxB ∈∀≤∗),()(ff (2.2)

where SB ⊂ . Every global minimizer is a local minimizer, but a local minimizer is

not necessarily a global minimizer.

 Generally, a local optimization method is guaranteed to find the local

minimizer ∗
Bx of the region B if a starting point 0x is used with Bx ∈0 . An

optimization algorithm that converges to a local minimizer, regardless of the selected

starting point Sx ∈0 , is called a globally convergent algorithm [Van den Bergh

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

10

2002]. There are many local optimization algorithms in the literature. For more detail

the reader is referred to Aarts and Lenstra [2003] and Korte and Vygen [2002].

Figure 2.1: Example of a global minimizer ∗x as well as a local minimizer ∗
Bx

2.2 Traditional Optimization Algorithms

Traditional optimization algorithms use exact methods to find the best solution. The

idea is that if a problem can be solved, then the algorithm should find the global best

solution. One exact method is the brute force (or exhaustive) search method where the

algorithm tries every solution in the search space so that the global optimal solution is

guaranteed to be found. Obviously, as the search space increases the cost of brute

force algorithms increases. Therefore, brute force algorithms are not appropriate for

the class of problems known as NP-hard problems. The time to exhaustively search an

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

11

NP-hard problem increases exponentially with problem size. Other exact methods

include linear programming, divide and conquer and dynamic programming. More

details about exact methods can be found in Michalewicz and Fogel [2000].

2.3 Stochastic Algorithms

Stochastic search algorithms are used to find near-optimal solutions for NP-hard

problems in polynomial time. This is achieved by assuming that good solutions are

close to each other in the search space. This assumption is valid for most real world

problems [Løvberg 2002; Spall 2003]. Since the objective of a stochastic algorithm is

to find a near-optimal solution, stochastic algorithms may fail to find a global optimal

solution. While an exact algorithm generates a solution only after the run is

completed, a stochastic algorithm can be stopped any time during the run and generate

the best solution found so far [Løvberg 2002].

Stochastic search algorithms have several advantages compared to other

algorithms [Venter and Sobieszczanski-Sobieski 2002]:

• Stochastic search algorithms are generally easy to implement.

• They can be used efficiently in a multiprocessor environment.

• They do not require the problem definition function to be continuous.

• They generally can find optimal or near-optimal solutions.

• They are suitable for discrete and combinatorial problems.

Three major stochastic algorithms are Hill-Climbing [Michalewicz and Fogel 2000],

Simulated Annealing [Van Laarhoven and Aarts 1987] and Tabu search [Glover 1989;

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

12

Glover 1990]. In Hill-Climbing, a potential solution is randomly chosen. The

algorithm then searches the neighborhood of the current solution for a better solution.

If a better solution is found, then it is set as the new potential solution. This process is

repeated until no more improvement can be made. Simulated annealing is similar to

Hill-Climbing in the sense that a potential solution is randomly chosen. A small value

is then added to the current solution to generate a new solution. If the new solution is

better than the original one then the solution moves to the new location. Otherwise,

the solution will move to the new location with a probability that decreases as the run

progresses [Salman 1999]. Tabu search is a heuristic search algorithm where a tabu

list memory of previously visited solutions is maintained in order to improve the

performance of the search process. The tabu list is used to "guide the movement from

one solution to the next one to avoid cycling" [Gabarro 2000], thus, avoid being

trapped in a local optimum. Tabu search starts with a randomly chosen current

solution. A set of test solutions are generated via moves from the current solution. The

best test solution is set as the current solution if it is not in the tabu list, or if it is in the

tabu list, but satisfies an aspiration criterion. A test solution satisfies an aspiration

criterion if it is in the tabu list and it is the best solution found so far [Chu and

Roddick 2003]. This process is repeated until a stopping criterion is satisfied.

2.4 Evolutionary Algorithms

Evolutionary algorithms (EAs) are general-purpose stochastic search methods

simulating natural selection and evolution in the biological world. EAs differ from

other optimization methods, such as Hill-Climbing and Simulated Annealing, in the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

13

fact that EAs maintain a population of potential (or candidate) solutions to a problem,

and not just one solution [Engelbrecht 2002; Salman 1999].

Generally, all EAs work as follows: a population of individuals is initialized

where each individual represents a potential solution to the problem at hand. The

quality of each solution is evaluated using a fitness function. A selection process is

applied during each iteration of an EA in order to form a new population. The

selection process is biased toward the fitter individuals to ensure that they will be part

of the new population. Individuals are altered using unary transformation (mutation)

and higher order transformation (crossover). This procedure is repeated until

convergence is reached. The best solution found is expected to be a near-optimum

solution [Michalewicz 1996]. A general pseudo-code for an EA is shown in Figure 2.2

[Gray et al. 1997].

Initialize the population

Evaluate the fitness of each individual in the population

Repeat

Apply selection on the population to form a new population

Alter the individuals in the population using evolutionary operators

Evaluate the fitness of each individual in the population

Until some convergence criteria are satisfied

Figure 2.2: General pseudo-code for EAs

The unary and higher order transformations are called evolutionary operators. The

two most frequently evolutionary operators are:

• Mutation, which modifies an individual by a small random change to generate

a new individual [Michalewicz 1996]. This change can be done by inverting

the value of a binary digit in the case of binary representations, or by adding

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

14

(or subtracting) a small number to (or from) selected values in the case of

floating point representations. The main objective of mutation is to add some

diversity by introducing more genetic material into the population in order to

avoid being trapped in a local optimum. Generally, mutation is applied using a

low probability. However, some problems (e.g. problems using floating point

representations) require using mutation with high probability [Salman 1999].

A preferred strategy is to start with high probability of mutation and dreasing

it over time.

• Recombination (or Crossover), where parts from two (or more) individuals are

combined together to generate new individuals [Michalewicz 1996]. The main

objective of crossover is to explore new areas in the search space [Salman

1999].

There are four major evolutionary techniques:

• Genetic Programming (GP) [Koza 1992] which is used to search for the fittest

program to solve a specific problem. Individuals are represented as trees and

the focus is on genotypic evaluation.

• Evolutionary Programming (EP) [Fogel 1994] which is generally used to

optimize real-valued continuous functions. EP uses selection and mutation

operators; it does not use the recombination operator. The focus is on

phenotypic evaluation and not on genotypic evaluation.

• Evolutionary Strategies (ES) [Bäck et al. 1991] which is used to optimize real-

valued continuous functions. ES uses selection, crossover and mutation

operators. ES optimizes both the population and the optimization process, by

evolving strategy parameters. Hence, ES is evolution of evolution.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

15

• Genetic Algorithms (GA) [Goldberg 1989] which is generally used to optimize

general combinatorial problems [Gray et al. 1997]. The GA is a commonly

used algorithm and has been used for comparison purposes in this thesis. The

focus in GA is on genetic evolution using both mutation and crossover,

although the original GAs developed by Holland [1962] used only crossover.

Since later chapters make use of GAs, a detailed explanation of GAs is given

in Section 2.5.

Due to its population-based nature, EAs can avoid being trapped in a local optimum

and consequently can often find global optimal solutions. Thus, EAs can be viewed as

global optimization algorithms. However, it should be noted that EAs may fail to

converge to a global optimum [Gray et al. 1997].

EAs have successfully been applied to a wide variety of optimization

problems, for example: image processing, pattern recognition, scheduling,

engineering design, etc. [Gray et al 1997; Goldberg 1989].

2.5 Genetic Algorithms

Genetic Algorithms (GAs) are evolutionary algorithms that use selection, crossover

and mutation operators. GAs were first proposed by Holland [1962; 1975] and were

inspired by Darwinian evolution and Mendelian genetics [Salman 1999]. GAs follow

the same algorithm presented in Figure 2.2. GAs are one of the most popular

evolutionary algorithms and have been widely used to solve difficult optimization

problems. GAs have been successfully applied in many areas such as pattern

recognition, image processing, machine learning, etc. [Goldberg 1989]. In many cases

GAs perform better than EP and ESs. However, EP and ESs usually converge better

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

16

than GAs for real valued function optimization [Weiss 2003]. Individuals in GAs are

called chromosomes. Each chromosome consists of a string of cells called genes. The

value of each gene is called allele. The major parameters of GAs are discussed in

Sections 2.5.1-2.5.5. In Section 2.5.6, a brief discussion about a problem that may be

encountered in GAs is discussed.

2.5.1 Solution Representation

Binary representation is often used in GAs where each gene has a value of either 0 or

1. Other presentations have been proposed, for example, floating point representations

[Janikow and Michalewicz 1991], integer representations [Bramlette 1991], gray-

coded representations [Whitley and Rana 1998] and matrix representation

[Michalewicz 1996]. More detail about representation schemes can be found in

Goldberg [1989]. Generally, non-binary representations require different evolutionary

operators for each representation while uniform operators can be used with binary

representation for any problem [Van den Bergh 2002]. However, according to

Michalewicz [1991], floating point representations are faster, more consistent and

have higher precision than binary representations.

2.5.2 Fitness Function

A key element in GAs is the selection of a fitness function that accurately quantifies

the quality of candidate solutions. A good fitness function enables the chromosomes

to effectively solve a specific problem. Both the fitness function and solution

representation are problem dependent parameters. A poor selection of these two

parameters will drastically affect the performance of GAs. One problem related to

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

17

fitness functions that may occur when GAs are used to optimize combinatorial

problems is the existence of points in the search space that do not map to feasible

solutions. One solution to this problem is the addition of a penalty function term to the

original fitness function so that chromosomes representing infeasible solutions will

have a low fitness score, and as such, will disappear from the population [Fletcher

2000].

2.5.3 Selection

Another key element of GAs is the selection operator which is used to select

chromosomes (called parents) for mating in order to generate new chromosomes

(called offspring). In addition, the selection operator can be used to select elitist

individuals. The selection process is usually biased toward fitter chromosomes.

Selection methods are used as mechanisms to focus the search on apparently more

profitable regions in the search space [Angeline, Using Selection 1998]. Examples of

well-known selection approaches are:

• Roulette wheel selection: Parent chromosomes are probabilistically selected

based on their fitness. The fitter the chromosome, the higher the probability

that it may be chosen for mating. Consider a roulette wheel where each

chromosome in the population occupies a slot with slot size proportional to the

chromosome's fitness [Gray et al. 1997]. When the wheel is randomly spun,

the chromosome corresponding to the slot where the wheel stopped is selected

as the first parent. This process is repeated to find the second parent. Clearly,

since fitter chromosomes have larger slots, they have better chance to be

chosen in the selection process [Goldberg 1989].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

18

• Rank selection: Roulette wheel selection suffers from the problem that highly

fit individuals may dominate in the selection process. When one or a few

chromosomes have a very high fitness compared to the fitness of other

chromosomes, the lower fit chromosomes will have a very slim chance to be

selected for mating. This will increase selection pressure, which will cause

diversity to decrease rapidly resulting in premature convergence. To reduce

this problem, rank selection sorts the chromosomes according to their fitness

and base selection on the rank order of the chromosomes, and not on the

absolute fitness values. The worst (i.e. least fit) chromosome has rank of 1, the

second worst chromosome has rank of 2, and so on. Rank selection still prefers

the best chromosomes; however, there is no domination as in the case of

roulette wheel selection. Hence, using this approach all chromosomes will

have a good chance to be selected. However, this approach may have a slower

convergence rate than the roulette wheel approach [Gray et al. 1997].

• Tournament selection: In this more commonly used approach [Goldberg

1989], a set of chromosomes are randomly chosen. The fittest chromosome

from the set is then placed in a mating pool. This process is repeated until the

mating pool contains a sufficient number of chromosomes to start the mating

process.

• Elitism: In this approach, the fittest chromosome, or a user-specified number

of best chromosomes, is copied into the new population. The remaining

chromosomes are then chosen using any selection operator. Since the best

solution is never lost, the performance of GA can significantly be improved

[Gray et al. 1997].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

19

2.5.4 Crossover

Crossover is "the main explorative operator in GAs" [Salman 1999]. Crossover occurs

with a user-specified probability, called the crossover probability pc. pc is problem

dependent with typical values in the range between 0.4 and 0.8 [Weiss 2003]. The

four main crossover operators are:

• Single point crossover: In this approach, a position is randomly selected at

which the parents are divided into two parts. The parts of the two parents are

then swapped to generate two new offspring.

Example 2.1

Parent A: 11001010

Parent B: 01110011

Offspring A: 11001011

 Offspring B: 01110010

• Two point crossover: In this approach, two positions are randomly selected.

The middle parts of the two parents are then swapped to generate two new

offspring.

Example 2.2

Parent A: 11001010

Parent B: 01110011

Offspring A: 11110010

Offspring B: 01001011

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

20

• Uniform crossover: In this approach, alleles are copied from either the first

parent or the second parent with some probability, usually set to 0.5.

Example 2.3

Parent A: 11001010

Parent B: 01110011

Offspring A: 11101011

Offspring B: 01010010

• Arithmetic crossover: In this approach, which is used for floating point

representations, offspring is calculated as the arithmetic mean of the parents

[Michalewicz 1996; Krink and Løvbjerg 2002], i.e.

Bparent Aparent A offspring)(1 xxx rr −+= (2.3)

Aparent Bparent B offspring)(1 xxx rr −+= (2.4)

where (0,1)~ Ur .

2.5.5 Mutation

In GAs, mutation is considered to be a background operator, mainly used to explore

new areas in the search space and to add diversity (contrary to selection and crossover

which reduces diversity) to the population of chromosomes in order to prevent being

trapped in a local optimum. Mutation is applied to the offspring chromosomes after

crossover is performed. In a binary coded GA, mutation is done by inverting the value

of each gene in the chromosome according to a user-specified probability, which is

called the mutation probability, pm. This probability is problem dependent. Mutation

occurs infrequently both in nature and in GAs [Løvberg 2002], hence, a typical value

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

21

for pm is 0.01 [Weiss 2003]. However, a better value for pm is the inverse of the

number of genes in a chromosome (i.e. chromosome size) [Goldberg 1989].

One mutation scheme used with floating point representations is the non-

uniform mutation [Michalewicz 1996]. The jth element of chromosome x is mutated as

follows:

 where,jjj xxx ∆+=

()

()

−−−

−−+
=∆

−

−

1 isbit random a if)1)((
0 isbit random a if)1)((

max

max

1
min

1
max

b

b

t/t
j

t/t
j

j rZx
rxZ

x (2.5)

where Zmin and Zmax are the lower and upper bound of the search space, (0,1)~ Ur , t

is the current iteration, tmax is the total number of iterations and b is a user-specified

parameter determining the degree of iteration number dependency (in this thesis, b

was set to 5 as suggested by Michalewicz [1996]). Thus, the amount of mutation

decreases as the run progresses.

 Kennedy and Spears [1998] observed that a GA using either mutation or

crossover performed better than a GA using both crossover and mutation operators

when applied to a set of random problems (especially for problems with a large

multimodality).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

22

2.5.6 The Premature Convergence Problem

Genetic algorithms suffer from the premature suboptimal convergence (simply

premature convergence or stagnation) which occurs when some poor individuals

attract the population - due to a local optimum or bad initialization - preventing

further exploration of the search space [Dorigo et al. 1999]. One of the causes of this

problem is that a very fit chromosome is generally sure to be selected for mating, and

since offspring resemble their parents, chromosomes become too similar (i.e.

population loses diversity). Hence, the population will often converge before reaching

the global optimal solution, resulting in premature convergence. Premature

convergence can be prevented by:

• Using subpopulations: The population of chromosomes is divided into

separate subpopulations. Each subpopulation is evolved independent of the

other subpopulations for a user-specified number of generations. Then, a

number of chromosomes are exchanged between the subpopulations. This

process helps in increasing diversity and thus preventing premature

convergence.

• Re-initializing some chromosomes: A few chromosomes are re-initialized

from time to time in order to add diversity to the population.

• Increase the mutation probability: As already discussed, mutation aids in

exploring new areas in the search space and increases diversity. Therefore,

increasing pm will help in preventing premature convergence.

In general, any mechanism that can increase diversity will help in preventing

premature convergence.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

23

2.6 Particle Swarm Optimization

A particle swarm optimizer (PSO) is a population-based stochastic optimization

algorithm modeled after the simulation of the social behavior of bird flocks [Kennedy

and Eberhart 1995; Kennedy and Eberhart 2001]. PSO is similar to EAs in the sense

that both approaches are population-based and each individual has a fitness function.

Furthermore, the adjustments of the individuals in PSO are relatively similar to the

arithmetic crossover operator used in EAs [Coello Coello and Lechuga 2002].

However, PSO is influenced by the simulation of social behavior rather than the

survival of the fittest [Shi and Eberhart 2001]. Another major difference is that, in

PSO, each individual benefits from its history whereas no such mechanism exists in

EAs [Coello Coello and Lechuga 2002]. PSO is easy to implement and has been

successfully applied to solve a wide range of optimization problems such as

continuous nonlinear and discrete optimization problems [Kennedy and Eberhart

1995; Kennedy and Eberhart 2001; Eberhart and Shi, Comparison 1998].

2.6.1 The PSO Algorithm

In a PSO system, a swarm of individuals (called particles) fly through the search

space. Each particle represents a candidate solution to the optimization problem. The

position of a particle is influenced by the best position visited by itself (i.e. its own

experience) and the position of the best particle in its neighborhood (i.e. the

experience of neighboring particles). When the neighborhood of a particle is the entire

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

24

swarm, the best position in the neighborhood is referred to as the global best particle,

and the resulting algorithm is referred to as a gbest PSO. When smaller

neighborhoods are used, the algorithm is generally referred to as a lbest PSO [Shi and

Eberhart, Parameter 1998]. The performance of each particle (i.e. how close the

particle is from the global optimum) is measured using a fitness function that varies

depending on the optimization problem.

Each particle in the swarm is represented by the following characteristics:

xi: The current position of the particle;

vi: The current velocity of the particle;

yi: The personal best position of the particle.

iŷ : The neighborhood best position of the particle.

The personal best position of particle i is the best position (i.e. the one resulting in the

best fitness value) visited by particle i so far. Let f denote the objective function. Then

the personal best of a particle at time step t is updated as

<++
≥+

=+
))(())1((if)1(
))(())1((if)(

)1(
tftft
tftft

t
iii

iii
i yxx

yxy
y (2.6)

For the gbest model, the best particle is determined from the entire swarm by selecting

the best personal best position. If the position of the global best particle is denoted by

the vector ŷ , then

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

25

}{ { }))((,)),(()),((min,,,)(ˆ 1010 tftftft ss yyyyyyy KK =∈ (2.7)

where s denotes the size of the swarm.

The velocity update step is specified for each dimension j ∈ 1,…,Nd, hence, vi,j

represents the jth element of the velocity vector of the ith particle. Thus the velocity of

particle i is updated using the following equation:

))()()(())()()(()(1)(2,21,1 txtŷtrctxtytrctwvtv ji,jjji,ji,jji,ji, −+−+=+ (2.8)

where w is the inertia weight, 1c and 2c are the acceleration constants, and)(1, tr j ,

(0,1)~)(2, Utr j . Equation (2.8) consists of three components, namely

• The inertia weight term, w, which was first introduced by Shi and Eberhart [A

modified 1998]. This term serves as a memory of previous velocities. The

inertia weight controls the impact of the previous velocity: a large inertia

weight favors exploration, while a small inertia weight favors exploitation [Shi

and Eberhart, Parameter 1998].

• The cognitive component, ii t xy −)(, which represents the particle's own

experience as to where the best solution is.

• The social component,)()(ˆ tt ixy − , which represents the belief of the entire

swarm as to where the best solution is.

According to Van den Bergh [2002], the relation between the inertia weight and

acceleration constants should satisfy the following equation in order to have

guaranteed convergence:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

26

w
cc

<−
+

1
2

21 (2.9)

Otherwise, the PSO particles may exhibit divergent of cyclic behavior. For a thorough

study of the relationship between the inertia weight and acceleration constants, the

reader is advised to refer to Ozcan and Mohan [1998], Clerc and Kennedy [2001],

Van den Bergh [2002], Zheng et al. [2003], Yasuda et al. [2003] and Trelea [2003].

Velocity updates can also be clamped with a user defined maximum velocity,

Vmax, which would prevent them from exploding, thereby causing premature

convergence [Eberhart et al. 1996].

The position of particle i, xi, is then updated using the following equation:

)1()()1(++=+ ttt iii vxx (2.10)

The PSO updates the particles in the swarm using equations (2.8) and (2.10). This

process is repeated until a specified number of iterations is exceeded, or velocity

updates are close to zero. The quality of particles is measured using a fitness function

which reflects the optimality of a particular solution. Figure 2.3 summarizes the basic

PSO algorithm.

2.6.2 The lbest Model

For the lbest model, a swarm is divided into overlapping neighborhoods of particles.

For each neighborhood Ni, the best particle is determined, with position iŷ . This

particle is referred to as the neighborhood best particle. Let the indices of the particles

wrap around at s and the neighborhood size is l. Then the update equations are:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

27

For each particle i ∈ 1,...,s do

 Randomly initialize xi

 Randomly initialize vi (or just set vi to zero)

 Set yi = xi

endfor

Repeat

 For each particle i ∈ 1,...,s do

 Evaluate the fitness of particle i, f(xi)

 Update yi using equation (2.6)

 Update ŷ using equation (2.7)

 For each dimension j ∈ 1,...,Nd do

 Apply velocity update using equation (2.8)

 endloop

 Apply position update using equation (2.10)

 endloop

Until some convergence criteria is satisfied

Figure 2.3: General pseudo-code for PSO

{ })(),(,),(),(),(,),(),(tttttttN li1li1ii1i1lilii +−++−+−−= yyyyyyy KK (2.11)

{ } },))((min1))((|{1)(iiiiii NtftˆfNtˆ ∈∀=+∈+ yyyy (2.12)

))()()(())()()(()(1)(2,21,1, txtŷtrctxtytrctwvtv ji,ji,jji,ji,jji,ji −+−+=+ (2.13)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

28

The position update equation is the same as given in equation (2.10). Neighbors

represent the social factor in PSO. Neighborhoods are usually determined using

particle indices, however, topological neighborhoods can also be used [Suganthan

1999]. It is clear that gbest is a special case of lbest with l = s; that is, the

neighborhood is the entire swarm. While the lbest approach results in a larger

diversity, it is still slower than the gbest approach.

2.6.3 PSO Neighborhood topologies

Different neighborhood topologies have been investigated [Kennedy 1999; Kennedy

and Mendes 2002]. Two common neighborhood topologies are the star (or wheel) and

ring (or circle) topologies. For the star topology one particle is selected as a hub,

which is connected to all other particles in the swarm. However, all the other particles

are only connected to the hub. For the ring topology, particles are arranged in a ring.

Each particle has some number of particles to its right and left as its neighborhood.

Recently, Kennedy and Mendes [2002] proposed a new PSO model using a Von

Neumann topology. For the Von Neumann topology, particles are connected using a

grid network (2-dimensional lattice) where each particle is connected to its four

neighbor particles (above, below, right and left particles). Figure 2.4 illustrates the

different neighborhood topologies.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

29

(a) Star topology (b) Ring Topology (c) Von Neumann Topology

Figure 2.4. A diagrammatic representation of neighborhood topologies

 The choice of neighborhood topology has a profound effect on the propagation

of the best solution found by the swarm. Using the gbest model the propagation is

very fast (i.e. all the particles in the swarm will be affected by the best solution found

in iteration t, immediately in iteration 1+t). This fast propagation may result in the

premature convergence problem discussed in Section 2.5.6. However, using the ring

and Von Neumann topologies will slow down the convergence rate because the best

solution found has to propagate through several neighborhoods before affecting all

particles in the swarm. This slow propagation will enable the particles to explore more

areas in the search space and thus decreases the chance of premature convergence.

2.6.4 The Binary PSO

Kennedy and Eberhart [1997] have adapted the PSO to search in binary spaces. For

the binary PSO, the component values of xi, yi and iŷ are restricted to the set {0, 1}.

The velocity, vi, is interpreted as a probability to change a bit from 0 to 1, or from 1 to

0 when updating the position of particles. Therefore, the velocity vector remains

continuous-valued. Since each ℜ∈ji,v , a mapping needs to be defined from vi,j to a

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

30

probability in the range [0, 1]. This is done by using a sigmoid function to squash

velocities into a [0, 1] range. The sigmoid function is defined as

ve
vsig −+
=

1
1)((2.14)

The equation for updating positions (equation (2.10)) is then replaced by the

probabilistic update equation [Kennedy and Eberhart 1997]:

+<
+≥

=+
))1(()(if 1
))1(()(if 0

)1(
tvsigtr
tvsigtr

tx
ji,j3,

ji,j3,
ji, (2.15)

where (0,1)~)(3, Utr j .

It can be observed from equation (2.15) that if sig(vi,j) = 0 then xi,j = 0. This

situation occurs when vi,j < -10. Furthermore, sig(vi,j) will saturate when vi,j > 10 [Van

den Bergh 2002]. To avoid this problem, it is suggested to set vi,j ∈ [-4,4] and to use

velocity clamping with Vmax = 4 [Kennedy and Eberhart 2001].

 PSO has also been extended to deal with arbitrary discrete representation

[Yoshida et al. 1999; Fukuyama and Yoshida 2001; Venter and Sobieszczanski-

Sobieski 2002; Al-kazemi and Mohan 2000; Mohan and Al-Kazemi 2001]. These

extensions are generally achieved by rounding xi,j to its closest discrete value after

applying position update equation (2.10) [Venter and Sobieszczanski-Sobieski 2002].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

31

2.6.5 PSO vs. GA

A PSO is an inherently continuous algorithm where as a GA is an inherently discrete

algorithm [Venter and Sobieszczanski-Sobieski 2002]. Experiments conducted by

Veeramachaneni et al. [2003] showed that a PSO performed better than GAs when

applied on some continuous optimization problems. Furthermore, according to

Robinson et al. [2002], a PSO performed better than GAs when applied to the design

of a difficult engineering problem, namely, profiled corrugated horn antenna design

[Diaz and Milligan 1996]. In addition, a binary PSO was compared with a GA by

Eberhart and Shi [Comparison 1998] and Kennedy and Spears [1998]. The results

showed that binary PSO is generally faster, more robust and performs better than

binary GAs, especially when the dimension of a problem increases.

 Hybrid approaches combining PSO and GA were proposed by

Veeramachaneni et al. [2003] to optimize the profiled corrugated horn antenna. The

hybridization works by taking the population of one algorithm when it has made no

fitness improvement and using it as the starting population for the other algorithm.

Two versions were proposed: GA-PSO and PSO-GA. In GA-PSO, the GA population

is used to initialize the PSO population. For PSO-GA, the PSO population is used to

initialize the GA population. According to Veeramachaneni et al. [2003], PSO-GA

performed slightly better than PSO. Both PSO and PSO-GA outperformed both GA

and GA-PSO.

 Some of the first applications of PSO were to train Neural Networks (NNs),

including NNs with product units. Results have shown that PSO is better than GA and

other training algorithms [Eberhart and Shi, Evolving 1998; Van den Bergh and

Engelbrecht 2000; Ismail and Engelbrecht 2000].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

32

According to Shi and Eberhart [1998], the PSO performance is insensitive to

the population size (however, the population size should not be too small). This

observation was verified by Løvberg [2002] and Krink et al. [2002]. Consequently,

PSO with smaller swarm sizes perform comparably to GAs with larger populations.

Furthermore, Shi and Eberhart observed that PSO scales efficiently. This observation

was verified by Løvberg [2002].

2.6.6 PSO and Constrained Optimization

Most engineering problems are constrained problems. However, the basic PSO is only

defined for unconstrained problems. One way to allow the PSO to optimize

constrained problems is by adding a penalty function to the original fitness function

(as discussed in Section 2.5.2). In this thesis, a constant penalty function (empirically

set to 106) is added to the original fitness function for each particle with violated

constraints. More recently, a modification to the basic PSO was proposed by Venter

and Sobieszczanski-Sobieski [2002] to penalize particles with violated constraints.

The idea is to reset the velocity of each particle with violated constraints. Therefore,

these particles will only be affected by yi and ŷ . According to Venter and

Sobieszczanski-Sobieski [2002], this modification has a significant positive effect on

the performance of PSO. Other PSO approaches dealing with constrained problems

can be found in El-Gallad et al. [2001], Hu and Eberhart [Solving 2002], Schoofs and

Naudts [2002], Parsopoulos and Vrahatis [2002], Coath et al. [2003] and Gaing

[2003].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

33

2.6.7 Drawbacks of PSO

PSO and other stochastic search algorithms have two major drawbacks [Løvberg

2002]. The first drawback of PSO, and other stochastic search algorithms, is that the

swarm may prematurely converge (as discussed in Section 2.5.6). According to

Angeline [Evolutionary 1998], although PSO finds good solutions much faster than

other evolutionary algorithms, it usually can not improve the quality of the solutions

as the number of iterations is increased. PSO usually suffers from premature

convergence when strongly multi-modal problems are being optimized. The rationale

behind this problem is that, for the gbest PSO, particles converge to a single point,

which is on the line between the global best and the personal best positions. This point

is not guaranteed to be even a local optimum. Proofs can be found in Van den Bergh

[2002]. Another reason for this problem is the fast rate of information flow between

particles, resulting in the creation of similar particles (with a loss in diversity) which

increases the possibility of being trapped in local optima [Riget and Vesterstrøm

2002]. Several modifications of the PSO have been proposed to address this problem.

Two of these modifications have already been discussed, namely, the inertia weight

and the lbest model. Other modifications are discussed in the next section.

The second drawback is that stochastic approaches have problem-dependent

performance. This dependency usually results from the parameter settings of each

algorithm. Thus, using different parameter settings for one stochastic search algorithm

result in high performance variances. In general, no single parameter setting exists

which can be applied to all problems. This problem is magnified in PSO where

modifying a PSO parameter may result in a proportionally large effect [Løvberg

2002]. For example, increasing the value of the inertia weight, w, will increase the

speed of the particles resulting in more exploration (global search) and less

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

34

exploitation (local search). On the other hand, decreasing the value of w will decrease

the speed of the particle resulting in more exploitation and less exploration. Thus

finding the best value for w is not an easy task and it may differ from one problem to

another. Therefore, it can be concluded that the PSO performance is problem-

dependent.

 One solution to the problem-dependent performance of PSO is to use self-

adaptive parameters. In self-adaptation, the algorithm parameters are adjusted based

on the feedback from the search process [Løvberg 2002]. Bäck [1992] has

successfully applied self-adaptation on GAs. Self-adaptation has been successfully

applied to PSO by Clerc [1999], Shi and Eberhart [2001], Hu and Eberhart [Adaptive

2002], Ratnaweera et al. [2003] and Tsou and MacNish [2003], Yasuda et al. [2003]

and Zhang et al. [2003].

 The problem-dependent performance problem can be addressed through

hybridization. Hybridization refers to combining different approaches to benefit from

the advantages of each approach [Løvberg 2002]. Hybridization has been successfully

applied to PSO by Angeline [1998], Løvberg [2002], Krink and Løvbjerg [2002],

Veeramachaneni et al. [2003], Reynolds et al. [2003], Higashi and Iba [2003] and

Esquivel and Coello Coello [2003].

2.6.8 Improvements to PSO

The improvements presented in this section are mainly trying to address the problem

of premature convergence associated with the original PSO. These improvements

usually try to solve this problem by increasing the diversity of solutions in the swarm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

35

Constriction Factor

Clerc [1999] and Clerc and Kennedy [2001] proposed using a constriction factor to

ensure convergence. The constriction factor can be used to choose values for w, c1 and

c2 to ensure that the PSO converges. The modified velocity update equation is defined

as follows:

))),()()(())()()(()((1)(2,21,1 txtŷtrctxtytrctvtv ji,jjji,ji,jji,ji, −+−+=+ χ (2.16)

where χ is the constriction factor defined as follows:

ϕϕϕ
χ

42

2
2 −−−

= ,

and 4 21 >+= ϕϕ ,cc .

Eberhart and Shi [2000] showed imperically that using both the constriction

factor and velocity clamping generally improves both the performance and the

convergence rate of the PSO.

Guaranteed Convergence PSO (GCPSO)

The original versions of PSO as given in Section 2.6.1, may prematurely converge

when yyx ˆii == , since the velocity update equation will depend only on the term

wvi(t) [Van den Bergh and Engelbrecht 2002; Van den Bergh 2002]. To overcome

this problem, a new version of PSO with guaranteed local convergence was

introduced by Van den Bergh [2002], namely GCPSO. In GCPSO, the global best

particle with index τ is updated using a different velocity update equation, namely

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

36

))(21)(()()()()1(2 trttwvtŷtxtv j,j,jj,j, −+++−=+ ρτττ (2.17)

which results in a position update equation of

))(21)(()()()1(2 trttwtŷtx j,j,jj, −++=+ ρττ v (2.18)

The term –xτ resets the particle's position to the global best position ŷ ;)(tw τv

signifies a search direction, and))(21)((2 trt j,−ρ adds a random search term to the

equation. The term)(tρ defines the area in which a better solution is searched.

The value of)0(ρ is initialized to 1.0, with)1(+tρ defined as

>
>

=+
otherwise (t)

 if (t)50
 if (t)2

)1(
ρ

ρ
ρ

ρ c

c

ffailures#.
ssuccesses#

t (2.19)

A failure occurs when 1))-(())((tˆftˆf yy ≥ (in the case of a minimization problem)

and the variable #failures is subsequently incremented (i.e. no apparent progress has

been made). A success then occurs when 1))-(())((tˆftˆf yy < . Van den Bergh [2002]

suggests learning the control threshold values fc and sc dynamically. That is,

 >++

=+
 otherwise)(
1)(if 1)(

)1(
ts

ftfailures#ts
ts

c

cc
c (2.20)

 >++

=+
 otherwise)(
1)(if 1)(

)1(
tf

stsuccess#tf
tf

c

cc
c (2.21)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

37

This arrangement ensures that it is harder to reach a success state when multiple

failures have been encountered. Likewise, when the algorithm starts to exhibit overly

confident convergent behavior, it is forced to randomly search a smaller region of the

search space surrounding the global best position. For equation (2.19) to be well

defined, the following rules should be implemented:

#successes(t+1) > #successes(t) ⇒ #failures(t+1) = 0

#failures(t+1) > #failures(t) ⇒ #successes(t+1) = 0

Van den Bergh suggests repeating the algorithm until ρ becomes sufficiently

small, or until stopping criteria are met. Stopping the algorithm once ρ reaches a

lower bound is not advised, as it does not necessarily indicate that all particles have

converged – other particles may still be exploring different parts of the search space.

It is important to note that, for the GCPSO algorithm, all particles except for

the global best particle still follow equations (2.8) and (2.10). Only the global best

particle follows the new velocity and position update equations.

According to Van den Bergh [2002] and Peer et al. [2003], GCPSO generally

performs better than PSO when applied to benchmark problems. This improvement in

performance is especially noticeable when PSO and GCPSO are applied to unimodal

functions, but the performance of both algorithms was generally comparable for

multi-modal functions [Van den Bergh 2002]. Furthermore, due to its fast rate of

convergence, GCPSO is slightly more likely to be trapped in local optima [Van den

Bergh 2002]. However, it has gauaranteed local convergence whereas the original

PSO does not.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

38

Multi-start PSO (MPSO)

Van den Bergh [2002] proposed MPSO which is an extension to GCPSO in order to

make it a global search algorithm. MPSO works as follows:

1. Randomly initialize all the particles in the swarm.

2. Apply the GCPSO until convergence to a local optimum. Save the position of this

local optimum.

3. Repeat Steps 1 and 2 until some stopping criteria are satisfied.

In Step 2, the GCPSO can be replaced by the original PSO. Several versions of MPSO

were proposed by Van den Bergh [2002] based on the way used to determine the

convergence of GCPSO. One good approach is to measure the rate of change in the

objective function as follows:

))((
))1(())((

ratio tˆf
tˆftˆff

y
yy −−

=

If fratio is less than a user-specified threshold then a counter is incremented. The swarm

is assumed to have converged if the counter reaches a certain threshold [Van den

Bergh 2002]. According to Van den Bergh [2002], MPSO generally performed better

than GCPSO in most of the tested cases. However, the performance of MPSO

degrades significantly as the number of dimensions in the objective function increases

[Van den Bergh 2002].

Attractive and Repulsive PSO (ARPSO)

ARPSO [Riget and Vesterstrøm 2002] alternates between two phases: attraction and

repulsion based on a diversity measure. In the attraction phase, ARPSO uses PSO to

allow fast information flow, as such particles attract each other and thus the diversity

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

39

reduces. It was found that 95% of fitness improvements were achieved in this phase.

This observation shows the importance of low diversity in fine tuning the solution. In

the repulsion phase, particles are pushed away from the best solution found so far

thereby increasing diversity. Based on the experiments conducted by Riget and

Vesterstrøm [2002] ARPSO outperformed PSO and GA in most of the tested cases.

Selection

A hybrid approach combining PSO with a tournament selection method was proposed

by Angeline [Using Selection 1998]. Each particle is ranked based on its performance

against a randomly selected group of particles. For this purpose, a particle is awarded

one point for each opponent in the tournament for which the particle has a better

fitnss. The population is then sorted in decending order according to the points

accumulated. The bottom half of the population is then replaced by the top half. This

step reduces the diversity of the population. The results showed that the hybrid

approach performed better than the PSO (without w and χ) for unimodal functions.

However, the hybrid approach performed worse than the PSO for functions with many

local optima. Therefore, it can be concluded that although the use of a selection

method improves the exploitation capability of the PSO, it reduces its exploration

capability [Ven den Bergh 2002]. Hence, using a selection method with PSO may

result in premature convergence.

Breeding

Løvberg et al. [2001] proposed a modification to PSO by using an arithmetic

crossover operator (discussed in Section 2.5.4), referred to as a breeding operator, in

order to improve the convergence rate of PSO. Each particle in the swarm is assigned

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

40

a user-defined breeding probability. Based on these probabilities, two parent particles

are randomly selected to create offspring using the arithmetic crossover operator.

Offspring replace the parent particles. The personal best position of each offspring

particle is initialized to its current position (i.e. yi = xi), and its velocity is set as the

sum of the two parent's velocities normalized to the original length of each parent

velocity. The process is repeated until a new swarm of the same size has been

generated. PSO with breeding generally performed better than the PSO when applied

to multi-modal functions [Løvberg et al. 2001].

Mutation

Recently, Higashi and Iba [2003] proposed hybriding PSO with Gaussian mutation.

Similarly, Esquivel and Coello Coello [2003] proposed hybridizing lbest- and gbest-

PSO with a powerful diversity maintenance mechanism, namely, a non-uniform

mutation operator discussed in section 2.5.5 to solve the premature convergence

problem of PSO. According to Esquivel and Coello Coello [2003] the hybrid

approach of lbest PSO and the non-uniform mutation operator outperformed PSO and

GCPSO in all of the conducted experiments.

Dissipative PSO (DPSO)

DPSO was proposed by Xie et al. [2002] to add random mutation to PSO in order to

prevent premature convergence. DPSO introduces negative entropy via the addition of

randomness to the particles (after executing equation (2.8) and (2.10)) as follows:

If (r1(t) < cv) then vi,j(t + 1) = r2(t)Vmax

If (r3(t) < cl) then xi,j(t + 1) = R(t)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

41

where r1(t) ~ U(0,1), r2(t) ~ U(0,1) and r3(t) ~ U(0,1); cv and cv are chaotic factors in

the range [0,1] and R(t) ~ U(Zmin,Zmax) where Zmin and Zmax are the lower and upper

bound of the search space. The results showed that DPSO performed better than PSO

when applied to the benchmarks problems [Xie et al. 2002].

Differential Evolution PSO (DEPSO)

DEPSO [Zhang and Xie 2003] uses a differential evolution (DE) operator [Storn and

Price 1997] to provide the mutations. A trait point)(tiy&& is calculated as follows:

If (r1(t) < pc OR j = kd) then

2
))()(())()((

)()(4321 tytytyty
tŷty j,j,j,j,

jji,

−+−
+=&& (2.23)

where r1(t) ~ U(0,1), kd ~ U(1,Nd), and)(1 ty ,)(2 ty ,)(3 ty and)(4 ty are randomly

chosen from the set of personal best positions. Then,

))(())((ifonly),()(tftftt iiii yyyy <= &&&& . The rationale behind mutating)(tiy instead

of)(tix is to avoid disorganization of the swarm.

DEPSO works by alternating between the original PSO and the DE operator

such that equations (2.8) and (2.10) are used in the odd iterations and equation (2.23)

is used is in the even iterations. According to Zhang and Xie [2003], DEPSO

generally performed better than PSO, DE, GA, ES, DPSO and fuzzy-adaptive PSO

when applied to the benchmark functions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

42

Craziness

To avoid premature convergence, Kennedy and Eberhart [1995] introduced the use of

a craziness operator with PSO. However, they concluded that this operator may not be

necessay. More recently, Venter and Sobieszczanski-Sobieski [2002] reintroduced the

craziness operator to PSO. In each iteration, a few particles far from the center of the

swarm are selected. The positions of these particles are then randomly changed while

their velocities are initialized to the cognitive velocity component, i.e.

))()()((1)(1,1 txtytrctv ji,ji,jji, −=+ (2.24)

According to Venter and Sobieszczanski-Sobieski [2002], the proposed craziness

operator does not seem to have a big influence on the performance of PSO.

The LifeCycle Model

A self-adaptive heuristic search algorithm, called LifeCycle, was proposed by Krink

and Løvbjerg [2002]. LifeCycle is a hybrid approach combing PSO, GA and Hill-

Climbing approaches. The motivation for LifeCycle is to gain the benefits of PSO,

GA and Hill-Climbing in one algorithm. In LifeCycle, the individuals (representing

potential solutions) start as PSO particles, then depending on their performance (in

searching for solutions) can change into GA individuals, or Hill-Climbers. Then, they

can return back to particles. This process is repeated until convergence. The LifeCycle

was compared with PSO, GA and Hill-Climbing [Krink, and Løvbjerg 2002] and has

generally shown good performance when applied to the benchmark problems.

However, PSO performed better than (or comparable to) the LifeCycle in three out of

five benchmark problems. Another hybrid approach proposed by Veeramachaneni et

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

43

al. [2003] combining PSO and GA has already been discussed in Section 2.6.5. From

the experimental results of Krink and Løvbjerg [2002] and Veeramachaneni et al.

[2003], it can be observed that the original PSO performed well compared to their

more complicated hybrid approaches.

Multi-Swarm (or subpopulation)

The idea of using several swarms instead of one swarm was applied to PSO by

Løvberg et al. [2001] and Van den Bergh and Engelbrecht [2001]. The approach

proposed by Løvberg et al. [2001] is an extension of PSO with the breeding operator

discussed above. The idea is to divide the swarm into several swarms. Each swarm

has its own global best particles. The only interaction between the swarms occurs

when the breeding selects two particles to mate from different swarms. The results in

Løvberg et al. [2001] showed that this approach did not improve the performance of

PSO. The expected reasons are [Jensen and Kristensen 2002]:

• The authors split a swarm of 20 particles into six different swarms. Hence,

each swarm contains a few particles. Swarms with few particles have little

diversity and therefore little exploration power.

• No action has been taken to prevent swarms from being too similar to each

other.

The above problems were addressed by Jensen and Kristensen [2002]. The modified

approach works by using two swarms (each with a size of 20 particles) and keeping

them away from each other either by randomly spreading the swarm (with the worst

performance) over the search space or by adding a small mutation to the positions of

the particles in this swarm. The approach using the mutation technique generally

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

44

performed better than PSO when applied to the benchmark problems [Jensen and

Kristensen 2002]. However, one drawback of this approach is the fact that the

decision of whether two swarms are too close to each other is very problem dependent

[Jensen and Kristensen 2002].

Self-Organized Criticality (SOC PSO)

In order to increase the population diversity to avoid premature convergence, Løvberg

and Krink [2002] extended PSO with Self Organized Criticality (SOC). A measure,

called criticality, of how close particles are to each other is used to relocate the

particles and thus increase the diversity of the swarm. A particle with a high criticality

disperses its criticality by increasing the criticality of a user-specified number of

particles, CL, in its neighborhood by 1. Then, the particle reduces its own criticality

value by CL. The particle then relocates itself. Two types of relocation were

investigated: the first re-initializes the particle, while the second pushes the particle

with high criticality a little further in the search space. According to Løvberg and

Krink [2002], the first relocation approach produced better results when applied to the

tested functions. SOC PSO outperformed PSO in one case out of the four cases used

in the experiments. However, adding a tenth of the criticality value of a particle to its

own inertia (w was set to 0.2) results in a significant improvement of the SOC PSO

compared to PSO [Løvberg and Krink 2002].

Fitness-Distance Ratio based PSO (FDR-PSO)

Recently, Veeramachaneni et al. [2003] proposed a major modification to the way

PSO operates by adding a new term to the velocity update equation. The new term

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

45

allows each particle to move towards a particle in its neighborhood that has a better

personal best position. The modified velocity update equation is defined as:

))()(())()(())()(()(1)(321 txtytxtŷtxtytwvtv ji,j,ji,jji,ji,ji,ji, −+−+−+=+ ηψψψ (2.25)

where 1ψ , 2ψ and 3ψ are user-specified parameters and each)(ty j,η is chosen by

maximizing

)()(
))(())((

txty
tftf

ji,jη,

i

−

− ηyx
 (2.26)

where |.| represents the absolute value.

According to Veeramachaneni et al. [2003], FDR-PSO decreases the

possibility of premature convergence and thus is less likely to be trapped in local

optima. In addition, FDR-PSO (using 121 ==ψψ and 23 =ψ) outperformed PSO

and several other variations of PSO, namely, ARPSO, DPSO, SOC PSO and Multi

Swarm PSO [Løvberg et al. 2001], in different tested benchmark problems

[Veeramachaneni et al. 2003].

2.7 Ant Systems

Another population-based stochastic approach is Ant Systems. Ant Systems were first

introduced by Dorigo [1992] and Dorigo et al. [1991] to solve some difficult

combinatorial optimization problems [Dorigo et al. 1999]. Ant systems were inspired

by the observation of real ant colonies. In real ant colonies, ants communicate with

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

46

each other indirectly through depositing a chemical substance, called pheromone.

Ants use, for example, pheromones to find the shortest path to food. This indirect way

of communication via pheromones is called stigmergy [Dorigo et al. 1999].

 Using Ant Colony Optimization (ACO), a finite size colony of artificial ants

cooperate with each other via stigmergy to find quality solutions to optimization

problems. Good solutions result from the cooperation of the artificial ants. ACO was

applied to a wide range of optimization problems such as the traveling salesman

problem, and routing and load balancing in packet switched networks with

encouraging results [Dorigo et al. 1999]. More details about Ant Systems and their

applications can be found in Bonabeau et al. [1999] and Dorigo and Di Caro [1999].

Ant systems and their applications are outside the scope of this thesis.

2.8 Conclusions

This chapter provided a short overview of optimization and optimization methods

with a special emphasis on PSO. From the discussed methods, PSO (and GA for

comparison purposes) is used in this thesis to optimize a set of problems in the field of

pattern recognition and image processing. These problems are introduced in the next

chapter.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

47

Chapter 3

Problem Definition

This chapter reviews the problems addressed in this thesis in sufficient detail. First the

clustering problem is defined and different clustering concepts and approaches are discussed.

This is followed by defining image segmentation in addition to presenting various image

segmentation methods. A survey of color image quantization and approaches to quantization

are then presented. This is followed by a brief introduction to spectral unmixing.

3.1 The Clustering Problem

Data clustering is the process of identifying natural groupings or clusters within

multidimensional data based on some similarity measure (e.g. Euclidean distance)

[Jain et al. 1999; Jain et al. 2000]. It is an important process in pattern recognition and

machine learning [Hamerly and Elkan 2002]. Furthermore, data clustering is a central

process in Artificial Intelligence (AI) [Hamerly 2003]. Clustering algorithms are used

in many applications, such as image segmentation [Coleman and Andrews 1979; Jain

and Dubes 1988; Turi 2001], vector and color image quantization [Kaukoranta et al.

1998; Baek et al. 1998; Xiang 1997], data mining [Judd et al. 1998], compression

[Abbas and Fahmy 1994], machine learning [Carpineto and Romano 1996], etc. A

cluster is usually identified by a cluster center (or centroid) [Lee and Antonsson

2000]. Data clustering is a difficult problem in unsupervised pattern recognition as the

clusters in data may have different shapes and sizes [Jain et al. 2000].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

48

3.1.1 Definitions

The following terms are used in this thesis:

• A pattern (or feature vector), z, is a single object or data point used by the

clustering algorithm [Jain et al. 1999].

• A feature (or attribute) is an individual component of a pattern [Jain et al.

1999].

• A cluster is a set of similar patterns, and patterns from different clusters are

not similar [Everitt 1974].

• Hard (or Crisp) clustering algorithms assign each pattern to one and only one

cluster.

• Fuzzy clustering algorithms assign each pattern to each cluster with some

degree of membership.

• A distance measure is a metric used to evaluate the similarity of patterns [Jain

et al. 1999].

The clustering problem can be formally defined as follows (Veenman et al. 2003):

Given a data set }{ 21 pNp ,,,,, zzzzZ KK= where zp is a pattern in the Nd-dimensional

feature space, and Np is the number of patterns in Z, then the clustering of Z is the

partitioning of Z into K clusters {C1, C2,…,CK} satisfying the following conditions:

• Each pattern should be assigned to a cluster, i.e.

ZC =∪ = k
K
k 1

• Each cluster has at least one pattern assigned to it, i.e.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

49

K,,kk K1 , =≠ φC

• Each pattern is assigned to one and only one cluster (in case of hard clustering

only), i.e.

kkkkkk ≠=∩ whereφCC

3.1.2 Similarity Measures

As previously mentioned, clustering is the process of identifying natural groupings or

clusters within multidimensional data based on some similarity measure. Hence,

similarity measures are fundamental components in most clustering algorithms [Jain

et al. 1999].

The most popular way to evaluate a similarity measure is the use of distance

measures. The most widely used distance measure is the Euclidean distance defined as

wu

N

j
jw,ju,wu

d

zz,d zzzz −=−= ∑
=1

2)()((3.1)

Euclidean distance is a special case (when α = 2) of the Minkowski metric [Jain et al.

1999] defined as

αααα
wu

/
N

j
jw,ju,wu

d

zz,d zzzz −=−= ∑
=

1

1

))(()((3.2)

When α = 1, the measure is referred to as the Manhattan distance [Hamerly 2003].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

50

Clustering data of high dimensionality using the Minkowski metric is usually

not efficient because the distance between the patterns increases with increase in

dimensionality. Hence, the concepts of near and far become weaker [Hamerly 2003].

Furthermore, for the Minkowski metric, the largest-scaled feature tends to dominate

the other features. This can be solved by normalizing the features to a common range

[Jain et al. 1999]. One way to do this is by using the cosine distance (or vector dot

product) which is the sum of the product of each component from two vectors defined

as

wu

N

j
jw,ju,

wu

d

zz
,

zz
zz

 1
∑
==>< (3.3)

where >< wu ,zz ∈ [-1,1].

The cosine distance is actually not a distance but rather a similarity metric. In

other words, the cosine distance measures the difference in the angle between two

vectors not the difference in the magnitude between two vectors. The cosine distance

is suitable for clustering data of high dimensionality [Hamerly 2003].

Another distance measure is the Mahalanobis distance defined as

T1
M)()()(wuwuwu ,d zzzzzz −Σ−= − (3.4)

where Σ is the covariance matrix of the patterns. The Mahalanobis distance gives

different features different weights based on their variances and pairwise linear

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

51

correlations. Thus, this metric implicitly assumes that the densities of the classes are

multivariate Gaussian [Jain et al. 1999].

3.1.3 Clustering Techniques

Most clustering algorithms are based on two popular techniques known as

hierarchical and partitional clustering [Frigui and Krishnapuram 1999; Leung et al.

2000]. In the following, an overview of both techniques is presented with an elaborate

discussion of popular hierarchical and partitional clustering algorithms.

3.1.3.1 Hierarchical Clustering Techniques

Algorithms in this category generate a cluster tree (or dendrogram) by using heuristic

splitting or merging techniques [Hamerly 2003]. A cluster tree is defined as "a tree

showing a sequence of clustering with each clustering being a partition of the data set"

[Leung et al. 2000]. Algorithms that use splitting to generate the cluster tree are called

divisive. On the other hand, the more popular algorithms that use merging to generate

the cluster tree are called agglomerative. Divisive hierarchical algorithms start with

all the patterns assigned to a single cluster. Then, splitting is applied to a cluster in

each stage until each cluster consists of one pattern. Contrary to divisive hierarchical

algorithms, agglomerative hierarchical algorithms start with each pattern assigned to

one cluster. Then, the two most similar clusters are merged together. This step is

repeated until all the patterns are assigned to a single cluster [Turi 2001]. Several

agglomerative hierarchical algorithms were proposed in the literature which differ in

the way that the two most similar clusters are calculated. The two most popular

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

52

agglomerative hierarchical algorithms are the single link [Sneath and Sokal 1973] and

complete link [Anderberg 1973] algorithms. Single link algorithms merge the clusters

whose distance between their closest patterns is the smallest. Complete link

algorithms, on the other hand, merge the clusters whose distance between their most

distant patterns is the smallest [Turi 2001]. In general, complete link algorithms

generate compact clusters while single link algorithms generate elongated clusters.

Thus, complete link algorithms are generally more useful than single link algorithms

[Jain et al. 1999]. Another less popular agglomerative hierarchical algorithm is the

centroid method [Anderberg 1973]. The centroid algorithm merges the clusters whose

distance between their centroids is the smallest. One disadvantage of the centroid

algorithm is that the characteristic of a very small cluster is lost when merged with a

very large cluster [Turi 2001]. More details about traditional hierarchical clustering

techniques can be found in Everitt [1974].

 Recently, a hierarchical clustering approach to simulate the human visual

system by modeling the blurring effect of lateral retinal interconnections based on

scale space theory has been proposed by Leung et al. [2000]. The following paragraph

provides the reader with a good idea about this approach as described by Leung et al.

[2000]:

"In this approach, a data set is considered as an image with each light

point located at a datum position. As we blur this image, smaller light

blobs merge into larger ones until the whole image becomes one light blob

at a low level of resolution. By identifying each blob with a cluster, the

blurring process generates a family of clustering along the hierarchy."

According to Leung et al. [2000], this approach has several advantages, including:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

53

• it is not sensitive to initialization,

• it is robust in the presence of noise in the data set, and

• it generates clustering that is similar to that perceived by human eyes.

In general, hierarchical clustering techniques have the following advantages [Frigui

and Krishnapuram 1999]:

• the number of clusters need not to be specified a priori, and

• they are independent of the initial conditions.

However, hierarchical clustering techniques generally suffer from the following

drawbacks:

• They are computationally expensive (time complexity is)logO(2
pp NN and

space complexity is)O(2
pN [Turi 2001]). Hence, they are not suitable for very

large data sets.

• They are static, i.e. patterns assigned to a cluster cannot move to another

cluster.

• They may fail to separate overlapping clusters due to a lack of information

about the global shape or size of the clusters.

3.1.3.2 Partitional Clustering Techniques

Partitional clustering algorithms divide the data set into a specified number of

clusters. These algorithms try to minimize certain criteria (e.g. a square error function)

and can therefore be treated as optimization problems. However, these optimization

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

54

problems are generally NP-hard and combinatorial [Leung et al. 2000]. The

advantages of hierarchical algorithms are the disadvantages of the partitional

algorithms and vice versa. Because of their advantages, partitional clustering

techniques are more popular than hierarchical techniques in pattern recognition [Jain

et al. 2000], hence, this thesis concentrates on partitional techniques.

 Partitional clustering algorithms are generally iterative algorithms that

converge to local optima [Hamerly and Elkan 2002]. Employing the general form of

iterative clustering used by Hamerly and Elkan [2002], the steps of an iterative

clustering algorithm are:

1. Randomly initialize the K cluster centroids

2. Repeat

 (a) For each pattern, zp, in the data set do

 Compute its membership) |(pku zm to each centroid mk and its weight w(zp)

 endloop

 (b) Recalculate the K cluster centroids, using

∑

∑

∀

∀=

p

p

ppk

pppk

k wu

wu

z

z

zzm

zzzm
m

)() |(

)() |(
 (3.5)

 until a stopping criterion is satisfied.

In the above algorithm,) |(pku zm is the membership function which quantifies the

membership of pattern zp to cluster k. The membership function,) |(pku zm , must

satisfy the following constraints:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

55

1)) |(pku zm ≥ 0, p = 1,…, Np and k = 1,…, K

2) 1) |(
1

=∑
=

K

k
pku zm , p = 1,…, Np

Crisp clustering algorithms use a hard membership function (i.e.) |(pku zm ∈{0,1}),

while fuzzy clustering algorithms use a soft member function (i.e.) |(pku zm ∈[0,1])

[Hamerly and Elkan 2002].

The weight function, w(zp), in equation (3.5) defines how much influence

pattern zp has in recomputing the centroids in the next iteration, where 0)(>pw z

[Hamerly and Elkan 2002]. The weight function was proposed by Zhang [2000].

Different stopping criteria can be used in an iterative clustering algorithm, for

example:

• stop when the change in centroid values are smaller than a user-specified

value,

• stop when the quantization error is small enough, or

• stop when a maximum number of iterations has been exceeded.

In the following, popular iterative clustering algorithms are described by defining the

membership and weight functions in equation (3.5).

The K-means Algorithm

The most widely used partitional algorithm is the iterative K-means approach [Forgy

1965]. The objective function that the K-means optimizes is

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

56

∑ ∑
= ∈∀

− =
K

k
kp

kp

dJ
1

2
meansK)(

Cz
m,z (3.6)

Hence, the K-means algorithm minimizes the intra-cluster distance [Hamerly and

Elkan 2002]. The K-means algorithm starts with K centroids (initial values for the

centroids are randomly selected or derived from a priori information). Then, each

pattern in the data set is assigned to the closest cluster (i.e. closest centroid). Finally,

the centroids are recalculated according to the associated patterns. This process is

repeated until convergence is achieved.

The membership and weight functions for K-means are defined as

{ }

 =

=
otherwise 0

)(min arg)(if 1
)(

22
kpkkp

pk
dd

|u
m,zm,z

zm (3.7)

1)(=pzw (3.8)

Hence, K-means has a hard membership function. Furthermore, K-means has a

constant weight function, thus, all patterns have equal importance [Hamerly and Elkan

2002].

The K-means algorithm has the following main advantages [Turi 2001]:

• it is very easy to implement, and

• its time complexity is O(Np) making it suitable for very large data sets.

However, the K-means algorithm has the following drawbacks [Davies 1997]:

• the algorithm is data-dependent,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

57

• it is a greedy algorithm that depends on the initial conditions, which may

cause the algorithm to converge to suboptimal solutions, and

• the user needs to specify the number of clusters in advance.

The K-medoids algorithm is similar to K-means with one major difference, namely,

the centroids are taken from the data itself [Hamerly 2003]. The objective of K-

medoids is to find the most centrally located patterns within the clusters [Halkidi et al.

2001]. These patterns are called medoids. Finding a single medoid requires)O(2
pN .

Hence, K-medoids is not suitable for moderately large data sets.

The Fuzzy C-means Algorithm

A fuzzy version of K-means, called Fuzzy C-means (FCM) (sometimes called fuzzy

K-means), was proposed by Bezdek [1980; 1981]. FCM is based on a fuzzy extension

of the least-square error criterion. The advantage of FCM over K-means is that FCM

assigns each pattern to each cluster with some degree of membership (i.e. fuzzy

clustering). This is more suitable for real applications where there are some overlaps

between the clusters in the data set. The objective function that the FCM optimizes is

∑∑
= =

=
K

k

N

p
kp

q
pk,

p

duJ
1 1

2
FCM)(m,z (3.9)

where q is the fuzziness exponent, with q ≥ 1. Increasing the value of q will make the

algorithm more fuzzy; uk,p is the membership value for the pth pattern in the kth cluster

satisfying the following constraints:

1) 0≥pk,u , p = 1,…, Np and k = 1,…, K

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

58

2) 1
1

=∑
=

K

k
pk,u , p = 1,…, Np

The membership and weight functions for FCM are defined as [Hamerly and Elkan

2002]

∑
=

−−

−−

−

−
= K

k

q/

kp

q/

kp
pk |u

1

)1(2

)1(2

)(
mz

mz
zm (3.10)

1)(=pzw (3.11)

Hence, FCM has a soft membership function and a constant weight function. In

general, FCM performs better than K-means [Hamerly 2003] and it is less affected by

the presence of uncertainty in the data [Liew et al. 2000]. However, as in K-means it

requires the user to specify the number of clusters in the data set. In addition, it may

converge to local optima [Jain et al. 1999].

 Krishnapuram and Keller [1993; 1996] proposed a possibilistic clustering

algorithm, called possibilistic C-means. Possibilistic clustering is similar to fuzzy

clustering; the main difference is that in possibilistic clustering the membership values

may not sum to one [Turi 2001]. Possibilistic C-means works well in the presence of

noise in the data set. However, it has several drawbacks, namely [Turi 2001],

• it is likely to generate coincident clusters,

• it requires the user to specify the number of clusters in advance,

• it converges to local optima, and

• it depends on initial conditions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

59

The Gaussian Expectation-Maximization Algorithm

Another popular clustering algorithm is the Expectation-Maximization (EM)

algorithm [McLachlan and Krishnan 1997; Rendner and Walker 1984; Bishop 1995].

EM is used for parameter estimation in the presence of some unknown data [Hamerly

2003]. EM partitions the data set into clusters by determining a mixture of Gaussians

fitting the data set. Each Gaussian has a mean and covariance matrix [Alldrin et al.

2003]. The objective function that the EM optimizes as defined by Hamerly and Elkan

[2002] is

∑ ∑
= =

−=
pN

p

K

k
kkp p|pJ

1 1
EM))()(log(mmz (3.12)

where)(kp |p mz is the probability of pz given that it is generated by a Gaussian

distribution with centroid km , and)(kp m is the prior probability of centroid km .

The membership and weight functions for EM are defined as [Hamerly and

Elkan 2002]

)(
)()(

)(
p

kkp
pk p

p|p
|u

z
mmz

zm = (3.13)

1)(=pzw (3.14)

Hence, EM has a soft membership function and a constant weight function. The

algorithm starts with an initial estimate of the parameters. Then, an expectation step is

applied where the known data values are used to compute the expected values of the

unknown data [Hamerly 2003]. This is followed by a maximization step where the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

60

known and expected values of the data are used to generate a new estimate of the

parameters. The expectation and maximization steps are repeated until convergence.

 Results from Veenman et al. [2002] and Hamerly [2003] showed that K-

means performs comparably to EM. Furthermore, Aldrin et al. [2003] stated that EM

fails on high-dimensional data sets due to numerical precision problems. They also

observed that Gaussians often collapsed to delta functions [Alldrin et al. 2003]. In

addition, EM depends on the initial estimate of the parameters [Hamerly 2003; Turi

2001] and it requires the user to specify the number of clusters in advance. Moreover,

EM assumes that the density of each cluster is Gaussian which may not always be true

[Ng et al. 2001].

The K-harmonic Means Algorithm

Recently, Zhang and colleagues [1999; 2000] proposed a novel algorithm called K-

harmonic means (KHM), with promising results. In KHM, the harmonic mean of the

distance of each cluster center to every pattern is computed. The cluster centroids are

then updated accordingly. The objective function that the KHM optimizes is

∑
∑=

= −

=
pN

p
K

k kp

KJ
1

1

KHM 1
α

mz

 (3.15)

where α is a user-specified parameter, typically α ≥ 2.

The membership and weight functions for KHM are [Hamerly and Elkan

2002]

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

61

∑
=

−−

−−

−

−
= K

k
kp

kp
pk |u

1

2

2

)(
α

α

mz

mz
zm (3.16)

2

1

1

2

)(

−

−
=

∑

∑

=

−

=

−−

K

k
kp

K

k
kp

pw
α

α

mz

mz
z (3.17)

Hence, KHM has a soft membership function and a varying weight function. KHM

assigns higher weights for patterns that are far from all the centroids to help the

centroids in covering the data [Hamerly and Elkan 2002].

Contrary to K-means, KHM is less sensitive to initial conditions and does not

have the problem of collapsing Gaussians exhibited by EM [Alldrin et al. 2003].

Experiments conducted by Zhang et al. [1999], Zhang [2000] and Hamerly and Elkan

[2002] showed that KHM outperformed K-means, FCM (according to Hamerly and

Elkan [2002]) and EM.

Hybrid 2

Hamerly and Elkan [2002] proposed a variation of KHM, called Hybrid 2 (H2), which

uses the soft membership function of KHM (i.e. equation (3.16)) and the constant

weight function of K-means (i.e. equation (3.8)). Hamerly and Elkan [2002] showed

that H2 outperformed K-means, FCM and EM. However, KHM, in general,

performed slightly better than H2.

K-means, FCM, EM, KHM and H2 are linear time algorithms (i.e. their time

complexity is O(Np)) making them suitable for very large data sets. According to

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

62

Hamerly [2003], FCM, KHM and H2 - all use soft membership functions - are the

best available clustering algorithms.

Non-iterative Partitional Algorithms

Another category of unsupervised partitional algorithms includes the non-iterative

algorithms. The most widely used non-iterative algorithm is MacQueen's K-means

algorithm [MacQueen 1967]. This algorithm works in two phases: the first phase finds

the centroids of the clusters, and the second clusters the patterns. Competitive

Learning (CL) updates the centroids sequentially by moving the closest centroid

toward the pattern being classified [Scheunders, A Comparison 1997]. These

algorithms suffer the drawback of being dependent on the order in which the data

points are presented. To overcome this problem, data points are presented in a random

order [Davies 1997]. In general, iterative algorithms are more effective than non-

iterative algorithms, since they are less dependent on the order in which data points

are presented.

3.1.3.3 Other Clustering Techniques

Another type of clustering algorithms includes the Nearest Neighbor clustering

algorithm proposed by Lu and Fu [1978]. For each unclassified pattern, the algorithm

finds the nearest classified pattern whose distance from the unclassified pattern is less

than a pre-specified threshold. The unclassified pattern is then assigned to the cluster

of the classified pattern. This process is repeated until all the patterns become

classified or no further assignments can occur [Jain et al. 1999].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

63

Recently, a new type of clustering algorithms called spectral clustering algorithms

[Ng et al. 2001; Bach and Jordan 2003] has been proposed by computer vision

researchers and graph theorists. Spectral clustering is based on spectral graph theory

[Chung 1997] where a graph representing the data (the graph is analogous to a matrix

of the distance between the patterns in the data set) is searched by the spectral

clustering algorithm for globally optimal cuts [Hamerly 2003]. One major advantage

of spectral clustering is that it can generate arbitrary-shaped clusters. However,

spectral clustering suffers from two major drawbacks [Hamerly 2003]:

• It is computationally expensive (its time complexity is)O(23
pdp NNN +).

Hence, they are not suitable for moderately large data sets.

• It requires the user to specify a kernel width parameter which has a profound

effect on the result of the spectral clustering algorithm. Choosing a good value

for this parameter is usually difficult.

The mean shift algorithm [Comaniciu and Meer 2002] also automatically finds the

number of clusters in a data set and can work with arbitrary shaped clusters. The mean

shift algorithm starts with a number of kernel estimators in the input space. These

estimators are then repeatedly moved towards areas of higher density. When all the

kernels reached stability, all the kernels that are near to each other are grouped

together. The data is then segmented based on where each kernel started.

The mean shift algorithm has the following problems, [Hamerly 2003]:

• it has to find a way to group kernels and patterns, and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

64

• as in spectral clustering, the mean shift algorithm requires the user to specify a

kernel width parameter which has a profound effect on the result of the

algorithm.

3.1.4 Clustering Validation Techniques

The main objective of cluster validation is to evaluate clustering results in order to

find the best partitiong of a data set [Halkidi et al. 2001]. Hence, cluster validity

approaches are used to quantitatively evaluate the result of a clustering algorithm

[Halkidi et al. 2001]. These approaches have representative indices, called validity

indices. The traditional approach to determine the "optimum" number of clusters is to

run the algorithm repetitively using different input values and to select the partitioning

of data resulting in the best validity measure [Halkidi and Vazirgiannis 2001].

 Two criteria that have been widely considered sufficient in measuring the

quality of data partitioning, are [Halkidi et al. 2001]

• Compactness: patterns in one cluster should be similar to each other and

different from patterns in other clusters. The variance of patterns in a cluster

gives an indication of compactness.

• Separation: clusters should be well-separated from each other. The Euclidean

distance between cluster centroids gives an indication of cluster separation.

There are several validity indices; a thorough survey of validity indices can be found

in Halkidi et al. [2001]. In the following, some representative indices are discussed.

Dunn [1974] proposed a well known cluster validity index that identifies

compact and well separated clusters. The main goal of Dunn's index is to maximize

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

65

inter-cluster distances (i.e. separation) while minimizing intra-cluster distances (i.e.

increase compactness). The Dunn index is defined as

=

=

+==
)diam(max

),(dist
minminD

aK,...,a

kkk

K,...,kkkK,...,k
C

CC

1

11
 (3.18)

where),(dist kkk CC is the dissimilarity function between two clusters Ck and Ckk

defined as

),(dmin),(dist
kkk ,

kkk wuCC
CwCu ∈∈

= ,

where d(u, w) is the Euclidean distance between u and v; diam(C) is the diameter of a

cluster, defined as

),(d max)diam(
,

wuC
Cwu

∈

=

An "optimal" value of K is the one that maximizes the Dunn's index. Dunn's

index suffers from the following problems [Halkidi et al. 2001]:

• it is computationally expensive, and

• it is sensitive to the presence of noise.

Several Dunn-like indices were proposed in Pal and Biswas [1997] to reduce the

sensitivity to the presence of noise.

Another well known index, proposed by Davies and Bouldin [1979],

minimizes the average similarity between each cluster and the one most similar to it.

The Davies and Bouldin index is defined as

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

66

 +
= ∑

= ≠
=)(

)()(1
1 1

kkk

kkk
K

k kkk
K,...,kk ,dist

diamdiam
max

K
DB

CC
CC

 (3.19)

An "optimal" value of K is the one that minimizes the DB index.

 Recently, Turi [2001] proposed an index incorporating a multiplier function

(to penalize the selection of a small number of clusters) to the ratio between intra-

cluster and inter-cluster distances, with some promising results. The index is defined

as

inter
intra)1)1,2(N(×+×= cV (3.20)

where c is a user specified parameter and N(2,1) is a Gaussian distribution with mean

2 and standard deviation of 1. The "intra" term is the average of all the distances

between each data point and its cluster centroid, defined as

∑ ∑
= ∈∀

−=
K

k
k

p k
N 1

21intra
Cu

mu

This term is used to measure the compactness of the clusters. The "inter" term is the

minimum distance between the cluster centroids, defined as

.K,...,kkkK,...,kmin kkk 1 and 11 },{inter 2 +=−=∀−= mm

This term is used to measure the separation of the clusters. An "optimal" value of K is

the one that minimizes the V index.

 According to Turi [2001], this index performed better than both Dunn's index

and the index of Davies and Bouldin on the tested cases.

Two recent validity indices are S_Dbw [Halkidi and Vazirgiannis 2001] and

CDbw [Halkidi and Vazirgiannis 2002]. S_Dbw measures the compactness of a data

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

67

set by the cluster variance, whereas separation is measured by the density between

clusters. The S_Dbw index is defined as

)()(KDens_bwKscatS_Dbw += (3.21)

The first term is the average scattering of the clusters which is a measure of

compactness of the clusters, defined as

∑
=

=
K

k
kK

scat(K)
1

)()(1 ZC σσ

where)(kCσ is the variance of cluster Ck and)(Zσ is the variance of data set Z; ||z||

is defined as ||z|| = (zTz)1/2, where z is a vector.

The second term in equation (3.21) evaluates the density of the area between

the two clusters in relation to the density of the two clusters. Thus, the second term is

a measure of the separation of the clusters, defined as

{ }∑ ∑
=

≠
=

−
=

K

k

K

kkk
kk kkk

kkk,

density,densitymax
density

1KK
KDens_bw

1 1)()(
)(

)(
1)(

CC
b

where bk,kk is the middle point of the line segment defined by mk and mkk. The term

density(b) is defined as

∑
=

=
kkk,n

ll
ll ,fdensity

1
)()(bzb

where nk,kk is the total number of patterns in clusters Ck and Ckk (i.e. nk,kk= nk + nkk).

The function f(z,b) is defined as

 >

=
otherwise 1

)(if 0
)(

σbz
bz

,d
,f

where

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

68

∑
=

=
K

k
kK 1
)(1 Cσσ

An "optimal" value of K is the one that minimizes the S_Dbw index. Halkidi

and Vazirgiannis [2001] showed that, in tested cases, S_Dbw successfully found the

"optimal" number of clusters whereas other well-known indices often failed to do so.

However, S_Dbw does not work properly for arbitrary shaped clusters.

To address this problem, Halkidi and Vazirgiannis [2002] proposed a multi-

representative validity index, CDbw, in which each cluster is represented by a user-

specified number of points, instead of one representative as is done in S_Dbw.

Furthermore, CDbw uses intra-cluster density to measure the compactness of a data

set, and uses the density between clusters to measure their separation.

More recently, Veenman et al. [2002; 2003] proposed a validity index that

minimizes the intra-cluster variability while constraining the intra-cluster variability

of the union of the two clusters. The sum of squared error is used to minimize the

intra-cluster variability while a minimum variance for the union of two clusters is

used to implement the joint intra-cluster variability. The index is defined as

∑
=

=
K

k
kkVarnminIV

1

)(C (3.22)

where nk is the number of patterns in cluster Ck and

21)(∑
∈

−=
kpz

kp
kn

Var
C

k mzC

such that

kkk,,Var kkkkkk ≠∀≥∪ CCCC ,)(2
maxσ

where 2
maxσ is a user-specified parameter. This parameter has a profound effect on the

final result.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

69

The above validity indices are suitable for hard clustering. Validity indices

have been developed for fuzzy clustering. The interested reader is referred to Halkidi

et al. [2001] for more information.

3.1.5 Determining the Number of Clusters

Most clustering algorithms require the number of clusters to be specified in advance

[Lee and Antonsson 2000; Hamerly and Elkan 2003]. Finding the "optimum" number

of clusters in a data set is usually a challenge since it requires a priori knowledge,

and/or ground truth about the data, which is not always available. The problem of

finding the optimum number of clusters in a data set has been the subject of several

research efforts [Halkidi et al. 2001; Theodoridis and Koutroubas 1999], however,

despite the amount of research in this area, the outcome is still unsatisfactory

[Rosenberger and Chehdi 2000]. In the literature, many approaches to dynamically

find the number of clusters in a data set were proposed. In this section, several

dynamic clustering approaches are presented and discussed.

 ISODATA (Iterative Self-Organizing Data Analysis Technique), proposed by

Ball and Hall [1967], is an enhancement of the K-means algorithm (K-means is

sometimes referred to as basic ISODATA [Turi 2001]). ISODATA is an iterative

procedure that assigns each pattern to its closest centroids (as in K-means). However,

ISODATA has the ability to merge two clusters if the distance between their centroids

is below a user-specified threshold. Furthermore, ISODATA can split elongated

clusters into two clusters based on another user-specified threshold. Hence, a major

advantage of ISODATA compared to K-means is the ability to determine the number

of clusters in a data set. However, ISODATA requires the user to specify the values of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

70

several parameters (e.g. the merging and splitting thresholds). These parameters have

a profound effect on the performance of ISODATA making the result subjective [Turi

2001].

 Dynamic Optimal Cluster-seek (DYNOC) [Tou 1979] is a dynamic clustering

algorithm which is similar to ISODATA. DYNOC maximizes the ratio of the

minimum inter-cluster distance to the maximum intra-cluster distance. This is done by

an iterative procedure with the added capability of splitting and merging. However, as

in ISODATA, DYNOC requires the user to specify a value for a parameter that

determines whether splitting is needed [Turi 2001].

 Snob [Wallace 1984; Wallace and Dowe 1994] uses various methods to assign

objects to clusters in an intelligent manner [Turi 2001]. After each assignment, a

means of model selection called the Wallace Information Measure (also known as the

Minimum Message Length) [Wallace and Boulton 1968; Oliver and Hand 1994] is

calculated and based on this calculation the assignment is accepted or rejected. Snob

can split/merge and move points between clusters, thereby allowing it to determine

the number of clusters in a data set.

 Bischof et al. [1999] proposed an algorithm based on K-means which uses a

similar concept to the Wallace Information Measure called the Minimum Description

Length [Rissanen 1978] framework. The algorithm starts with a large value for K and

proceeds to remove centroids when this removal results in a reduction of the

description length. K-means is used between the steps that reduce K.

Modified Linde-Buzo-Gray (MLBG), proposed by Rosenberger and Chehdi

[2000], improves K-means by automatically finding the number of clusters in data set

by using intermediate results. MLBG is an iterative procedure that starts with K

clusters. In each iteration, a cluster, Ck, maximizing an intra-cluster distance measure

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

71

is chosen for splitting. Two centroids are generated from the splitting process. The

first centroid, m1, is initialized to the centroid of the original cluster, Ck. The second

cluster centroid, m2, is chosen to be the pattern in Ck which is the most distant from

m1. K-means is then applied on the new K+1 centroids. The new set of centroids is

accepted if it satisfies an evaluation criterion based on a dispersion measure. This

process is repeated until no valid partition of the data can be obtained. One of the

main problems with MLBG is that it requires the user to specify the values of four

parameters, which have a profound effect on the resultant number of clusters.

Pelleg and Moore [2000] proposed another K-means based algorithm, called

X-means that uses model selection. X-means starts by setting the number of clusters,

K, to be the minimum number of clusters in the data set (e.g. K = 1). Then, K-means

is applied on the K clusters. This is followed by a splitting process based on the

Bayesian Information Criterion (BIC) [Kass and Wasserman 1995] defined as

p
d N

NK
|l̂|BIC log

2
)1(

)()(
+

−= CZZC (3.23)

where)(CZ |l̂ is the log-likelihood of the data set Z according to model C. If the

splitting process improves the BIC score the resulting split is accepted, otherwise it is

rejected. Other scoring functions can also be used.

These two steps are repeated until a user-specified upper bound of K is reached.

X-means searches over the range of values of K and reports the value with the best

BIC score.

Recently, Huang [2002] proposed SYNERACT as an alternative approach to

ISODATA. SYNERACT combines K-means with hierarchical descending approaches

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

72

to overcome the drawbacks of K-means mentioned previously. Three concepts used

by SYNERACT are:

• a hyperplane to split up a cluster into two smaller clusters and compute their

centroids,

• iterative clustering to assign pixels into available clusters, and

• a binary tree to store clusters generated from the splitting process.

According to Huang [2002], SYNERACT is faster than and almost as accurate as

ISODATA. Furthermore, it does not require the number of clusters and initial location

of centroids to be specified in advance. However, SYNERACT requires the user to

specify the values of two parameters that affect the splitting process.

 Veenman et al. [2002] proposed a partitional clustering algorithm that finds

the number of clusters in a data set by minimizing the clustering validity index

defined in equation (3.22). This algorithm starts by initializing the number of clusters

equal to the number of patterns in the data set. Then, iteratively, the clusters are split

or merged according to a series of tests based on the validity index. According to

Veenman et al. [2002], the proposed approach performed better than both K-means

and EM algorithms. However, the approach suffers from the following drawbacks,

namely

• it is computationally expensive, and

• it requires the user to specify a parameter for the validity index (already

discussed in Section 3.1.4) which has a significant effect on the final results

(although the authors provide a method to help the user in finding a good

value for this parameter).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

73

More recently, Hamerly and Elkan [2003] proposed another approach based on K-

means, called G-means. G-means starts with a small value for K, and with each

iteration splits up the clusters whose data do not fit a Gaussian distribution. Between

each round of splitting, K-means is applied to the entire data set in order to refine the

current solution. According to Hamerly and Elkan [2003], G-means works better than

X-means, however, it works only for data having spherical and/or elliptical clusters.

G-means is not designed to work for arbitrary-shaped clusters [Hamerly 2003].

 Gath and Geva [1989] proposed an unsupervised fuzzy clustering algorithm

based on a combination of FCM and fuzzy maximum likelihood estimation. The

algorithm starts by initializing K to a user-specified lower bound of the number of

clusters in the data set (e.g. K = 1). A modified FCM (that uses an unsupervised

learning process to initialize the K centroids) is first applied to cluster the data. Using

the resulting centroids, a fuzzy maximum likelihood estimation algorithm is then

applied. The fuzzy maximum likelihood estimation algorithm uses an "exponential"

distance measure based on maximum likelihood estimation [Bezdek 1981] instead of

the Euclidean distance measure, because the exponential distance measure is more

suitable for hyper-ellipsoidal clusters. The quality of the resulting clusters is then

evaluated using a clustering validity index that is mainly based on a hyper-volume

criterion which measures the compactness of a cluster. K is then incremented and the

algorithm is repeated until a user-specified upper bound of K is reached. The value of

K resulting in the best value of the validity index is considered to be the "optimal"

number of clusters in the data set. Gath and Geva [1989] stated that their algorithm

works well in cases of large variability of cluster shapes. However, the algorithm

becomes more sensitive to local optima as the complexity increases. Furthermore,

because of the exponential function, floating point overflows may occur [Su 2002].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

74

 Lorette et al. [2000] proposed an algorithm based on fuzzy clustering to

dynamically determine the number of clusters in a data set. In this thesis, the proposed

algorithm is referred as the Unsupervised Fuzzy Clustering (UFC) algorithm. A new

objective function was proposed for this purpose, defined as

)log()(
11 1

2
UFC k

K

k
k

K

k

N

p
kp

q
pk, ppduJ

p

∑∑∑
== =

−= βm,z (3.24)

where q is the fuzziness exponent, uk,p is the membership value for the pth pattern in

the kth cluster, β is a parameter that decreases as the run progresses, and pk is the a

priori probability of cluster Ck defined as

∑
=

=
pN

p
pk,

p
k u

N
p

1

1 (3.25)

The first term of equation (3.24) is the objective function of FCM which is minimized

when each cluster consists of one pattern. The second term is an entropy term that is

minimized when all the patterns are assigned to one cluster. Lorette et al. [2000] use

this objective function to derive new update equations for the membership and

centroid parameters.

 The algorithm starts with a large number of clusters. Then, the membership

values and centroids are updated using the new update equations. This is followed by

applying equation (3.25) to update the a priori probabilities. If ε<kp then cluster k

is discarded; ε is a user-specified parameter. This procedure is repeated until

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

75

convergence. The drawback of this approach is that it requires the parameter ε to be

specified in advance. The performance of the algorithm is sensitive to the value of ε.

 Similar to UFC, Boujemaa [2000] proposed an algorithm, based on a

generalization of the competitive agglomeration clustering algorithm introduced by

Frigui and Krishnapuram [1997].

 The fuzzy algorithms discussed above modify the objective function of FCM.

In general, these approaches are sensitive to initialization and other parameters [Frigui

and Krishnapuram 1999]. Frigui and Krishnapuram [1999] proposed a robust

competitive clustering algorithm based on the process of competitive agglomeration.

The algorithm starts with a large number of small clusters. Then, during the execution

of the algorithm, adjacent clusters compete for patterns. Clusters losing the

competition will eventually disappear [Frigui and Krishnapuram 1999]. However, this

algorithm also requires the user to specify a parameter that has a significant effect on

the generated result.

3.1.6 Clustering using Self-Organizing Maps

Kohonen's Self Organizing Maps (SOM) [Kohonen 1995] can be used to

automatically find the number of clusters in a data set. The objective of SOM is to

find regularities in a data set without any external supervision [Pandya and Macy

1996]. SOM is a single-layered unsupervised artificial neural network where input

patterns are associated with output nodes via weights that are iteratively modified

until a stopping criterion is met [Jain et al. 1999]. SOM combines competitive

learning (in which different nodes in the Kohonen network compete to be the winner

when an input pattern is presented) with a topological structuring of nodes, such that

adjacent nodes tend to have similar weight vectors (this is done via lateral feedback)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

76

[Mehrotra et al. 1997; Pandya and Macy 1996]. A general pseudo-code of SOM

[Pandya and Macy 1996] is shown in Figure 3.1.

Let)(tη be the learning rate parameter and)(tw∆ be the neighborhood function

Randomly initialize the weight vectors, wk(0)

Initialize the learning rate (0)η and the neighborhood function (0)w∆

Repeat

 For each input pattern zp do

 Select the node whose weight vector is closest (in terms of Euclidean distance) to

 zp as the winning node

 Use competitive learning to train the weight vectors such that all the nodes within

 the neighborhood of the winning node are moved toward zp:

 ∆∈−+

=+
otherwise)(

)()]()[()(
)1(

t
tkttt

t
k

kpk
k w

wzw
w wη

 Endloop

 Linearly decrease)(tη and reduce)(tw∆

Until some convergence criteria are satisfied

Figure 3.1: General pseudo-code for SOM

In Figure 3.1,)(tη starts relatively large (e.g. close to 1) then linearly decreases until

it reaches a small user-specified value. The neighborhood function)(tw∆ defines the

neighborhood size surrounding the winning node. A large value of)(tw∆ is used at

the beginning of the training. This value is then reduced as the training progresses in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

77

order to get sharper clusters [Pandya and Macy 1996]. A typical neighborhood

arrangement is the rectangular lattice shown in Figure 3.2 [Pandya and Macy 1996].

Figure 3.2: Rectangular Lattice arrangement of neighborhoods

SOM suffers from the following drawbacks [Jain et al. 1999]:

• It depends on the initial conditions.

• Its performance is affected by the learning rate parameter and the

neighborhood function.

• It works well with hyper-spherical clusters only.

• It uses a fixed number of output nodes.

• It depends on the order in which the data points are presented. To overcome

this problem, the choice of data points can be randomized during each iteration

[Pandya and Macy 1996].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

78

3.1.7 Clustering using Stochastic Algorithms

Simulated annealing (discussed in Section 2.3) has been used for clustering [Klein and

Dubes 1989]. In general, a simulated annealing based clustering algorithm works as

shown in Figure 3.3 [Jain et al. 1999].

An initial partition P0 of the data set is randomly chosen

Repeat

 A neighbor of P0 is chosen

 If the new partition is better than P0 then

 move to the new partition

 Else

 move to the new partition with a probability that decreases as the algorithm

 progresses.

Until a stopping criterion is satisfied

Figure 3.3: General simulated annealing based clustering algorithm

One problem with simulated annealing is that it is very slow in finding an optimal

solution [Jain et al. 1999].

Tabu search (discussed in Section 2.3) has also been used for hard clustering

[Al-Sultan 1995] and fuzzy clustering [Delgado et al. 1997] with encouraging results.

A hybrid approach combining both K-means and tabu search that performs better than

both K-means and tabu search was proposed by Frnti et al. [1998]. Recently, Chu and

Roddick [2003] proposed a hybrid approach combining both tabu search and

simulated annealing that outperforms the hybrid proposed by Frnti et al. [1998].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

79

However, the performance of simulated annealing and tabu search depends on the

selection of several control parameters [Jain et al. 1999].

Most clustering approaches discussed so far perform local search to find a

solution to a clustering problem. Evolutionary algorithms (discussed in Section 2.4)

which perform global search have also been used for clustering [Jain et al. 1999].

Raghavan and Birchand [1979] used GAs to minimize the squared error of a

clustering solution. In this approach, each chromosome represents a partition of Np

patterns into K clusters. Hence, the size of each chromosome is Np. This

representation has a major drawback in that it increases the search space by a factor of

K!. The crossover operator may also result in inferior offspring [Jain et al. 1999].

 Babu and Murty [1993] proposed a hybrid approach combining K-means and

GAs that performed better than the GA. In this approach, a GA is only used to feed K-

means with good initial centroids [Jain et al. 1999].

 Recently, Maulik and Bandyopadhyay [2000] proposed a GA-based clustering

where each chromosome represents K centroids. Hence, a floating point

representation is used. The fitness function is defined as the inverse of the objective

function of K-means (refer to equation (3.6)). The GA-based clustering algorithm is

summarized in Figure 3.4.

 According to Maulik and Bandyopadhyay [2000], this approach outperformed

K-means on the tested cases. One drawback of this approach is that it requires the user

to specify the number of clusters in advance.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

80

1. Initialize each chromosome to contain K randomly chosen centroids from the

data set

2. For t = 1 to tmax

(a) For each chromosome i

(i) Assign each pattern to the cluster with the closest centroid

(ii) Recalculate the K cluster centroids of chromosome i as the means of their

patterns

(iii) Calculate the fitness of chromosome i

(b) Apply roulette wheel selection

(c) Apply single point crossover with probability pc

(d) Apply mutation with probability pm. The mutation operator is defined as

xxx)(γ+±= r

 where (0,1)~ Ur and γ is a user-specified parameter such that γ ∈(0,1)

Figure 3.4: General pseudo-code for GA-based clustering algorithm

Lee and Antonsson [2000] used an evolution strategy (ES) to dynamically cluster a

data set. The proposed ES implemented variable length individuals to search for both

the centroids and the number of clusters. Each individual represents a set of centroids.

The length of each individual is randomly chosen from a user-specified range of

cluster numbers. The centroids of each individual are then randomly initialized.

Mutation is applied to the individuals by adding/subtracting a Gaussian random

variable with zero mean and unit standard deviation. Two point crossover is also used

as a "length changing operator". A (10+60) ES selection is used where 10 is the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

81

number of parents and 60 is the number of offspring generated in each generation.

The best ten individuals from the set of parents and offspring are used for the next

generation. A modification of the mean square error is used as the fitness function,

defined as

∑ ∑
= ∈∀

+=
K

k C
kp

kp

dKJ
1

ES)(1
z

m,z (3.26)

The modification occurs by multiplying the mean square error by a constant

corresponding to the square root of the number of clusters. This constant is used to

penalize a large value of K. According to Lee and Antonsson [2000], the results are

promising. However, the proposed algorithm needs to be compared with other

dynamic clustering approaches and its performance needs to be investigated as the

dimension increases.

In general, evolutionary approaches have several advantages, namely [Jain et al.

1999]:

• they are global search approaches,

• they are suitable for parallel processing, and

• they can work with a discontinuous criterion function.

However, evolutionary approaches generally suffer from the following drawbacks

[Jain et al. 1999]:

• they require the user to specify the values of a set of parameters (e.g.

population size, pc, pm, etc.) for each specific problem, and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

82

• the execution time of EAs is significantly higher than the execution time of

other traditional clustering algorithms (e.g. K-means and FCM), especially

when applied to large data sets.

3.1.8 Unsupervised Image Classification

Image classification is the process of identifying groups of similar image primitives

[Puzicha et al. 2000]. These image primitives can be pixels, regions, line elements and

so on, depending on the problem encountered.

There are two main approaches to image classification: supervised and

unsupervised. In the supervised approach, the number and the numerical

characteristics (e.g. mean and variance) of the classes in the image are known in

advance (by the analyst) and used in the training step, which is followed by the

classification step. There are several popular supervised algorithms such as the

minimum-distance-to-mean, parallelepiped and the Gaussian maximum likelihood

classifiers [Lillesand and Kiefer 1994]. In the unsupervised approach the classes are

unknown and the approach starts by partitioning the image data into groups (or

clusters), according to a similarity measure, which can be compared with reference to

data by an analyst and used to segment the image.

Therefore, unsupervised classification is a special case of the general clustering

problem where the data set is an image (or a set of images) and the patterns are the

pixels of the image(s).

In general, the unsupervised approach has several advantages over the supervised

approach, namely [Davies 1997]

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

83

• For unsupervised approaches, there is no need for an analyst to specify in

advance all the classes in the image data set. The clustering algorithm

automatically finds distinct clusters, which dramatically reduces the work of

the analyst.

• The characteristics of the objects being classified can vary with time; the

unsupervised approach is an excellent way to monitor these changes.

• Some characteristics of objects may not be known in advance. The

unsupervised approach automatically flags these characteristics.

3.2 Image Segmentation using Clustering

Image segmentation is a fundamental process in several image processing and

computer vision applications. It can be considered as the first low-level processing

step in image processing and pattern recognition [Cheng et al. 2001]. Image

segmentation is defined as the process of dividing an image into disjoint homogenous

regions. These homogenous regions should represent objects or parts of them

[Lucchese and Mitra 2001]. The homogeneity of the regions is measured using some

image property (e.g. pixel intensity) [Jain et al. 1999]. Image segmentation can be

formally defined as follows:

Given an image I and a homogeneity predicate P. The segmentation of image I is the

partitioning of I into K regions, {R1, R2,…,RK}, satisfying the following conditions:

• Each pixel in the image should be assigned to a region, i.e.

IRk
K
k =∪ =1

• Each pixel is assigned to one and only one region, i.e.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

84

kkkRR kkk ≠=∩ whereφ

• Each region satisfies homogeneity predicate P, i.e.

K,,kRP k K1 True,)(=∀=

• Two different regions can not satisfy P, i.e.

kkkRRP kkk ≠=∪ whereFalse)(

There are many techniques for image segmentation in the literature; details can be

found in Fu and Mui [1981], Pal and Pal [1993], Cheng et al. [2001], Lucchese and

Mitra [2001] and Turi [2001]. In general, these techniques can be categorized into

thresholding, edge-based, region growing and clustering techniques [Turi 2001]. Each

of these categories are discussed in the following sections.

3.2.1 Thresholding Techniques

Thresholding [Gonzalez and Woods 1992; Jain et al. 1995] is the simplest image

segmentation technique. In its simplest version an image is divided into two segments:

object and background by specifying a threshold. A pixel above the threshold is

assigned to one segment and a pixel below the threshold is assigned to the other

segment. For more sophisticated images multiple thresholds can be used.

3.2.2 Edge-based Techniques

In edge-based techniques [Gonzalez and Woods 1992; Jain et al. 1995; Kwok and

Constantinides 1997], segmentation is achieved by finding the edges of the regions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

85

This is usually accomplished by moving a mask (e.g. a 3×3 window) over the image

to detect local changes in the image intensity.

3.2.3 Region growing Techniques

In region growing [Gonzalez and Woods 1992; Jain et al. 1995; Fuh et al. 2000], a set

of seed pixels are chosen. Neighboring pixels of a seed are agglomerated if they

satisfy a homogeneity criterion. This is repeated until no more pixels can be added to

the region. This approach has some problems [Turi 2001]:

• The selection of the seed pixels which is not a straightforward task.

• The selection of the homogeneity criterion.

Region splitting and merging divide the image into regions. A region is then split if it

does not satisfy a homogeneity condition. Regions can also be merged if their

merging results in a region that satisfies some condition. This is repeated until no

more splitting and merging can occur [Gonzalez and Woods 1992].

3.2.4 Clustering Techniques

Image segmentation can be treated as a clustering problem where features describing

each pixel correspond to a pattern and an image region (i.e. segment) corresponds to a

cluster [Jain et al. 1999]. This similarity is obvious by comparing the clustering

problem definition (refer to section 3.1.1) and the image segmentation problem

definition (refer to section 3.2). Therefore, clustering algorithms have been widely

used to solve the problem of image segmentation (e.g. K-means [Tou and Gonzalez

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

86

1974], FCM [Trivedi and Bezdek 1986], ISODATA [Tou and Gonzalez 1974] and

snob [Wallace and Dowe 1994]). However, it should be noted that the number of

clusters is usually not known a priori in image segmentation. Therefore, clustering

algorithms that do not require the user to specify the number of clusters are usually

preferred.

In this thesis, the clustering problem and the image segmentation problem are

considered to be similar. Thus, algorithms are proposed for both problems

interchangeably. In the following, several representative clustering-based techniques

are presented.

 A hybrid approach combining agglomerative hierarchical clustering and

region-based segmentation was proposed by Amadasun and King [1988]. The image

is first divided into regions. Homogenous regions are specified and mean feature

vectors are then determined for each homogenous region. The most similar mean

feature vectors are merged. This process is repeated until the specified number of

clusters is reached. One advantage of this approach is that it is computationally

efficient, because hierarchical clustering is applied on the mean feature vectors

instead of the image pixels. However, this approach has several drawbacks, namely

[Turi 2001],

• it requires the user to specify the number of clusters in advance,

• it depends on the region size, and

• it depends on the used homogeneity criterion.

Clustering algorithms are usually applied to feature space, and as such they do not use

any spatial information (e.g. the relative location of the patterns in the feature space).

However, for image segmentation spatial information is important because pixels with

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

87

similar features are usually found near each other in the spatial domain [Liew et al.

2000]. To address this issue, a generalization of K-means that is adaptive and includes

spatial information was proposed by Pappas [1992]. In this approach, a posteriori

probability function is defined which constrains the region intensity and imposes

spatial continuity [Turi 2001]. The iterative algorithm alternates between maximizing

the a posteriori probability function and calculating the cluster centroids. The cluster

centroids are initially equal to the K-means cluster centroids. The centroids are

updated by averaging them over a sliding window. The size of the sliding window is

progressively decreases [Lucchese and Mitra 2001]. Chang et al. [1994] extends this

algorithm to color image segmentation. Saber et al. [1996] extends the approach of

Chang et al. by proposing a hybrid approach combining color image segmentation and

edge linking. Chen et al. [1998] applied an approach similar to Pappas [1992] to

biomedical images. A drawback of the generalization of K-means approaches is that

they require the user to specify the number of clusters in advance [Turi 2001].

 A color map image segmentation algorithm combining FCM and a supervised

neural network was proposed by Wu et al. [1994]. FCM is first applied giving a set of

prototypes satisfying some validation criteria. A neural network with supervised

learning is then used to optimize these prototypes. The optimized prototypes are used

to segment the image using the nearest neighbor rule [Turi 2001].

 A fuzzy image clustering algorithm which incorporates spatial contextual

information was proposed by Liew et al. [2000]. A dissimilarity measure which

considers the eight neighboring pixels of each pixel was proposed. The dissimilarity

measure is adaptive in the sense that the effect of the neighboring pixels is suppressed

in nonhomogenous image regions. In addition, a merging process that merges clusters

based on their closeness and their degree of overlap is also used to determine the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

88

"optimal" number of clusters. According to Liew et al. [2000], due to the

incorporation of spatial information, this approach is faster, less sensitive to noise and

more suitable for arbitrary shaped clusters than FCM.

 Lim and Lee [1990] proposed a two-stage process called thresholding and

FCM. In the first stage, a coarse segmentation is obtained by smoothing the histogram

of each color component by a Gaussian convolution. Thresholds are set as the valleys

of the smoothed histograms (the valleys are obtained using the first and second

derivative of the smoothed histograms). A safe area around each threshold is

determined. Each pixel outside these safe areas is assigned to a cluster according to its

red, green and blue values. Cluster centroids are then calculated. In the second stage, a

fine segmentation is obtained by assigning pixels in safe areas to their closest clusters

as determined from the fuzzy membership functions. One advantage of this approach

is that it dynamically determines the number of clusters. However, the number of

clusters obtained is significantly affected by the smoothing function parameter and the

size of the safe area [Turi 2001].

 Color image segmentation using competitive learning based on the least-

squares criterion was proposed by Uchiyama and Arbib [1994]. An image

segmentation approach based on the mean shift algorithm was proposed by

Comaniciu and Meer [1997]. Shi and Malik [1997] addressed image segmentation

using clustering as a graph partitioning problem.

 Zhang et al. [2001] proposed a hybrid approach combining hidden Markov

random field (HMRF) and the EM algorithm to segment brain magnetic resonance

(MR) images. A HMRF model is a stochastic process generated by a MRF. The

HMRF state sequence can be observed through a field of observations [Zhang et al.

2001]. An advantage of HMRF is that it encodes spatial information, which is very

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

240

Book Chapter:

6. M. Omran, A. Engelbrecht and A. Salman. Image Classification using Particle

Swarm Optimization. Recent Advances in Simulated Evolution and Learning,

K. Tan, M. Lim, X. Yao and L. Wang (Editors), World Scientific, Series on

Advances in Natural Computation, 2004.

Conference Publications:

7. M. Omran, A. Salman and A. Engelbrecht. Image Classification using Particle

Swarm Optimization. In Conference on Simulated Evolution and Learning,

Singapore, pp. 370-374, November 2002.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– OOmmrraann,, MM GG HH ((22000055))

