УДК 658.846.6/7:629.7

ИСПОЛЬЗОВАНИЕ МЕТОДА ПОСЛЕДОВАТЕЛЬНОЙ СЕПАРАЦИИ (ПС) для решения задачи коммивояжёра

С. В. ПЕТРУНИН

Статья представлена профессором, доктором экономических наук Артамоновым Б.В.

Для решения задачи коммивояжёра сначала с помощью метода ПС находится решение задачи о назначениях, в которой введены штрафные функции для диагональных элементов матрицы коэффициентов целевой функции. Полученное решение можно интерпретировать как результат создания одного или нескольких замкнутых маршрутов. Если маршрут один - решение задачи коммивояжёра получено. Для нескольких замкнутых маршрутов в работе предлагается метод построения из них одного оптимального маршрута.

Ключевые слова: последовательная сепарация, коммивояжер, маршрут.

Одной из наиболее часто встречающихся задач в экономике и логистике является так называемая задача коммивояжёра. Постановка задачи такова: имеется п городов, стоимость между которыми задана матрицей $|c_{ij}|$, i=1,n, j=1,n. Коммивояжёр должен побывать в каждом городе один раз и вернуться в исходный пункт маршрута, затратив при этом минимум денег. Задачу можно сформулировать так: найти минимум функции С при выполнении ограничений (1), (2) и неотрицательности переменных x_{ij} (4).

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad i = 1, n \tag{1}$$

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad i = 1, n$$

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad j = 1, n$$
(2)

$$C = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min$$
 (3)

$$x_{ij}$$
 либо 1, либо 0. (4)

Также требуется, чтобы не было замкнутых маршрутов, кроме одного, включающего все города (условие незамкнутости). Часть этого условия, касающуюся одного и того же города, можно записать в виде равенств $x_{ii} = 0$ при i = j. Другое ограничение, накладываемое на переменные x_{ii} , обеспечивает замкнутость маршрута и отсутствие петель:

$$U_i - U_j + nx \le n-1 \quad i = 1, n \quad j = 1, n \quad i \ne j.$$

Для реализации равенств (1)-(4) достаточно ввести штрафные функции, положив $c_{kp}>c_{ijmax}$ при k = p, где c_{ijmax} - максимальное значение для всех c_{ij} . Общеизвестным методом подобной задачи является метод ветвей и границ, в основе которого лежат следующие этапы:

- вычисление нижней границы (оценки),
- разбиение на подмножества, т.е. ветвление,
- расчёт оценок,
- нахождение решений,
- определение признака оптимальности,
- оценка точности приближённого решения.

В данной статье предлагается для решения задачи коммивояжёра другой метод, а именно метод ПС [1]. Дело в том, что без учёта условия незамкнутости ограничения (1)-(4) полностью

С. В. Петрунин

совпадают с ограничениями задачи о назначениях, которая достаточно эффективно решается методом ПС.

Алгоритм решения задачи коммивояжёра таков. Решаем задачу о назначениях. Полученное решение а) либо представляет замкнутый маршрут, включающий все города, б) либо представляет совокупность нескольких замкнутых локальных маршрутов. Случай а) представляет собой и решение задачи коммивояжёра, т.е. решение задачи о назначениях даёт одновременно решение задачи коммивояжёра. Для получения требуемого решения из случая б) следует разорвать замкнутые ветви и соединить их в один замкнутый маршрут наименьшей стоимости. Пусть решение задачи о назначениях представимо в виде двух замкнутых маршрутов: АВС и DEF (рис. 1). Следует соединить эти маршруты в один так, чтобы увеличение целевой функции было минимальным.

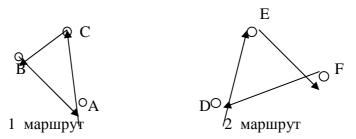


Рис. 1. Два замкнутых маршрута

Осуществляется это с помощью алгоритма, состоящего из следующих этапов:

1. В качестве исходных ветвей выбираются ветви, входящие в оптимальные решения задачи о назначениях. Для каждой такой ветви подсчитывается оценка по выражению:

$$\beta_{kr} = \min_{i=1,n;i\neq k} \{c_{ir}\} + \min_{j=1,n;j\neq r} \{c_{kj}\}.$$

По существу, эта оценка говорит о том, насколько увеличится целевая функция, если эта ветвь не войдет в оптимальное решение.

- 2. Из рассмотренных ветвей выбирается ветвь с максимальным значением оценки, т.е. $\beta_{sp} = \max_{\{k,r\}} \{\beta_{k,r}\}$. Её начало характеризует точка s, конец точка p.
- 3. Эта ветвь должна остаться в оптимальной цепи. Если уже есть часть оптимальной цепи (с начальной точкой α и конечной точкой σ), то могут быть три варианта:
- 1) ветвь можно поставить в начало цепи, если показатель начала цепи одинаков с показателем конца ветви, т.е. $\alpha = p$,
- 2) ветвь можно поставить в конец цепи, если показатель конца цепи равен показателю начала ветви, т.е. $\sigma = s$,
 - 3) ветвь нельзя поставить ни в начало, ни в конец цепи, т.е. $\alpha \neq p$ и $\sigma \neq s$. Следует предусмотреть невозможность организации частных замкнутых маршрутов.

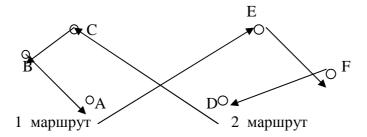


Рис. 2. Оптимальный маршрут

Поэтому следует сделать запреты на переход в вариантах:

- а) от точки конца цепи σ к точке s,
- б) от точки p к точке начала цепи α ,
- в) от точки p к точке s.
- 4. Перейти к этапу 1, исключив уже рассмотренные ветви.

	1	2	3	4	5	6
1	50	4	9	5	8	2
2	4	50	5	7	2	8
3	7	3	50	5	3	2
4	4	2	7	50	3	6
5	6	2	3	7	50	3
6	5	3	8	3	5	50

Транспортная задача, задача о назначениях и задача коммивояжёра имеют близкую структуру, поэтому предлагается универсальная программа для решения этих задач. Программа реализована на языке СУБД Fox-Pro, что позволяет удобно вводить исходную информацию.

	1	2	3	4	5	6
1	50	2	6	3	6	0*
2	0*	50	2	5	0	6*
3	3	0*	50	3	0*	0
4	0*	0*	4	50	1	4
5	2	0	0*	5	50	1
6	0	0	4	0*	2	50

Продемонстрируем работу алгоритма на конкретном примере. Пусть стоимости переезда из города i в город j заданы матрицей. Следует найти маршрут минимальной стоимости, включающий все города по одному разу. Диагональные элементы содержат штрафные функции ($c_{ss} = 50$), запрещающие поездку из города в тот же город. Решение задачи о назначениях, полученное с помощью ПС-метода [1], даёт следующую матрицу, где элементы, входящие в оптимальные решения, помечены знаком *. Величины β для этих точек равны: (1,6) - 2, (2,1) – 0,

(2,6) - 0, (3,2) - 0, (3,5) - 0, (4,1) - 0, (4,2) - 0, (5,3) - 2, (6,4) - 3. Наибольшая из них величина - 3, она соответствует ветви 6 - 4.

	1	2	3	5	6
1	50	2	6	6	0*
2	0*	50	2	0	6*
3	3	0*	50	0*	0
4	0*	0*	4	1	50
5	2	0	0*	50	1

Поэтому эта ветвь входит в оптимальную цепь, при этом ветвь 4-6 недопустима. Недопустимые ветви обозначим жирным шифром. Матрица упрощается. Определяем β для оставшихся точек: (1,6) - 2, (2,1) - 0, (2,6) - 0, (3,2) - 0, (3,5) - 0, (4,1) - 0, (4,2) - 0, (5,3) - 2.

	1	2	3	5
2	0*	50	2	0
3	3	1*	50	50
4	50	0*	4	1
5	2	0	0*	50

Наибольшая величина соответствует ветви 1-6. Эту ветвь можно присоединить к началу оптимальной цепи. Тогда оптимальная цепь примет вид: 1-6-4. Ветвь 4-1 недопустима. При следующем анализе наибольшая величина будет у ветви 5-3. Связать её с оптимальной цепью нельзя.

	1	2	3	5
2	0*	50	2	0
3	3	1*	50	50
4	50	0*	4	1

(3,2) - 3, (4,2) - 2. Ветвь 2-1 можно подсоединить к началу оптимальной цепи, т. е. цепь примет вид: 2-1-6-4, а ветвь 4-2 будет недопустима.

Ветвь 3-5 недопустима. Для оставшихся точек получаем: (2,1)-3,

	1	2	3	5
3	3	1*	50	50
4	50	50	4	1

Из оставшейся матрицы следует появление в оптимальной цепи ветвей 3-2 (ветвь 4-3 будет недопустимой) и 4-5.

	2	5
3	1*	50
4	50	1

Окончательная оптимальная цепь имеет вид: 2-1-6-4-5-3-2, что отражено в окончательной таблице. Величина целевой функции равна 18. Предложенный метод был успешно применён к большому числу задач.

90 С. В. Петрунин

	1	2	3	4	5	6
1	0	0	0	0	0	1
2	1	0	0	0	0	0
3	0	1	0	0	0	0
4	0	0	0	0	1	0
5	0	0	1	0	0	0
6	0	0	0	1	0	0

ЛИТЕРАТУРА

1. Петрунин С. В. Некоторые свойства задач линейного программирования транспортного типа и использование их для решения // Научный Вестник МГТУ ГА, серия Физика и математика, № 42, 2001.

EMPLOYMENT OF PERMANENT SEPARATION'S METHOD FOR SOLUTION OF TRAVELING SALESMAN PROBLEMS

Petrounine S. V.

New method of solution transport type's problems of linear programming based on characteristics of a matrix of factors of criterion function is proposed. These characteristics give a chance to determine all variables, which are equal zero in optimal solution. This article contains information about used method PC for solved traveling salesman problem.

Сведения об авторе

Петрунин Станислав Владимирович, 1936 г. р., окончил ЛПИ (1959), кандидат технических наук, доцент кафедры экономики ГА МГТУ ГА, автор свыше 30 научных работ, область научных интересов - исследование операций, логистика.