IB Extended Essay

Computer Science

Comparison of Jaro-Winkler and Ratcliff/Obershelp algorithms in spell check

Candidate Name: Ilya Ilyankou
Candidate Number: 000197-0031
Session: May 2014
Name of Supervisor: Julius Krajnak
Citation Style: IEEE
Word Count: 3494

Abstract

This Extended Essay focuses on comparison of two approximate string matching algorithms-Jaro-Winkler and Ratcliff/Obershelp-in their application in spell check. The essay starts with describing the theory lying behind both algorithms and illustrates them with examples.

For the comparison, a list of 53 misspelled words is created, and two databases of English words-with 58,000 and 236,000 entries-are used. The task for the two algorithms is to find three words with the highest similarity scores for each misspelled one. If the correct word appears in this top-three words list, the algorithm is awarded 1 , 2 or 3 points according to the position of the correct word in the list. Both algorithms are programmed in PHP and are run on the local server Apace with the PHP processor module.

Although both algorithms show a similar level of precision, the more accurate results are produced by the Ratcliff/Obershelp algorithm. Depending on the database, it shows a $4.0 \%-18.6 \%$ higher result than Jaro-Winkler algorithm.

[Word count: 163]

Acknowledgements

I would like to express my gratitude to Julius Krajnak, my former teacher of mathematics and an EE supervisor, and especially to Ivan Codarin, a former Information System Developer at the United World College of the Adriatic, for finding time to read and comment on my Extended Essay. I would also like to thank all my numerous former teachers of Computer Science, as well as my parents, for supporting my passion towards programming.

Contents

4 Introduction
6 Review of spell-check algorithms
7 Jaro-Winkler distance algorithm
8 Example of Jaro distance calculations
9 Winkler's improvement
11 Ratcliff/Obershelp pattern matching algorithm
12 Example of Ratcliff/Obershelp score calculations
14 Methodology of comparison
17 Programming the algorithms
18 Results
20 Evaluation and conclusion
23 Bibliography
25 Appendix A: Resulting table
30 Appendix B: Source codes

Introduction

Spell check is an important feature of modern software. It is widely used in computer programs such as text processors, email clients, dictionaries and searching engines.

After its introduction in 1980s, there have been debates whether users benefit from it or become less skillful in orthography. Researches show that with spell check on users have a tendency to rely on the computer applications and disregard the final check of their writing. Such writings end up containing more mistakes and mistypes than ones that had been written with the spell check off, when users tend to pay more attention to orthography [12].

However, spell checkers make users quicker and more confident when working with writing. The attention of users shifts from spelling rules of a particular language to a message and the usage of words in their writing. With spell check on, users might utilize unfamiliar or sophisticated words more intensively, without a fear of making a mistake. Additionally, spell check is useful when writing in a foreign language, because it suggests correct orthography for misspelled words and thus makes users memorize them. Personally I experience its usefulness every time I type an essay in Italian.

Since my first meeting with spell check around 10 years ago, I have been wondering how it works. One thing about spell check was obvious from the beginning: every typed word is compared with a previously arranged database of correctly spelled words. If a typed word is found in the database, it is considered correct and ignored, if no-it is marked as incorrect and is often underlined in text processors. However, the main curiosity was how checkers compose the list of words which might be substitutions of an incorrect word.

In Microsoft Office or LibreOffice, used by millions of users around the globe, this list appears after the right-click on the underlined in red word. For instance, Microsoft Office Word suggests the words "fish", "flesh", "fresh", "fest" and "fess" as possible substitutes for an inexistent word "fesh".

After the investigation into algorithms used for spell check, I decided to compare the effectiveness of the two string matching algorithms-Jaro-Winkler's distance and Ratcliff/Obershelp algorithm - which are widely used nowadays. Due to similar principles and levels of complexity, I was sure that both of them will show approximately the same level of accuracy in spell check.

Review of spell check algorithms

Most algorithms that are used by spell checkers can be divided into two groups.
Algorithms from the first group are called phonetic. They compare words according to pronunciation, taking into account sounds that can be misinterpreted. For English such sounds can be given by combinations "wr" and "r" (in words "wrong" and "right"), "u" and "oo" ("Luther" and "loop").

However, due to differences in phonetic rules in every language, such algorithms cannot be used globally. Most of them were developed for English; thus, they will give inappropriate results when applied for other languages. The most popular phonetic algorithms are Soundex (used, inter alia, for the purposes of the United States Census) [9] and Metaphone.

The second group consists of approximate string matching algorithms that are based on finding the similarity score between two strings, one of which is inputted and another is an entry from a database [4]. Similarity score is a number, usually between 0 and 1 , where o corresponds to no similarity between two strings, and 1 corresponds to the complete match of the two strings. Algorithms from this group calculate the similarity score according to a number of repeating symbols or blocks of symbols in two strings, their location and some other factors.

For my Extended Essay I decided to compare two approximate string matching algorithms-Jaro-Winkler and Ratcliff/Obershelp. As any approximate string matching algorithm, they have clear mathematical logic behind them and can be implemented universally in every language which uses alphabetical script. Moreover, they both combine efforts of two developers.

Jaro-Winkler distance algorithm

Jaro distance metric was introduced in 1989 by Matthew A. Jaro's as a comparator to be used in censuses and health data files. It was later modified by William E. Winkler, who believed that similarity score between two strings that have a longer set of symbols in common at their beginning should have a higher similarity score than those which contain a mistake in first few symbols. [13]

Being a similarity function, for the two strings S_{1} and S_{2} the algorithm returns a value from 0 to 1 , where 0 corresponds to no similarity and 1 to a complete match.

Jaro distance is represented by the formula $D_{j}=\frac{1}{3} *\left(\frac{m}{\left|S_{1}\right|}+\frac{m}{\left|S_{2}\right|}+\frac{m-t}{m}\right)$.

Here, $\left|S_{1}\right|$ and $\left|S_{2}\right|$ are lengths of strings S_{1} and S_{2} respectively (in my case, S_{1} is a misspelled/mistyped word and S_{2} represents each word from a database); m is a number of matching symbols, t is a number of transpositions.

Two characters are called matching if the one from the string S_{1} coincides with another one from the string S_{2} which is located not farther than $\left\lfloor\frac{\max \left(\left|S_{1}\right|,\left|S_{2}\right|\right)}{2}\right\rfloor-1$. For each pair of matching characters with different sequence order the number of transpositions \boldsymbol{t} is increased by 1. [11]

For instance, in the words HOUSE and HOME the three matching symbols are H, O and E. Since these symbols appear in both strings in the same order, the number of transpositions for such strings is $t=\frac{0}{2}=0$.
In contrast, matching symbols for words HOUSE and HOUES are H, O, U, S, E. But as the characters S and E appear in both strings in different order, the number of transpositions for such strings is $t=\frac{2}{2}=1$.

If the number of matching symbols m equals to 0 , the Jaro distance must be returned as o without calculations, as division by o mathematically cannot be carried out.

Example of Jaro distance calculations

Let's compare two words-MATHEMATICS and MATEMATICA using Jaro distance method:

	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$
S_{1}	M	A	T	H	E	M	A	T	I	C	S
S_{2}	M	A	T	E	M	A	T	I	C	A	

a) The length of the string S_{1} :
$\left|S_{1}\right|=11$

The length of the string S_{2} :
$\left|S_{2}\right|=10$
b) First three symbols M, A, T of each string coincide (therefore, are matching). Thus, the number of matching strings on this step $m=3$.
c) Symbol [4] of the string $S_{1}-\mathrm{H}-$ is not the same as the respective symbol of the string S_{2} (E). Calculating the admissible distance d_{m} for the symbols to be called matching, we get:

$$
d_{m}=\left\lfloor\frac{\max (11,10)}{2}\right\rfloor-1=\left\lfloor\frac{11}{2}\right\rfloor-1=5-1=4
$$

d) In the string S_{2}, from the symbol [4] we process $d_{m}=4$ symbols to the to the left and to the right in order to find the symbol H, but from the left we get M -$A-T$ and from the right $M-A-T-I$. Therefore, there is no matching symbol for H.
e) Continuing with the string S_{1}, we get E at the position of [5]. Although the symbol [5] of the string S_{2} is M, not E, the one to the left from it is matching (string S_{2}, symbol [4], " E "). Thus, number m must be increased by 1 .

Now, the number of matching symbols $m=4$.
f) The same process described in e) will repeat with all symbols of the string S_{2} with indices [6] to [10]. Thus, after we process the symbol [10], the number of matching symbols $m=9$. String S_{2} does not contain a matching symbol for
g) After the matching symbols are figured out, the number of transpositions must be calculated. In this example, all the matching symbols appear in the same order in both strings. Thus, the fact that they have different indices in two strings does not influence the number t of transpositions. $t=\frac{0}{2}=0$.
h) Thus, all the data needed to calculate Jaro distance D_{j} is found. The Jaro distance D_{j} for the words MATHEMATICS and MATEMATICA is:

$$
D_{j}=\frac{1}{3} *\left(\frac{9}{11}+\frac{9}{10}+\frac{9-0}{9}\right)=\frac{1}{3} *\left(\frac{9}{11}+\frac{9}{10}+\frac{1}{1}\right)=0.906
$$

Winkler's improvement

The main idea of Winkler's improvement in the algorithm was to give two comparing strings a higher score if they start with the same symbol(s). His theory was that mistypes are not usually made in the beginning of words.

To get a Jaro-Winkler score, the additional formula is used:

$$
D_{j w}=D_{j}+l * p *\left(1-D_{j}\right) .
$$

Here, D_{j} is a Jaro distance for a pair of strings,
l is the number of coinciding words at the beginning of the two words, p is a coefficient, $\mathrm{p} \in[0,1]$.

Analyzing the Winkler formula, we see that if the product of l and p is equal to 1 , the expression $l * p *\left(1-D_{j}\right)$ gives the number needed for the sum $D_{j}+l * p *\left(1-D_{j}\right)$ to equal 1. Thus, when $l * p=1$, the Jaro-Winkler function regards the two strings as perfectly matching. [11]

For $l * p$ to be equal to 1 , we need the coefficient p to be equal to the inverse of the number of coinciding symbols at the beginning of the two strings. The coefficient p can be chosen depending on the specific problem the program must solve. For
example, if I agree that two strings which start with 5 identical characters can be considered the same, I set the coefficient $p=\frac{1}{5}$.

However, in this case the Jaro-Winkler score will exceed 1 if two strings have 6 or more first characters in common, as $6 * \frac{1}{5}>1$. Thus, to use Jaro-Winkler distance algorithm correctly, the coefficient p must be found.

William Winkler himself, after a series of experimentations, came to a conclusion that $\mathrm{p}=0.1$ is the most appropriate coefficient for most cases. In this case, the two strings will get a maximum score of 1 if their 10 first characters coincide.

However, even when p is relatively small, there is no guarantee that the algorithm will get correct results. For instance, with $p=0.1$ the misspelled word CONSTITUTIOM will have the same similarity score of 1 with words CONSTITUTION and CONSTITUTIONAL, while the Jaro distance will award them different (although, with a small difference) similarity scores, making the comparison more precise.

For the example with MATEMATICA and MATHEMATICS, the Jaro-Winkler similarity score is:

$$
D_{j w}=0.906+3 * 0.1 *(1-0.906)=0.934
$$

Thus, the similarity score was increased by $\frac{\left(D_{j w}-D_{j}\right)}{D_{j}} * 100=\frac{0.934-0.906}{0.906} * 100=3.09 \%$

Ratcliff/Obershelp pattern-matching algorithm

Ratcliff/Obershelp pattern-matching algorithm was introduced by John W. Ratcliff and John A. Obershelp in 1983. This algorithm had an impact on the industry of educational software.

Before, educational software had often offered only multiple-choice tests, as for typed-by-user answers algorithms for processing and checking the inputted data were needed.

For example, for the question who the Egyptian pharaoh of the $18^{\text {th }}$ dynasty was, the answers Tutankhamun, Tutenkhamun, Tutankhamen, Tutankhamon must be considered as correct. Additionally, a user could have inputted double " m " or made other sort of mistype.

The Ratcliff/Obershelp algorithm helped to solve this problem. As Jaro-Winkler distance algorithm, the Ratcliff/Obershelp returns the value from o to 1 , where 1 is a complete match for two given strings.

The Ratcliff/Obershelp algorithm is expressed by the formula $D_{r o}=\frac{2 * K_{m}}{\left|S_{1}\right|+\left|S_{2}\right|}$. Here, K_{m} is a number of matching characters, $\left|S_{1}\right|$ and $\left|S_{2}\right|$ are lengths of strings S_{1} and S_{2} respectively.

In Ratcliff/Obershelp algorithm, the concept of matching symbols is different from the one of Jaro-Winkler. First, the longest substring that strings S_{1} and S_{2} have in common is found. It is called an anchor. The value of K_{m} is increased by the length of the anchor. Then, the remaining parts of the string to the left and to the right of the anchor must be examined as if they were new strings (in other words, step 1 is repeated). The process is repeated till all the characters of the strings S_{1} and S_{2} are analyzed.

Example of Ratcliff/Obershelp score calculations

Let's consider the same strings MATHEMATICS and MATEMATICA.

	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$
S_{1}	M	A	T	H	E	M	A	T	I	C	S
S_{2}	M	A	T	E	M	A	T	I	C	A	

a) The length of the string S_{1} :
$\left|S_{1}\right|=11$

The length of the string S_{2} :
$\left|S_{2}\right|=10$
b) The longest substring that the two strings have in common is EMATIC. Therefore, EMATIC is an anchor, and $K_{m}=|E M A T I C|=6$.

	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$
S_{1}	M	A	T	H	E	M	A	T	I	C	S
S_{2}	M	A	T	E	M	A	T	I	C	A	

c) To the left from the anchor there are sets of symbols MATH and MAT remaining. The longest common substring of those is MAT. Therefore, $K_{m}=6+|M A T|=9$.

	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$
S_{1}	M	A	T	H	E	M	A	T	I	C	S
S_{2}	M	A	T	E	M	A	T	I	C	A	

d) As MAT substring is the beginning of both strings S_{1} and S_{2}, there are no symbols to the left of it. On the right from MAT, where we have E in the string S_{1} and no characters in the string S_{2}. Therefore, K_{m} remains the same and we go to the characters on the right from the anchor.
e) To the right from the anchor, there are characters S and A left. As they are different, they are not matching. Thus, the value of K_{m} remains 9 and all the characters in both strings are considered. Therefore, we have all the data needed to calculate the Ratcliff/Obershelp score.

The Ratcliff/Obershelp similarity score for the strings MATHEMATICS and MATEMATICA are:

$$
D_{r o}=\frac{2 * 9}{10+11}=\frac{18}{21}=0.857
$$

The mathematical part of the Ratcliff/Obershelp algorithm does not look as sophisticated as the one of Jaro-Winkler algorithm. Although, in their formulae the same elements are used: lengths of strings S_{1} and S_{2}, and the number of matching symbols. However, Jaro-Winkler algorithm uses an additional variable t expressing the number of transpositions, as well as l and p (the number of repeating symbols at the beginning of two strings and the coefficient respectively).

Methodology of comparison

There is a dilemma in choosing a database of English words for the comparison. More entries increase the possibility that the database will contain the correct version of the misspelled word. On the other hand, a big database will contain more words which are used in modern English extremely rarely, and possibly more words will receive a high similarity score along with the real one.

There are roughly a million words in the modern English language. However, Oxford Dictionary contains slightly over 200,000 entries. It signifies that most words existing in the language are not widely used.

Thus, depending on the task we must carefully chose the size of the database depending on the range of vocabulary that might be utilized by users.

For the comparison, I chose two databases that can be used for free. FreeBSD list [14] contains around 236,000 entries and Mieliestronk's dictionary [15] has around 58,000. Both of them are "txt" files, containing each word on a new line and having different forms of nouns (singular and plural: "teacher" and "teachers"), verbs (present, past and gerund: "teach", "taught", "teaching"), prefixes ("overteach"). I decided to use both databases, as compare the results within them.

To get a list of misprinted words as realistic as possible, five people, of whom two are native speakers of English, were asked to type passages in English which they were dictated. The passages were prepared beforehand from up-to-date online sources, such as Wikipedia, the websites of Chicago Tribune and Forbes. Correcting the misprints was not permitted. It allowed obtaining a list of words which consisted of mistyped, as well as misspelled words.

Table 1: The list of misspelled and mistyped words in alphabetical order, in lowercase

No.	Misspelled/mistyped words	Correct (meant) words
1	acommodation	accommodation
2	bandadge	bandage
3	cathegory	category
4	collegue	colleague
5	coatia	croatia
6	definately	definitely
7	diarea	diarrhoea
8	diseace	disease
9	emberasment	embarrassment
10	enhansment	enhancement
11	intire	entire
12	equaterial	equatorial
13	exagurate	exaggerate
14	fittiest	fittest
15	formely	formerly
16	fourty	forty
17	garantee	guarantee
18	happend	happened
19	happilly	happily
20	harrased	harassed
21	kenedy	kennedy
22	lapyop	laptop
23	lisence	license
24	lollypop	lollipop
25	menkind	mankind
26	milenium	millennium
27	misundrestanding	misunderstanding
28	mosow	moscow
29	narow	narrow
30	nostalia	nostalgia
31	occured	occurred
32	passtime	pastime
33	percieve	perceive
34	persistant	persistent
35	poetty	poetry
36	polititian	politician
37	portugese	portuguese
38	propoganda	propaganda
39	publically	publicly
40	quizz	quiz
41	raiting	rating
42	reinessance	renaissance
43	rythm	rhythm
44	sence	sense
45	silouhetted	silhouetted
46	souverein	sovereign
47	spounge	sponge
48	squirel	squirrel
49	thoroly	thoroughly
50	tounge	tongue
51	triology	trilogy
52	truely	truly
53	whith	with

For each word from the left column in Table 1, the two comparing algorithms had to return the short-list of 3 words for which the calculated similarity score was the highest. Depending on whether or not short-lists contained the respective original (correct) word, algorithms received points from o to 3 , depending on the position of the correct word on the short-list. If the correct word got the very high similarity score (and, therefore, was the first on the short-list), the algorithm received 3 points. For the $2^{\text {nd }}$ position it received 2 points and for the $3^{\text {rd }}$ position-1 point.

If the correct was not on a short-list, the algorithm received o points for that particular test.

Programming the algorithms

Jaro-Winkler distance algorithm [18], written in PHP, was found on open access under the GNU General Public License. I tested it manually, comparing results of the algorithm with previously calculated by me scores. After making sure that it works correctly, I decided to use it for my research.

I didn't manage to find the Ratcliff/Obsershelp algorithm written in any computing language on open access, therefore I wrote it myself. The algorithm of finding the longest substring of the two strings [16] in PHP was found online, and was used as a part of my program.

The program was launched on the local server with Denwer [17] (consisting of the web server Apache and the PHP processor module). To make the output of the program readable, I used a markup language for the web HTML and cascading style sheets CSS.

On the computer with 8 GB of RAM and Intel in processor, the runtime of the program was around 11 hours. During this time, the program compared 53 misspelled words with words from the two databases (58,000 and 236,000 words) and produced the resulting table in HTML format.

The listing of the entire program is represented in Appendix A, and the resulting table is represented in Appendix B.

Results

The points received by the algorithms are shown in Table 2. The '*' sign means that the right word was absent in the dictionary. The "**" sign means that the words which is supposed to be misspelled presents in a database as a correct one. The colored areas indicate significant differences in similarity scores given by two comparing algorithms.

Table 2: Points awarded to the algorithms

No.	Misspelled word	Database FreeBSD		Database Mieliestronk	
		$\begin{gathered} \text { Jaro- } \\ \text { Winkler } \end{gathered}$	Ratcliff/Obershelp	$\begin{gathered} \text { Jaro- } \\ \text { Winkler } \end{gathered}$	Ratcliff/Obershelp
1	acommodation	3	3	3	3
2	bandadge	3	3	3	3
3	cathegory	3	3	3	3
4	collegue	3	3	3	3
5	coatia	0*	0*	3	3
6	definately	3	3	3	3
7	diarea	0-2	0-2	2	0-2
8	diseace	2	2	3	3
9	emberasment	0	3	1-2	3
10	enhansment	2	1-3	3	2-3
11	intire	0	1-3	0	3
12	equaterial	3	3	3	3
13	exagurate	0	1	3	3
14	fittiest	0*	0*	3	3
15	formely	3	3	3	3
16	fourty	3	3	3	3
17	garantee	3	3	3	3
18	happend	0*	0*	3	3
19	happilly	3	3	3	3
20	harrased	0*	0*	3	3
21	kenedy	0*	0*	3	3
22	lapyop	0*	0*	2-3	3
23	lisence	3	0	3	O
24	lollypop	3	3	3	3
25	menkind	2**	2**	3	3
26	milenium	3	3	3	3
27	misundrestanding	3	3	3	3
28	mosow	3	3	3	3
29	narow	3	3	3	3
30	nostalia	3	3	3	3
31	occured	O*	0*	3	3
32	passtime	3	3	3	3
33	percieve	3	3	3	3
34	persistant	3	3	3	3
35	poetty	0-1	0-1	0-1	1
36	polititian	3	3	3	3
37	portugese	3	3	O*	0*
38	propoganda	0	3	1	3
39	publically	3	3	3	3
40	quizz	2	2	3	3
41	raiting	0	3	0	3
42	reinessance	0	1-2	2	2-3

43	rythm	0	1	1	1
44	sence	O**	0**	O	O
45	silouhetted	0*	0*	3	3
46	souverein	1	2-3	2	3
47	spounge	3	3	3	3
48	squirel	2-3	2-3	3	3
49	thoroly	2	1	3	3
50	tounge	3	0-2	3	2-3
51	triology	1	1	3	3
52	truely	3	3	3	3
53	whith	0	2-3	0	3
	TOTAL	92-96	100-113	131-134	140-145

Evaluation and conclusion

Overall, the total result for the Jaro-Winkler distance algorithm within FreeBSD database is $92-96$ scores, for Ratcliff/Obsershelp is 100-113 scores. In case of Mieliestroke's database, Jaro-Winkler received 131-134 scores, while

Ratcliff/Obershelp got 140—145.

The Ratcliff/Obershelp algorithm completed the task more accurately within both dictionaries.

The percentage by which the Ratcliff/Obershelp algorithm was more efficient comparing to the Jaro-Winkler distance algorithm is:
a) Within FreeBSD dictionary:

$$
E_{\text {FreeBSD }}=\left(1-\frac{96}{100}\right) * 100 \text { to }\left(1-\frac{92}{113}\right) * 100=4.0 \% \text { to } 18.6 \%
$$

b) Within Mieliestronk's dictionary:

$$
E_{\text {FreeBSD }}=\left(1-\frac{134}{140}\right) * 100 \text { to }\left(1-\frac{131}{145}\right) * 100=4.3 \% \text { to } 9.7 \%
$$

Thus, according to the test, the Ratcliff/Obershelp pattern matching algorithm is at minimum 4\% more efficient than Jaro-Winkler distance algorithm.

Impressively, in Mieliestroke's dictionary 39 out of 53 tested words (which equal 73.6\%) received the highest score of 3 from both Jaro-Winkler and Ratcliff/Obershelp algorithms. That reflects the efficiency of either algorithms and confirms that even without further improvements the algorithms can find its application in modern software.

However, the Ratcliff/Obershelp algorithm gave the same similarity score within the two dictionaries to a significantly bigger number of words than the Jaro-Winkler distance algorithm. It is expressed through the difference between the lower and the upper total score for the same dictionary. For the FreeBSD dictionary the difference
makes 13 points and for Mieliestroke's it is 5 , when for the Jaro-Winkler distance algorithm it is equal to 4 and 4 respectively.

Partially, this can be explained by simpler mathematical operations that produce a narrower range of possible similarity scores. In real life software, it might create more confusion, producing a bigger short-list of words with the same high similarity score. To deal with that, additional filters and improvements might be used.

For instance, the preference may be given to a word with which a misspelled word has the longest common substring at the beginning, as it is implemented in Winkler's improvement. Additionally, such tools as frequency lists-lists which indicate how popular the words are based on their frequency of appearance in literature-might be used, when the preference will be given to a word with the highest index of frequency within the short-list.

Paradoxically, a bigger in size FreeBSD dictionary did not contain 7 out of 53 tested words, while a 4-times smaller Mieliestroke's dictionary contained all the words except one. It demonstrates that the number of words in a dictionary does not necessarily reflect its quality, and a wisely chosen selection of words in a dictionary is the main condition for carrying out an effective spell check.

Analyzing the resulting table, I noticed that the Ratcliff/Obershelp algorithm gives a similarity score more precisely when a word contains one mistype, such as a wrong or missed letter, or a sequence of wrong characters following one another. The evidence of this are the word \#11 (intire instead of entire), \#38 (propoganda instead of propaganda), as well as \#41 (raiting instead of rating) and \#53 (whith instead of with). In this case, the two comparing strings have longer common substrings (one big substring if the mistake is located closer to the beginning or to the end of the string, or two smaller parts if a mistake is located closed to the middle of the word), and it is what is needed for the two strings to get a higher similarity score in the Ratcliff/Obershelp pattern matching algorithm.

Theoretically, the Ratcliff/Obershelp algorithm works especially well when a mistyped character (or a few) is the first or the last character in the string. In this scenario, in the very first loop Ratcliff/Obershelp algorithm selects the common
substring of the comparing strings and marks it as matching, awarding the similarity score a high value.

Due to the Winkler's improvement, in Jaro-Winkler the strings starting with the longer equal sequence of characters receive a higher similarity score. However, the improvement does have a diminishing impact on the Jaro distance of the two strings, thus even when strings begin with different characters, their similarity score will not be decreased.

The Ratcliff/Obershelp algorithm showed a $4 \%-18.6 \%$ better result while processing the list of 53 misspelled words. Nevertheless, I don't rule out of the possibility that the set of words favored such conclusion. For a more precise investigation, the list containing hundreds or thousands of misspelled words must be used. And then, it might be that the two algorithms will show a very similar level of accuracy.

Bibliography

[1] P. Black, "Ratcliff/Obershelp pattern recognition," in Dictionary of Algorithms and Data Structures [online], Dec. 2004. Available: http://www.nist.gov/dads/HTML/ratcliffObershelp.html. [Accessed: Nov. 07, 2013].
[2] W. Cohen, P. Ravikumar, and S. Fienberg, "A Comparison of String Distance Metrics for Name-Matching Tasks," Proceedings of IJCAI-o3 Workshop on Information Integration, pp. 73-78, Aug. 2003.
[3] S. Gries, "What is Corpus Linguistics?" Language and Linguistics Compass, vol. 3, pp. 1225-1241, Sept. 2009.
[4] P. Hall and G. Dowling, "Approximate String Matching," Computing Surveys, vol. 12, no. 4, pp. 381-402, Dec. 1980.
[5] A. Kostarev and D. Koterov, PHP 5 in the original, ed. 2. St. Petersburg, Russia: BHV, 2012.
[6] J. Peterson, "Computer Programs for Detecting and Correcting Spelling Errors," in Communications of the ACM, vol. 23, no. 12, Dec. 1980.
[7] J. Ratcliff, and D. Metzener, "Pattern Matching: The Gestalt Approach," in Dr. Dobb’s Journal, Jul. 1988.
[8] G. Recchia and M. Louwerse, "A Comparison of String Similarity Measures for Toponym Matching," Proc. 21st ACM SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, Nov. 05-08, 2013, Orlando, Florida, USA. Available:
http://stko.geog.ucsb.edu/comp2013/comp2013_submission_2.pdf. [Accessed: Nov. 09, 2013]
[9] J. Repici (2002). "Understanding Classic SoundEx Algorithms". Creativylist [Online]. Available:
http://creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm. [Accessed: Nov. 10, 2013].
[10] E. Ristad and P. Yianilos, "Learning String Edit Distance," Dept. Comput. Sci, Princeton University, Rep. CS-TR-532-96, Oct. 1996. Available: http://pnylab.com/pny/papers/sed/sed.pdf. [Accessed: Nov. 10, 2013].
[11] A. Rodichevski, "Approximate string-matching algorithms, part 2," Morfoedro, a portal of arts and culture. Available: http://www.morfoedro.it/doc.php?n=223\&lang=en. [Accessed: Nov. 08, 2013].
[12] J. Sorrentino (Jan. 11, 2008). "Is Spell Check Creating a Generation of Dummies?" Education.com [Online]. Available:
http://www.education.com/magazine/article/spell_check/. [Accessed: Nov. 09, 2013].
[13] W. Winkler (1999). "The state of record linkage and current research problems". Statistics of Income Division, Internal Revenue Service Publication R99/04 [Online]. Available: http://www.census.gov/srd/papers/pdf/rr99-04.pdf. [Accessed: Nov. 08, 2013].

Databases of English words:

[14] List FreeBSD [Online]. Available: http://svnweb.freebsd.org/base/head/share/dict/web2?view=co. [Accessed: Nov. 07, 2013].
[15] Mieliestronk's list of more than 58 ooo English words [Online]. Available: http://www.mieliestronk.com/corncob_lowercase.txt. [Accessed: Nov. 07, 2013].

Programs and source codes:
[16] C. Greenbacker. The algorithm which compares two strings and returns longest common substring. [Online] Source available: http://web.archive.org/web/20090823033402/http://artificialminds.net/l abs/strlcs.txt. [Accessed: Nov. 09, 2013]
[17] D. Koterov (2013). Denwer-local server. Available:
http://www.denwer.ru/about.html. [Accessed: Nov. o8, 2013].
[18] I. Ugrina (2005). A PHP library implementing Jaro and Jaro-Winkler distance, measuring similarity between strings, ver. 1.3. [Online] Source available: http://www.iugrina.com/files/JaroWinkler/JaroWinkler.phps [Accessed: Nov. 09, 2013].

Appendix A: Resulting table

Original word	Dictionary FreeBSD				Dictionary Mieliestronk			
	Jaro-Winkler		Ratcliff/Obershelp		Jaro-Winkler		Ratcliff/Obershelp	
	\# Word	Score \#	Word	Score \#	\# Word	Score	Word	Score
	1 accommodation	0.9791	commodation	0.961	1 accommodation	0.979	commodation	0.96
1. acommodation	2 commodation	0.9722	mmodation	0.9572	2 accommodations	0.9622	commodations	0.923
	3 accommodational	0.9473	commodational	0.8893	3 accommodating	0.9373	commodating	0.88
	Raccommodation	0.979 R	commodation	0.96 R	Raccommodation	0.979	commodation	0.96

2. bandadge	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 bandage	0.9751 bandage	0.9331 bandage	0.9751 bandage	0.933
	2 bandager	0.952 bandager	0.8752 bandaged	0.9632 bandaged	0.875
	3 banda	0.9253 rebandage	0.8243 bandages	0.953 bandages	0.875
	bandage	0.975 Rbandage	0.933 R bandage	0.975 R bandage	0.933

| | \# Word | Score \# | Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

| | $\#$ | Word | Score $\#$ | Word | Score $\# \quad$ Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

| | \# Word | Score \# | Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

| | \# | Word | Score \# | Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

8. diseace	\# Word	Score \# Word	Score \# Word	Score\# Word	Score
	1 dispeace	0.9711 dispeace	0.9331 disease	0.9431 disease	0.857
	2 disease	0.9432 disease	0.8572 diseased	0.9212 diseased	0.8
	3 diseased	0.9213 diseased	0.83 diseases	0.9213 diseases	0.8
	Rdisease	0.943 Rdisease	0.857 Rdisease	0.943 Rdisease	0.857

| | \# Word | Score \# | Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

	\# Word	Score \# Word	Score \# Word	Score \#	Word	Score
	10. enchainment	0.9251 enchainment	0.8571 enhancement	0.9211 enchantment	0.857	
	10. enhansment					
	2 enhancement	0.9212 enchantment	0.8572 enhancements	0.9082 enhancement	0.857	
	3 enhance	0.8913 enhancement	0.8573 enhance	0.8913 enchantments	0.818	
	Renhancement	0.921 Renhancement	0.857 Renhancement	0.921 Renhancement	0.857	

11. intire \# Word Score \# Word Score \# Word Score\# Word Score

1 intine	0.9331 entire	0.8331 interim	0.9281 entire	0.833
2 interim	0.9282 intine	0.8332 inter	0.9142 tire	0.8
3 intrine	0.9283 lintie	0.8333 interims	0.9033 entires	0.769
Rentire	0.789 Rentire	0.833 Rentire	0.789 Rentire	0.833

12. equaterial	\# Word	Score\# Word	Score\# Word	Score \# Word	Score
	1 equatorial	0.961 equatorial	0.91 equatorial	0.961 equatorial	0.9
	2 equatorially	0.932 equilateral	0.8572 equate	0.922 equilateral	0.857
	3 equate	0.923 quaternal	0.8423 equilateral	0.8973 arterial	0.778
	Requatorial	0.96 Requatorial	0.9 Requatorial	0.96 Requatorial	0.9
13. exagurate	\# Word	Score\# Word	Score \# Word	Score \# Word	Score
	1 exaugurate	0.9511 exaugurate	0.9471 exaggerate	0.8881 exaggerate	0.842
	2 exarate	0.9482 exarate	0.8752 expurgate	0.8742 exaggerated	0.8
	3 exarchate	0.8963 exaggerate	0.8423 exaggerated	0.8733 exaggerates	0.8
	Rexaggerate	0.888 Rexaggerate	0.842 Rexaggerate	0.888 Rexaggerate	0.842

| | $\#$ | Word | Score \# | Word | Score \# | Word | Score \# |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Word \quad Score

| | \# Word | Score \# | Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

| | $\#$ | Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score \# \quad Word \quad Score

| | $\#$ | Word | Score \# Word | Score \# Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

19. happilly	\# Word	Score \# Word	Score\# Word	Score \# Word	Score
	1 happily	0.9751 happily	0.9331 happily	0.9751 happily	0.933
	2 happify	0.9212 unhappily	0.8242 unhappily	0.8842 unhappily	0.824
	3 unhappily	0.8843 happify	0.83 happier	0.8683 apply	0.769
	Rhappily	0.975 Rhappily	0.933 R happily	0.975 R happily	0.933

| | \# Word | Score \# Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

21. kenedy	\# Word	Score \# Word	Score \# Word	Score\# Word	Score
	1 kendyr	0.9221 keened	0.8331 kennedy	0.9671 kennedy	0.923
	2 kend	0.9222 kendyr	0.8332 kerned	0.9112 kerned	0.833
	3 kneed	0.893 kend	0.83 kneed	0.893 likened	0.769
	Rkennedy	0.967 Rkennedy	0.923 Rkennedy	0.967 Rkennedy	0.923
22. lapyop	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 lap	0.8831 apoop	0.7271 laptop	0.9221 laptop	0.833

	$2 \text { lapon }$ $3 \text { lay }$	0.8762 lapon 0.8673 malaprop	$\begin{aligned} & 0.7272 \text { lapp } \\ & 0.7143 \text { laptops } \end{aligned}$	$\begin{aligned} & 0.9222 \text { lapp } \\ & 0.8943 \text { laptops } \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.769 \end{aligned}$
	Rlaptop	0.922 Rlaptop	0.833 Rlaptop	0.922 R laptop	0.833
23. lisence	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 license	0.9621 sence	0.8331 license	0.9621 licence	0.857
	2 silence	0.9522 lenience	0.8 2 silence	0.9522 licences	0.8
	3 licensed	0.9293 ligeance	0.83 licensed	0.9293 listened	0.8
	Rlicense	0.962 Rlicense	0.571 Rlicense	0.962 Rlicense	0.571
24. Iollypop	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 lollipop	0.951 lollipop	0.8751 lollipop	0.951 lollipop	0.875
	2 lollopy	0.9462 lollop	0.8572 lollipops	0.9312 lollipops	0.824
	3 lolly	0.9253 lollopy	0.83 lolly	0.9253 lolly	0.769
	Riollipop	0.95 Rlollipop	0.875 Rlollipop	0.95 Rlollipop	0.875
25. menkind	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 menkind	11 menkind	11 mankind	0.9141 mankind	0.857
	2 womenkind	0.9262 womenkind	0.8752 mentioned	0.8892 unkind	0.769
	3 mankind	0.9143 mankind	0.8573 mending	0.8753 humankind	0.75
	Rmankind	0.914 Rmankind	0.857 Rmankind	0.914 Rmankind	0.857
26. milenium	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 millennium	0.9531 millennium	0.8891 millennium	0.9531 millennium	0.889
	2 milium	0.9422 milium	0.8572 milieu	0.9032 minimum	0.8
	3 minium	0.9333 minium	0.8573 mile	0.93 ileum	0.769
	Rmillennium	0.953 Rmillennium	0.889 R millennium	0.953 Rmillennium	0.889

	$\#$	Word	Score \#	Word	Score \#	Word	Score \#	Word	Score
	1 misunderstanding	0.988	1 misunderstanding	0.938	1 misunderstanding	0.9881 misunderstanding	0.938		
27. misundrestanding									
	2 misunderstandingly	0.965	2 misunderstandingly	0.882	2 misunderstandings	0.976	2 misunderstandings	0.909	
	3 misunderstand	0.947	3 unmisunderstanding	0.882	3 misunderstand	0.947	3 misunderstand	0.828	
	Rmisunderstanding	0.988	Rmisunderstanding	0.938	Rmisunderstanding	0.988 Rmisunderstanding	0.938		

	$\#$ Word	Score \# Word	Score \# Word	Score \#	Word	Score
	1 moscow	0.9611 moscow	0.9091 moscow	0.9611 moscow	0.909	
28. mosow	2 moo	0.8932 moo	0.752 moo	0.8932 moo	0.75	
	3 mosswort	0.8663 mow	0.753 moos	0.883 mow	0.75	
	Rmoscow	0.961 Rmoscow	0.909 Rmoscow	0.961 Rmoscow	0.909	

29. narow	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 narrow	0.9611 narrow	0.9091 narrow	0.9611 narrow	0.909
	2 narrowy	0.9332 arow	0.8892 narrows	0.9332 narrows	0.833
	3 arow	0.9333 narrowy	0.8333 narrowed	0.9133 arrow	0.8
	Rnarrow	0.961 Rnarrow	0.909 Rnarrow	0.961 Rnarrow	0.909

| | $\#$ | Word | Score \# | Word | Score \# | Word | Score \# |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Word \quad Score

31. occured	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 occur	0.9431 occur	0.8331 occurred	0.9751 occurred	0.933
	2 occurrent	0.9052 accursed	0.82 occur	0.9432 cured	0.833
	3 occursive	0.9053 curled	0.7693 occupied	0.9213 occur	0.833
	Roccurred	0.975 Roccurred	0.933 Roccurred	0.975 Roccurred	0.933
	\# Word	Score \# Word	Score \# Word	Score\# Word	Score
	1 pastime	0.9711 pastime	0.9331 pastime	0.9711 pastime	0.933
32. passtime	2 pastimer	0.9422 pastimer	0.8752 passim	0.952 pastimes	0.875
	3 passive	0.9213 passive	0.83 pastimes	0.9273 passim	0.857
	Rpastime	0.971 Rpastime	0.933 Rpastime	0.971 Rpastime	0.933

| | 33. percieve | $\#$ | Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Score $\#$ | Word |
| :--- | :--- | Score

	3 perceptive	0.9353 perigee	0.83 perceives	0.9533 perceives	0.824
	Rperceive	0.975 Rperceive	0.875 Rperceive	0.975 Rperceive	0.875
34. persistant	\# Word	Score \# Word	Score\# Word	Score \# Word	Score
	1 persistent	0.961 persistent	0.91 persistent	0.961 persistent	0.9
	2 persist	0.942 resistant	0.8422 persian	0.942 resistant	0.842
	3 persistently	0.933 persist	0.8243 persist	0.943 persian	0.824
	Rpersistent	0.96 Rpersistent	0.9 Rpersistent	0.96 Rpersistent	0.9
35. poetty	\# Word	Score\# Word	Score \# Word	Score \# Word	Score
	1 potty	0.9561 petty	0.9091 potty	0.9561 petty	0.909
	2 petty	0.952 potty	0.9092 petty	0.952 potty	0.909
	3 poet	0.9333 piotty	0.8333 poet	0.9333 poetry	0.833
	Rpoetry	0.933 Rpoetry	0.833 Rpoetry	0.933 Rpoetry	0.833
	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
36. polititian	1 politician	0.961 politician	0.91 politician	0.961 politician	0.9
	2 politist	0.9152 geopolitician	0.7832 politicians	0.9442 politicians	0.857
	3 politzerization	0.9033 politist	0.7783 politicisation	0.9133 politicking	0.762
	Rpolitician	0.96 Rpolitician	0.9 Rpolitician	0.96 Rpolitician	0

| | $\#$ | Word | Score \# | Word | Score \# | Word | Score \# |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Word \quad Score

38. propoganda	Word	Score \# Word	Score \#	\# Word	Score \# Word	Score
	1 propagand	0.9241 propaganda	0.91	1 propound	0.9151 propaganda	0.9
	2 propound	0.9152 propagand	0.8422	2 propagation	0.912 propound	0.778
	3 propago	0.9113 propound	0.7783	3 propaganda	0.9043 propagandist	0.727
	Rpropaganda	0.904 Rpropaganda	0.9 R	Rpropaganda	0.904 Rpropaganda	0.9

39. publically	\# Word	Score \#	\# Word	Score\#	Word	Score \#	\# Word	Score
	1 publicly	0.961	1 publicly	0.8891		0.961	1 publicly	0.889
	2 public	0.922	2 umbilically	0.8572		0.922	2 cubically	0.842
	3 publican	0.9153	3 cubically	0.8423		0.9153	3 biblically	0.8
	Rpublicly	0.96 R	Rpublicly	0.889 R		0.96 R	Rpublicly	0.889

41. raiting	\# Word	Score \#	Word	Score \# Word	Score \# Word	Score
	1 railing	0.9331 rating		0.9231 rabbiting	0.9411 rating	0.923
	2 raising	0.9332 gaiting		0.8572 radiating	0.9412 rabbiting	0.875
	3 radicating	0.923 grating		0.8573 raiding	0.9333 radiating	0.875
	Rrating	0.917 Rrating		0.923 Rrating	0.917 Rrating	0.923

| | \# Word | Score \# | Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

| | \# Word | Score\# | Word | Score \# | Word | Score \# | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Score

| | $\#$ | Word | Score \# | Word | Score \# | Word | Score \# |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Word \quad Score

	Rsense	0.907 Rsense	0.8 Rsense	0.907 Rsense	0.8
45. silouhetted	Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 silhouette	0.9441 silhouette	0.8571 silhouetted	0.9681 silhouetted	0.909
	2 siliciuretted	0.8862 slotted	0.7782 silhouette	0.9442 silhouette	0.857
	3 silo	0.8733 louchettes	0.7623 silhouettes	0.9233 silhouettes	0.818
	Rsilhouetted	0.968 Rsilhouetted	0.909 Rsilhouetted	0.968 Rsilhouetted	0.909
46. souverein	\# Word	Score \# Word	Score \# Word	Score\# Word	Score
	1 souverain	0.9561 souverain	0.8891 souvenir	0.9531 sovereign	0.889
	2 souvenir	0.9532 sovereign	0.8892 sovereign	0.9412 sovereigns	0.842
	3 sovereign	0.9413 cosovereign	0.83 souvenirs	0.9313 sovereignty	0.8
	Rsovereign	0.941 Rsovereign	0.889 Rsovereign	0.941 Rsovereign	0.889
47. spounge	\# Word	Score \# Word	Score \# Word	Score\# Word	Score
	1 sponge	0.9671 sponge	0.9231 sponge	0.9671 sponge	0.923
	2 spong	0.9332 splunge	0.8572 sponged	0.9332 sponged	0.857
	3 sponged	0.9333 sponged	0.8573 sponger	0.9333 sponger	0.857
	Rsponge	0.967 Rsponge	0.923 Rsponge	0.967 Rsponge	0.923
48. squirel					
	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 squirely	0.9751 squirely	0.9331 squirrel	0.9751 squirrel	0.933
	2 squirrel	0.9752 squirrel	0.9332 squire	0.9712 squire	0.923
	3 squire	0.9713 squire	0.9233 squirrels	0.9563 squirrels	0.875
	Rsquirrel	0.975 Rsquirrel	0.933 Rsquirrel	0.975 Rsquirrel	0.933
49. thoroly	\# Word	Score \# Word	Score\# Word	Score\# Word	Score
	1 thoro	0.9431 hooly	0.8331 thoroughly	0.941 thoroughly	0.824
	2 thoroughly	0.942 thoro	0.8332 thor	0.9142 throroughly	0.778
	3 thornily	0.9213 thoroughly	0.8243 thorny	0.913 hourly	0.769
	Rthoroughly	0.94 Rthoroughly	0.824 Rthoroughly	0.94 Rthoroughly	0.824
50. tounge	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 tongue	0.9331 strounge	0.8571 tongue	0.9331 lounge	0.833
	2 toug	0.9222 lounge	0.8332 tone	0.9112 tongue	0.833
	3 strounge	0.9173 thunge	0.8333 toughen	0.9083 tone	0.8
	Rtongue	0.933 Rtongue	0.833 Rtongue	0.933 Rtongue	0.833
51. triology	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 triology	$1 \quad 1$ triology	11 trilogy	0.9381 trilogy	0.933
	2 trichology	0.9532 trilogy	0.9332 terminology	0.9182 terminology	0.842
	3 trilogy	0.9383 storiology	0.8893 trio	0.93 astrology	0.824
	Rtrilogy	0.938 Rtrilogy	0.933 Rtrilogy	0.938 R trilogy	0.933
52. truely	\# Word	Score \# Word	Score\# Word	Score \# Word	Score
	1 truly	0.9611 truly	0.9091 truly	0.9611 truly	0.909
	2 true	0.9332 rudely	0.8332 true	0.9332 rudely	0.833
	3 trebly	0.9113 trebly	0.8333 truer	0.8933 rely	0.8
	Rtruly	0.961 Rtruly	0.909 Rtruly	0.961 Rtruly	0.909
53. whith	\# Word	Score \# Word	Score \# Word	Score \# Word	Score
	1 whit	0.961 whit	0.8891 whither	0.9431 with	0.889
	2 whither	0.9432 with	0.8892 whitish	0.9432 whither	0.833
	3 whitish	0.9433 whither	0.8333 white	0.923 whitish	0.833
	Rwith	0.828 Rwith	0.889 Rwith	0.828 Rwith	0.889

Appendix B: Source codes

Listing of "main.php"

```
<?php
ini_set('memory_limit', '-1');
include "jaroWinkler.php";
include "ratcliffObershelp.php";
$dictionaryFreeBSD = fopen("dictionary-freebsd.txt", "r");
$dictionaryMieliestronk = fopen("dictionary-mieliestronk.txt", "r");
$dictionaryMisspelled = file("dictionary-misspelled.txt");
$dictionaryCorrect = file("dictionary-correct.txt");
echo <<<HTML
<html>
<head>
    <title>The comparison of Jaro-Winkler and Ratcliff/Obershelp algorithms in spell-
checking</title>
</head>
<style>
table { border: 1px solid gray; width: 100%; text-align:center;}
table tr td{border-bottom: lpx solid gray;}
table tr.trGray td {background:#888888; text-align:center; font-weight:bold;}
table tr.trCorrect td {background: #C0C0C0; color:white;}
</style>
<body>
<table cellspacing=0>
<tr>
<th rowspan=2 style="margin-bottom:5px;"> Original word </th> <th colspan=6>Dictionary
FreeBSD</th> <th colspan=6>Dictionary Mieliestronk </th>
</tr>
<tr>
<td colspan=3>Jaro-Winkler</td> <td colspan=3>Ratcliff/Obershelp</td>
<td colspan=3>Jaro-Winkler</td> <td colspan=3>Ratcliff/Obershelp</td>
</tr>
HTML;
$r = NULL;
$r = array();
for ($i=0; $i<count($dictionaryMisspelled); $i++) {
        $misspelledWord = trim ( $dictionaryMisspelled[$i] );
        $correctWord = trim ( $dictionaryCorrect[$i] );
        $r[$i]["misspelledWord"] = $misspelledWord
        $r[$i]["correctWord"] = $correctWord;
        //Calculating Jaro-Winkler and Ratcliff/Obershelp scores for correct answers
        $r[$i]["correctWordJW"] = JaroWinkler($misspelledWord, $correctWord);
        $r[$i]["correctWordRO"] = Ratcliff($misspelledWord, $correctWord);
        $r[$i]["freebsd"]["jw"][1]["score"] = 0.0;
        $r[$i]["freebsd"]["jw"][2]["score"] = 0.0;
        $r[$i]["freebsd"]["jw"][3]["score"] = 0.0;
        $r[$i]["freebsd"]["ro"][1]["score"] = 0.0;
        $r[$i]["freebsd"]["ro"][2]["score"] = 0.0;
        $r[$i]["freebsd"]["ro"][3]["score"] = 0.0;
        $r[$i]["mielie"]["jw"][1]["score"] = 0.0;
        $r[$i]["mielie"]["jw"][2]["score"] = 0.0;
        $r[$i]["mielie"]["jw"][3]["score"] = 0.0;
        $r[$i]["mielie"]["ro"][1]["score"] = 0.0;
        $r[$i]["mielie"]["ro"][2]["score"] = 0.0;
        $r[$i]["mielie"]["ro"][3]["score"] = 0.0;
```

```
70:
71: while(!feof($dictionaryFreeBSD)) {
72: $dictionaryWord = trim( fgets($dictionaryFreeBSD) );
73:
74: $jw = JaroWinkler($misspelledWord, $dictionaryWord);
75: $ro = Ratcliff($misspelledWord, $dictionaryWord);
76:
77: // Jaro-Winkler
78: if ($jw > $r[$i]["freebsd"]["jw"][1]["score"]) {
79: $r[$i]["freebsd"]["jw"][3]["score"] =
$r[$i]["freebsd"]["jw"][2]["score"];
80: $r[$i]["freebsd"]["jw"][3]["word"] =
$r[$i]["freebsd"]["jw"][2]["word"];
    81:
    82: $r[$i]["freebsd"]["jw"][2]["score"] =
$r[$i]["freebsd"]["jw"][1]["score"];
83: $r[$i]["freebsd"]["jw"][2]["word"] =
$r[$i]["freebsd"]["jw"][1]["word"];
    84:
    85: $r[$i]["freebsd"]["jw"][1]["score"] = $jw;
    $r[$i]["freebsd"]["jw"][1]["word"] = $dictionaryWord;
    }
    elseif ($jw > $r[$i]["freebsd"]["jw"][2]["score"]) {
    $r[$i]["freebsd"]["jw"][3]["score"] =
$r[$i]["freebsd"]["jw"][2]["score"];
90: $r[$i]["freebsd"]["jw"][3]["word"] =
$r[$i]["freebsd"]["jw"][2]["word"];
    91:
    92: $r[$i]["freebsd"]["jw"][2]["score"] = $jw;
    93: $r[$i]["freebsd"]["jw"][2]["word"] = $dictionaryWord;
    94: }
    95: elseif ($jw > $r[$i]["freebsd"]["jw"][3]["score"]) {
    $r[$i]["freebsd"]["jw"][3]["word"] = $dictionaryWord;
    96:
    98: }
    99: // Ratcliff/Obershelp
    101: if ($ro > $r[$i]["freebsd"]["ro"][1]["score"]) {
    102: $r[$i]["freebsd"]["ro"][3]["score"] =
$r[$i]["freebsd"]["ro"][2]["score"];
103: $r[$i]["freebsd"]["ro"][3]["word"] =
$r[$i]["freebsd"]["ro"][2]["word"];
104:
105: $r[$i]["freebsd"]["ro"][2]["score"] =
$r[$i]["freebsd"]["ro"][1]["score"];
106: $r[$i]["freebsd"]["ro"][2]["word"] =
$r[$i]["freebsd"]["ro"][1]["word"];
    107:
    108: $r[$i]["freebsd"]["ro"][1]["score"] = $ro;
    109: $r[$i]["freebsd"]["ro"][1]["word"] = $dictionaryWord;
    110: }
    111: elseif ($ro > $r[$i]["freebsd"]["ro"][2]["score"]) {
    112: $r[$i]["freebsd"]["ro"][3]["score"] =
$r[$i]["freebsd"]["ro"][2]["score"];
113: $r[$i]["freebsd"]["ro"][3]["word"] =
$r[$i]["freebsd"]["ro"][2]["word"];
114:
115: $r[$i]["freebsd"]["ro"][2]["score"] = $ro;
116: $r[$i]["freebsd"]["ro"][2]["word"] = $dictionaryWord;
117: }
118: elseif ($ro > $r[$i]["freebsd"]["ro"][3]["score"]) {
119: $r[$i]["freebsd"]["ro"][3]["score"] = $ro;
120: $r[$i]["freebsd"]["ro"][3]["word"] = $dictionaryWord;
121: }
122: }
123:
124: while(!feof($dictionaryMieliestronk)) {
125: $dictionaryWord = trim( fgets($dictionaryMieliestronk) );
126: $jw = JaroWinkler($misspelledWord, $dictionaryWord)
127: $jw = JaroWinkler($misspelledWord, $dictionaryWord);
128: $ro = Ratcliff($misspelledWord, $dictionaryWord);
129: (1)
130: // Jaro-Winkler 
132: $r[$i]["mielie"]["jw"][3]["score"] =
$r[$i]["mielie"]["jw"][2]["score"];
133: $r[$i]["mielie"]["jw"][3]["word"] = $r[$i]["mielie"]["jw"][2]["word"];
```

```
134:
135: $r[$i]["mielie"]["jw"][2]["score"] =
$r[$i]["mielie"]["jw"][1]["score"];
136: $r[$i]["mielie"]["jw"][2]["word"] = $r[$i]["mielie"]["jw"][1]["word"];
137:
138: $r[$i]["mielie"]["jw"][1]["score"] = $jw;
139: $r[$i]["mielie"]["jw"][1]["word"] = $dictionaryWord;
140: }
141: elseif ($jw > $r[$i]["mielie"]["jw"][2]["score"]) {
    $r[$i]["mielie"]["jw"][3]["score"] =
142: $r[$i]["miel
    $r[$i]["mielie"]["jw"][3]["word"] = $r[$i]["mielie"]["jw"][2]["word"];
144:
145: $r[$i]["mielie"]["jw"][2]["score"] = $jw;
    $r[$i]["mielie"]["jw"][2]["word"] = $dictionaryWord;
146:
148: elseif ($jw > $r[$i]["mielie"]["jw"][3]["score"]) {
    $r[$i]["mielie"]["jw"][3]["score"] = $jw;
    $r[$i]["mielie"]["jw"][3]["word"] = $dictionaryWord;
}
// Ratcliff/Obershelp
if ($ro > $r[$i]["mielie"]["ro"][1]["score"]) {
    $r[$i]["mielie"]["ro"][3]["score"] =
$r[$i]["mielie"]["ro"][2]["score"];
156: $r[$i]["mielie"]["ro"][3]["word"] = $r[$i]["mielie"]["ro"][2]["word"];
157:
158: $r[$i]["mielie"]["ro"][2]["score"] =
$r[$i]["mielie"]["ro"][1]["score"];
159: $r[$i]["mielie"]["ro"][2]["word"] = $r[$i]["mielie"]["ro"][1]["word"];
160:
161: $r[$i]["mielie"]["ro"][1]["score"] = $ro;
162: $r[$i]["mielie"]["ro"][1]["word"] = $dictionaryWord;
163: }
elseif ($ro > $r[$i]["mielie"]["ro"][2]["score"]) {
165: $r[$i]["mielie"]["ro"][3]["score"] =
$r[$i]["mielie"]["ro"][2]["score"];
166: $r[$i]["mielie"]["ro"][3]["word"] = $r[$i]["mielie"]["ro"][2]["word"];
167:
168: $r[$i]["mielie"]["ro"][2]["score"] = $ro;
$r[$i]["mielie"]["ro"][2]["word"] = $dictionaryWord;
169:
170:
}
71: elseif ($ro > $r[$i]["mielie"]["ro"][3]["score"])
$r[$i]["mielie"]["ro"][3]["score"] = $ro;
}
}
    fseek($dictionaryFreeBSD, 0);
    fseek($dictionaryMieliestronk, 0);
echo <<<HTML
<tr class="trGray">
<td rowspan=5> $misspelledWord </td>
<td>#</td> <td>Word</td> <td>Score</td>
<td>#</td> <td>Word</td> <td>Score</td>
<td>#</td> <td>Word</td> <td>Score</td>
<td>#</td> <td>Word</td> <td>Score</td>
</tr>
<tr>
HTML;
for ($t=1; $t<=3; $t++) {
    echo "
        <td>$t</td>
        <td>".$r[$i]['freebsd']['jw'][$t]['word']."</td>
        <td>".round($r[$i]['freebsd']['jw'][$t]['score'], 3)."</td>
        <td>$t</td>
        <td>".$r[$i]['freebsd']['ro'][$t]['word']."</td>
        <td>".round($r[$i]['freebsd']['ro'][$t]['score'], 3)."</td>
        <td>$t</td>
        <td>".$r[$i]['mielie']['jw'][$t]['word']."</td>
        <td>".round($r[$i]['mielie']['jw'][$t]['score'], 3)."</td>
```

```
206:
207:
208:
209:
210:
211:
212:
213:
214.
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
```

```
td>$t</td>
```

td>$t</td>
<td>".$r[$i]['mielie']['ro'][$t]['word']."</td>
<td>".$r[$i]['mielie']['ro'][$t]['word']."</td>
<td>".round($r[$i]['mielie']['ro'][$t]['score'], 3)."</td>
<td>".round($r[$i]['mielie']['ro'][$t]['score'], 3)."</td>
</tr>";
</tr>";
 }
 }
 echo "<tr class='trCorrect'>";
 echo "<tr class='trCorrect'>";
 for ($t=1; \$t<=2; $t++) {
 for ($t=1; \$t<=2; $t++) {
echo "
echo "
 <td>R</td>
 <td>R</td>
 <td>$correctWord</td>
<td>$correctWord</td>
 <td>".round($r[$i]['correctWordJW'], 3)."</td>
 <td>".round($r[$i]['correctWordJW'], 3)."</td>
 <td>R</td>
 <td>R</td>
 <td>$correctWord</td>
<td>$correctWord</td>
 <td>".round($r[$i]['correctWordRO'], 3)."</td> ";
 <td>".round($r[\$i]['correctWordRO'], 3)."</td> ";
}
}
echo "</tr><tr><td colspan=13 style='font-size:3px'> </td></tr>";
echo "</tr><tr><td colspan=13 style='font-size:3px'> </td></tr>";
}
}
echo "</table></body></html>";
echo "</table></body></html>";
?>

```
?>
```


Listing of "jaroWinkler.php" [18]

```
<?php
function getCommonCharacters( $string1, $string2, $allowedDistance ){
        $str1 len = strlen($string1);
        $str2_len = strlen($string2);
        $temp_string2 = $string2;
        $commonCharacters='';
        for( $i=0; $i < $str1_len; $i++){
            $noMatch = True;
            // compare if char does match inside given allowedDistance
            // and if it does add it to commonCharacters
            for( $j= max( 0, $i-$allowedDistance ); $noMatch && $j < min( $i +
$allowedDistance + 1, $str2_len ); $j++){
            if( $temp_string2[$j] == $string1[$i] ) {
                $noMatch = False;
            $commonCharacters .= $string1[$i];
            $temp_string2[$j] = '';
            }
        }
        }
        return $commonCharacters;
    }
    function Jaro( $string1, $string2 ){
        $str1_len = strlen( $string1 );
        $str2_len = strlen( $string2 );
        // theoretical distance
        $distance = (int) floor(min( $str1_len, $str2_len ) / 2.0);
        // get common characters
        $commons1 = getCommonCharacters( $string1, $string2, $distance );
        $commons2 = getCommonCharacters( $string2, $string1, $distance );
        if( ($commonsl_len = strlen( $commons1 )) == 0) return 0;
        if( ($commons2_len = strlen( $commons2 )) == 0) return 0;
        // calculate transpositions
        $transpositions = 0;
```

```
48: $upperBound = min( $commons1_len, $commons2_len );
49: for( $i = 0; $i < $upperBoun\overline{d}; $i++) {
50: if( $commons1[$i] != $commons2[$i] ) $transpositions++;
51: }
$transpositions /= 2.0;
// return the Jaro distance
    return ($commons1_len/($str1_len) + $commons2_len/($str2_len) + ($commons1_len -
$transpositions)/($commons1_len)) / 3.0;
57:
}
function getPrefixLength( $string1, $string2, $MINPREFIXLENGTH = 4 ){
    $n = min( array( $MINPREFIXLENGTH, strlen($string1), strlen($string2) ) );
    for($i = 0; $i < $n; $i++) {
        if( $string1[$i] != $string2[$i] ){
            // return index of first occurrence of different characters
            return $i;
            }
        }
        // first n characters are the same
        return $n;
    }
    function JaroWinkler($string1, $string2, $PREFIXSCALE = 0.1 ){
        $JaroDistance = Jaro( $string1, $string2 );
        $prefixLength = getPrefixLength( $string1, $string2 );
        return $JaroDistance + $prefixLength * $PREFIXSCALE * (1.0 - $JaroDistance);
    }
?>
```


Listing of "ratcliffObershelp.php", with embedded [16]

```
    <?php
    * compares two strings and returns longest common substring
    * Compares the two source strings character by character, captures every common
substring
    6:
less than
    7:
substrings,
    8:
    * the one that appears first in the first source string is returned.
    * @author Charlie Greenbacker charlie@artificialminds.net
    * @param $str1 - String - first source string for comparison
    * @param $str2 - String - second source string for comparison
    * @return String - longest common substring of the two source strings
    */
            function longest_common_substring($str1, $str2)
            {
        $arySubstrings = array(); //stores all common substrings
        //iterate one-by-one through every character in both strings
        for ($i = 0; $i < strlen($str1); $i++) {
            for ($j = 0; $j < strlen($str2); $j++) {
            if (substr($str1, $i, 1) == substr($str2, $j, 1)) { //initial match
                    $substring = substr($str1, $i, 1); //start with first 2 matching
24:
    25:
    /* $i_temp is used to move character-by-character in $str1 while
keeping track
26:
    * of the starting position of the substring with $i
```

```
27: */
28: 
in $str2
    $j = $j + 1; //move to the next character after the initial match
    /* continue while subsequent character pairs match and the ends of
both strings
    * have not been reached
    */
    while (($str1{$i_temp} == $str2{$j}) && ($i_temp < strlen($str1))
&& ($j < strlen($str2))) {
    34: //append this matched character to the end of the substring
        $substring .= $str1{$i_temp};
        $i_temp++; //move to the next character pair
        $j++;
    }
    $arySubstrings[] = trim($substring);
    }
        }
        }
        $arySubstrings = array_unique($arySubstrings); //remove duplicate common
substrings
    /* return the longest substring in the array; if more than one are longest,
        * the first of them is returned
        */
        $strLCS = $arySubstrings[0];
        foreach ($arySubstrings as $strCurrent) {
            if (strlen($strCurrent) > strlen($strLCS)) {
                        $strLCS = $strCurrent;
                }
                }
                return $strLCS;
            }
        function Ratcliff($string1, $string2) {
        $blocks[0][0] = $string1;
        $blocks[0][1] = $string2;
        $m = 0;
        do {
        $words = array pop($blocks);
        $common = longest_common_substring($words[0], $words[1]);
        if (!$common) {continue;}
        $m += strlen($common);
        $leftWord1 = trim(strstr($words[0], $common, true));
        $rightWord1 = trim(strstr($words[0], $common));
        $leftWord2 = trim(strstr($words[1], $common, true));
        $rightWord2 = trim(strstr($words[1], $common));
        for ($i=0; $i<strlen($common); $i++) {$rightWord1[$i]=""; $rightWord2[$i]="";}
        if ($leftWord1 && $leftWord2) {array_push( $blocks, array($leftWord1,
$leftWord2) );
    81: if ($rightWord1 && $rightWord2) {array_push( $blocks, array($rightWord1,
$rightWord2) );
    82: }
    83: while (count($blocks));
    84: $5core = (2*$m) / ( strlen($string1) + strlen($string2) )
        return $score;
        }
        ?>
```

