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A Novel Artificial Intelligence Method for Weekly
Dietary Menu Planning
B. Gaál, I. Vassányi, G. Kozmann
Department of Information Systems, University of Veszprém, Hungary

Summary
Objectives: Menu planning is an important part of per-
sonalized lifestyle counseling. The paper describes the
results of an automated menu generator (MenuGene)
of the web-based lifestyle counseling system Cordelia
that provides personalized advice to prevent cardio-
vascular diseases.
Methods: The menu generator uses genetic algorithms
to prepare weekly menus for web users. The objectives
are derived from personal medical data collected via
forms in Cordelia, combined with general nutritional
guidelines. The weekly menu is modeled as a multi-
level structure.
Results: Results show that the genetic algorithm-based
method succeeds in planning dietary menus that satisfy
strict numerical constraints on every nutritional level
(meal, daily basis, weekly basis). The rule-based as-
sessment proved capable of manipulating the mean
occurrence of the nutritional components thus providing
a method for adjusting the variety and harmony of the
menu plans.
Conclusions: By splitting the problem into well deter-
mined sub-problems, weekly menu plans that satisfy
nutritional constraints and have well assorted com-
ponents can be generated with the same method that
is for daily and meal plan generation.

Keywords
Genetic algorithms, multi-objective optimization,
nutrition counseling

Methods Inf Med 2005; 44: 655–64

Received: July 29, 2004; accepted: May 16, 2005 Methods Inf Med 5/2005

655

© 2005 Schattauer GmbH

1. Introduction

The Internet is a common medium for life-
style counseling systems. Most systems
provide only general advice in a particular
field; others employ forms to categorize the
user in order to give more specific in-
formation. They also often contain inter-
active tools for menu planning [1].

The aim of the Cordelia project [2] is to
promote the prevention of cardiovascular
diseases (CD), identified as the leading
cause of death in Hungary, by providing
personalized advice on various aspects of
lifestyle, an important part of which is nutri-
tion.

MenuGene, the automated menu planner
integrated with Cordelia uses the computa-
tional potential of today’s computers, which
offers algorithmic solutions to hard prob-
lems. The quality of these computer-made
solutions may be lower than those of quali-
fied human professionals, but they can be
computed on demand and in unlimited
quantities. Nutrition counseling is one of
these kinds of problems. Human profes-
sionals possibly surpass computer algo-
rithms in quality, although research com-
paring performance has been ongoing since
the 1960’s.

In 1964 Balintfy developed a linear pro-
gramming method for optimizing menus [3]
and Eckstein used random search to satisfy
nutrient constraints [4]. Later, artificial in-
telligence methods were developed mostly
using Case-Based Reasoning (CBR) or
Rule-Based Reasoning (RBR) or combin-
ing the two with other techniques [5]. A
hybrid CBR-RBR system CAMPER [6] in-
tegrates the advantages of the two indepen-
dent implementations: the case-based menu
planner, CAMP [7] and PRISM [8]. A more
recent CBR approach is MIKAS, menu con-
struction using incremental knowledge ac-

quisition system [9]. MIKAS allows the in-
cremental development of its knowledge
base. Whenever the results are unsatisfac-
tory, an expert will manually modify the
system-produced diet [10]. A web-based
system that models the workflow of die-
titians has recently been built in Malaysia
for dietary menu generation and manage-
ment [11].

The core idea of our algorithm is the hier-
archical organization and parallel solution
of the problem. Through the decomposition
of the weekly menu planning problem, nu-
trient constraints can simultaneously be sat-
isfied on the level of meals, daily plans and
weekly plans. This feature, which is a novel-
ty, makes the implementation of our method
instantly applicable in practice.

2. Objectives
There is no generally accepted method for
producing a good menu. Additionally, a
menu plan, whether it is weekly, daily or
single meal, can only be evaluated when it is
fully constructed. So the basic objective of
our work is to design a menu planner that
also includes some method to evaluate
menu plans.

2.1 Evaluation of Menu Plans
The evaluation of a meal plan has at least
two aspects. Firstly, we must consider the
quantity of nutrients. There are well defined
constraints for the intake of nutrient compo-
nents such as carbohydrates, fat or protein
which can be computed for everybody,
given his/her age, gender, body mass, type
of work, age and diseases. Optimal and ex-
treme values can be specified for each nu-
trient component. So as for quantity, the task
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of planning a meal can be formulated as a
constraint satisfaction and optimization
problem.

Secondly, the harmony of the meal’s
components should be considered. Plans
satisfying nutritional constraints should
also be appetizing. The dishes of a meal
should go together. By common sense some
dishes or nutrients do not appeal in the way
others do. This common sense of taste and
cuisine can be described by simple rules re-
cording the components that should fit to-
gether.

There could be conflicting numerical
constraints or harmony rules. A study found
that menus made by professionals may fail
to satisfy all of the nutrient constraints [12].

2.2 Calculation of Personalized
Objectives
The information collected via web forms in
Cordelia explores controllable and uncon-
trollable risk factors for CD. Controllable
risk factors include smoking, high blood
pressure, diabetes, high cholesterol level,
obesitas, lack of physical activity, stress and
oral contraceptives. Uncontrollable factors
considered are age, gender and family CD
history. Based on the answers, the user is
classified, the classification being a com-
bination of factors like weight, high choles-
terol, etc.

MenuGene uses the user’s classification
and all other useful observations (like the
gender) and personal preferences (set by the
user) to plan daily and weekly menus. This
information is used to design the actual run-
time parameters (objectives) of the menu to
be generated when MenuGene is run. The
nutritional allowances are looked-up from a

table similar to Dietary Reference Intakes
(DRI) [13, 14].

The fact base of MenuGene was loaded
with the data of a commercial nutritional
database, developed especially for Hungar-
ian lifestyle and cuisine, that at present con-
tains the recipes of 569 dishes with 1054
ingredients. The database stores the nutri-
tional composition of the ingredients. The
recipes specify the quantity of each ingredi-
ent in the meal, so the nutrients of a meal can
be calculated by summation. At present, the
nutrients contained in the database for each
ingredient are energy, protein, fat, carbohy-
drates, fiber, salt, water, and potassium. Ad-
ditionally, the database contains the catego-
rization of the ingredient as either of the fol-
lowing: cereal, vegetable, fruit, dairy, meat
or egg, fat and candy. This classification is
used by MenuGene to check whether the
overall composition (with respect to the
ratio of the categories) conforms to the rec-
ommendations of the “food pyramid”.

3. Methods
MenuGene uses genetic algorithms for the
generation of dietary plans. A genetic algo-
rithm (GA) is an algorithm used for the sol-
ution of difficult problems by the appli-
cation of the principles of evolutionary biol-
ogy and computer science. Genetic algo-
rithms use techniques such as inheritance,
mutation, natural selection and recom-
bination derived from biology. In GAs a
population of abstract representations of
candidate solutions (also called chromo-
somes, genomes or individuals) evolves to-
ward better solutions. The evolution starts
with a population containing random indi-

viduals and happens in generations, in
which stochastically selected individuals
are modified (via recombination or mu-
tation) to form the population of the next
iteration. The attributes (also called alleles)
of the chromosomes contain the informa-
tion where each attribute represents a prop-
erty. Genetic algorithms are used widely in
the medical field [15-18].

GAs showed their strength in satisfying
optimization problems; therefore we exam-
ined their efficiency in the generation of
meal plans meeting quantitative nutrition
constraints. Test software was developed to
analyze the adequacy of GAs. Experiments
are highlighted in the results section.

3.1 Evolutionary Operators
In order to start the search process, we first
need an initial population. This may be cre-
ated randomly or may be loaded from a data-
base containing solutions of similar cases
(Case Based Reasoning). The population in
our tests contained 40 to 200 individuals,
which are meals if we plan a single meal,
daily menus if we plan a daily menu etc.

In the case of a meal plan, the population
contains meals, the attributes of which are
dishes. Then, in each iteration step, we per-
form a sequence of the evolutionary oper-
ators (crossover, mutation, selection) on the
individuals. We stop the evolution process
after a maximum of 1000 cycles or when no
significant improvement could be achieved.
The best individual of the final population is
selected as the solution.

The evolutionary operators are presented
through the following example. A regular
Hungarian lunch consists of five parts: 1) a
soup, a main dish of 2) a garnish (e.g.
mashed potatoes) and 3) a topping (e.g. a
slice of meat), 4) a drink, and 5) a dessert.
So, a solution for a regular Hungarian lunch
contains five attributes. The crossover (also
called recombination) operator involves two
solutions and it means that starting at a ran-
dom point, their attributes are swapped. For
example, if the starting point is the last at-
tribute, then crossover means the exchange
of the desserts. Mutation replaces a ran-
domly selected dish with another one of the
right sort (e.g. a soup with another soup).

Table 1 The crossover operator is shown in the table in function of the nutritional level. Legend: M – Monday, Tu – Tues-
day, W – Wednesday, Th – Thursday, F – Friday, Sa – Saturday, Su – Sunday, BF – breakfast, MS – morning snack, L – lunch,
AS – afternoon snack, D – dinner, S – soup, G – garnish, T – topping, Dr – drink, De – dessert, cp – crossover point
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The single point crossover (recom-
bination) operator is shown in Table 1. Re-
combination is done by randomly choosing
a crossover point (cp) and creating two off-
springs by exchanging the attributes of the
solutions from that point on. On the weekly
level, the attributes of the solutions repre-
sent daily menu plans. In the example in
Table 1 we apply crossover to weekly level
solutions, with a randomly chosen crossover
point (cp = 3). The first offspring will con-
tain the daily menu plans for Monday, Tues-
day and Wednesday from the first parent
and Thursday, Friday, Saturday and Sunday
from the second parent. The genetic oper-
ators work on the abstract solution and at-
tribute classes and do not operate on prob-
lem-specific data, thus the same method is
used on every level.

3.2 Fitness Function
Whenever a new individual (offspring) is
created by mutation or recombination, the
fitness function assesses it according to its
goodness. As for numerical constraints, the
fitness function has to filter out solutions
having an inadequate amount of nutrients.
The fitness of a solution is defined by the
sums of functions composed of four quad-
ratic curves that take their maximum (0) at
the specified optimum parameters, and
break down abruptly over the upper and
lower limit parameters (see Fig. 1.). For
example, if a set of constraints (upper and
lower limit, optimal value) is separately de-
fined for carbohydrates and proteins, then
the fitness is a sum of the two values taken
from the two penalty functions for the
carbohydrate and protein curves at the re-
spective amounts. The actual fitness value
bears no concrete physical meaning; it is
used only for comparison and selection. The
individuals with the highest (i.e. closest to
zero) fitness values are considered the best
solutions for the search problem.

The penalty function is thus designed
that it should not differentiate small devi-
ations from the optimum but be strict on
values that are not in the interval defined
by the constraints. The function is non-sym-
metric to the optimum, because the effects
of the deviations from the optimal value can

be different in the negative and positive
case. These penalties have been derived
from the manual assessment methods of
our nutritional expert. This sort of penalty-
based fitness function is also often applied
in other multi-objective optimization tech-
niques [19].

After the goodness is computed as a
function of the numerical constraints, the
fitness function examines whether the at-
tributes of the solution are well assorted.
Rules are used for classification according
to the harmony of the components.

Each rule has two parts: conditions and
fitness modification value. The general
form of the rules is ri = 〈condition1, ..., con-
ditionn, fitness modification value〉. The fit-
ness value (which is less or equal to zero)
should be divided by the modification value
so that if less than one, the fitness will de-
crease.

Our nutrition expert organizes every
food in our database into sets. The structure
of these sets are very similar to those of
PRISM [8].

〈meat〉 → 〈white meat〉|〈red meat〉

〈white meat〉 → 〈chicken〉|〈fish〉,
〈red meat〉 → 〈beef〉|〈porc〉,

〈lunch〉 →
〈lunch_with_white_meat〉|〈lunch_
with_red_ meat〉|〈vegetarian_lunch〉

The conditions part of the rules on the level of
meals contains one or more dish sets (e.g. dry
top) or specific dishes (e.g. tomato soup).
Some example rules might look like these:

r1 = 〈dry top, dry garnish, 0.75〉,
r2 = 〈tomato soup, tomato drink, 0.6〉,
r3 = 〈dry top, dry garnish, pickles, 0.8〉,
r4 = 〈candy, 0.7〉

Rule r2 means that for each meal that con-
tains tomato soup and tomato drink the sys-
tem will replace the fitness with 60% of the
original value. Rule r3 penalizes the simul-
taneous occurrence of three dishes while
rule r4 penalizes solutions with any kind of
candy.

Rules may be applied and configured for
any level (e.g. daily level, meal level) of the
algorithm. So, if the above rule r2 is applied
at the daily level, it will reduce the fitness
to 60% of those daily menus that contain
tomato soup and tomato drink anywhere in
their meals.

Only the most appropriate rules are ap-
plied. For example, if we have a meal plan
that contains tomato soup and tomato drink
then from the rules r2 = 〈tomato soup, to-
mato drink, 0.6〉 and r5 = 〈soups, tomato
drink, 0.72〉 only the former is applied be-
cause it is more specific. Only the strictest
rule is applied from two or more rules with
the same condition parts.

3.3 Divide and Conquer
There are several common features in the
different nutritional levels (meal plan, daily
plan, weekly plan). For example, both a
meal and a daily plan can be considered a
solution of a GA, where the attributes of
daily plans are meals and the attributes of
meals are dishes (see Fig. 2.). The problem

Fig. 1
The Fitness function with
optimum = 300, lower
limit = 100, upper limit
= 700
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of generating weekly menus can be divided
into sub-problems, which in turn can be
solved the same way using GAs. Recently
a similar approach, a multi-level GA, was
presented and tested on a multi-objective
optimization problem [20]. For solving the
problem, we created a C++ framework
called GSLib, which uses the functions pro-
vided by the GALib [21] genetic algorithm
library for running a standard, parameter-
ized evolution process on the current popu-
lation. GSLib is abstracted from the menu
generation problem and uses abstract

classes such as “solution” and “attribute” to
represent the information related to the opti-
mization and constraint satisfaction prob-
lems. The role of GSLib is the algorithmic
setup, and the multi-level divide/conquer
style scheduling and operation of the ab-
stract evolution processes at various levels
in the test system Menugene. For a descrip-
tion of possible scheduling strategies see
Section 3.4.

Because of the abstract framework,
every kind of meal can be represented and
every kind of plan can be generated irre-

spectively of national cuisine, eating habits
and nutrition database. For example, in
Hungarian hospitals, “hot dinners” contain-
ing at least a hot soup are served two times a
week.A solution type for this kind of weekly
plan can be easily recorded in our database.
It would contain five “regular daily plan
with cold dinner” attributes for every day
except Thursday and Sunday where there
would be attributes for “regular daily plan
with hot dinner”.Another example would be
a school cafeteria, where only breakfasts,
morning snacks and lunches are served.
Five attributes for “daily plan for school re-
fectories” would make up the solution for a
weekly plan (only for weekdays).

3.4. Simultaneous Generation
of Different Level Menu Plans
The generation of weekly menu plans could
be done in sequential form. Meal level GAs
could create meals from dishes and these
meals could then be used as a fact base to
generate daily plans. The same applies for
weekly menu plan generation. However, our
method can run the different level GAs in a
concerted manner. Table 2 gives an over-
view of the currently implemented mu-
tation-based GA scheduling strategy and
other alternatives as well.

Columns 4 and 5 of Table 2 show the se-
quence of how GSLib fires the evolution
processes on the various levels for the top-
down and bottom-up strategies, respective-
ly. For example, the top-down strategy starts
with an initial population (loaded random-
ly or from the case-base) and goes on by
evolving the weekly level for a given num-
ber of iteration steps (multi-level iteration
step: 1). Then, the evolution proceeds on the
level of daily plans (2) by evolving the at-
tributes of the weekly menu plans. After the
second level, the process continues on the
level of meals (3), and after that, the evol-
ution restarts from the weekly level (4). The
multi-level scheduling for credit propaga-
tion and mutation-based strategy are also
described in Table 2. In any strategy, there is
no evolution on the level of dishes, nourish-
ments, and nourishment components. The
estimated number of instances of the sol-
ution and attribute classes is shown in

Fig. 2 The multi-level structure of the algorithm. Concrete examples are in square brackets.
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column 3. Note that by exploiting a copy-
on-write technique, most instances of the
classes are virtual and stored in the same
memory location.

In contrast to the sequential method, we
keep all of the adjustable parameters of the
various levels in the memory to provide a
larger search space in which generally better
solutions can be found. So, if a GA evolving
daily menu plans can’t satisfy its constraints
and rules, its fact base (which consists of
meals) can be improved by further evolving
the populations on the level of meals.

3.5 Case-based Initialization of
Initial Populations
Solutions found for a given problem (for
example: low cholesterol breakfast plans)
can be reused by loading them to the appro-
priate initial populations. We therefore store
some of the best solutions found for each
sub-problem. Whenever Menugene begins
to create a new plan which should satisfy
some constraints, it searches its database for
solutions that were generated with similar
constraints and loads them as an initial/
startup population.

4. Results
4.1 Optimal Crossover and
Mutation Rates

We performed tests to explore the best algo-
rithmic setup. First we analyzed the effect of
the crossover and mutation probabilities on
fitness. We used the same randomly gener-
ated initial populations for the tests, and
averaged the results of ten runs in each con-
figuration.

The results showed that while the prob-
ability of the crossover does not influence
the fitness too much, a mutation rate well
above 10% is desirable, particularly for

smaller populations. This result is surpris-
ing at first, as the literature of GA generally
does not recommend mutation rates above
0.1 … 0.5%. However, due to the relatively
large number of possible alleles, we need
high mutation rates to ensure that all candi-
date alleles are actually considered in the
evolution process.

4.2 Fast Convergence to Best
Available Solution
Runtime performance is an important factor
for MenuGene as it must run as an on-line
service in Cordelia. Runtime is determined
by the number of operations to be per-

Table 2 The multi-level GA scheduling strategies (top-down, bottom-up, credit propagation, mutation-based) in function of algorithmic levels

Level Object

Weekly Population

Sol

Attr

Daily Sol

Attr

Meal Sol

Attr

Dish Sol

Number
of instances

1

40

280

14000

70000

84e+05

336e+05

756e+07

Top-down

1.

2.

3.

No evolutionary process on these levelsNourishment

Nourishment
component

Attr

Sol

Attr

Sol

6804e+07

68e+09

544e+09

544e+09

4.

5.

6.

7.

8.

9.

Bottom-up

3.

2.

1.

6.

5.

4.

9.

8.

7.

Credit propagation

Start with a defined amount of credit and decide
on each level what to use it for

1. for evolving the current level

2. use part of the credit and share the other part among
the lower level objects

3. share all of the credit among the lower level objects

Mutation-based

Fire evolution on lower levels
when mutation occurs

normal mutation

Fig. 3
Runtime of MenuGene in
various algorithmic set-
ups. Each dot represents
the result of a test run.
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formed in each generation. Not surprising-
ly, we observed a strong linear connection
between the probabilities of mutation and
crossover, and runtime. However, our main
concern is the quality of the solution. So we
examined the connection between the run-
time and the quality of the solution in a wide
range of algorithmic setups (adjusted pa-
rameters were number of iteration, popu-
lation size, probability of mutation and
crossover).

As Figure 3 shows, although the quality
of the solutions improves with longer run-
times (whether it is the effect of any of the
adjusted parameters), the pace of improve-
ment is very slow after a certain time, and,
on the other hand, a solution of quite good
quality is produced within this time. This
means that it is enough to run the algorithm
until the envelope curve starts to saturate.

The convergence of the algorithm was
measured with test runs generating meal
plans. Constraints were energy (min = 4190
kJ, opt = 4200 kJ, max = 4210 kJ) and pro-
tein (29 g, 29.27 g, 29.5 g), population size
was 200, and probability of crossover and
mutation was 0.9 and 0.2. Results show that
with two constraints, a satisfactory solution
was found in 6.2 iterations on average (14
iterations in the worst case). As Figure 4
shows, there is hardly any improvement in
the quality of the solution after 250 iter-
ations, so a nearly optimal plan can be found
in this time.

4.3 Reaction to the Gradual
Diminution of Constraints

We tested the reaction of the algorithm to
the gradual diminution of constraints. Mini-
mal and maximal values were two times the
size of the suggested at the start and were
gradually decreased to be virtually equal
from the aspect of human nutrition. More
than 150,000 tests were run. The tests
showed that our method is capable of gener-
ating nutritional plans, even where the mini-
mal and maximal allowed values of one or
two constraints are virtually equal and the
algorithm finds a nearly optimal solution
when there are three or four constraints of
this kind. According to our nutritionist,
there is no need for constraints with virtu-
ally equal minimal and maximal values, and
in most pathological cases the strict regu-
lation of four parameters is sufficient. Our
method has been proven capable of gener-
ating menus with meal plans that satisfy all
constraints for non-pathological nutrition.

4.4 Results of the Multi-level
Method
Generated plans satisfy numerical con-
straints on the level of meals, daily plans and
weekly plans. The multi-level generation
was tested with random and real world data.

The tests showed that for a mainstream desk-
top personal computer it takes between ten and
fifteen minutes to generate a weekly menu
plan with a randomly initialized population.
The weekly menus satisfied numerical con-
straints on the level of meals, daily plans and
weekly plans. Our tests showed that the rule-
based classification method successfully
omits components that don’t go well together.

The case-based initialization of the start-
up population increases the speed of the
generation process. Whenever a solution is
needed for a plan with constraints that has
been made previously it would be enough to
use the solution that can be found in the
case-base for these constraints. However,
with some iteration, the algorithm may find
better solutions than are in its initial popu-
lation at startup. If there was no improve-
ment in the best solution stored in the data-
base for a particular plan, it can be assumed
that one of the best solutions was found for
that menu plan.

4.5 Variety
Variety is a key factor when considering di-
etary plans. GAs use random choice for
guiding the evolution process for near-opti-
mum search, so if the search space is large
enough, the solution found should be close
to the optimum, but need not be similar in
several consecutive runs. However, GAs are
known for finding near-optimal solutions,
so if there are strict numerical constraints,
then it can easily happen that only a small
subset of solutions satisfies them (which are
close enough to the optimum), and the prob-
ability that the solutions don’t have similar
attributes is marginal. So, a method for ad-
justing the expected occurrence of the al-
leles of the GA is needed for providing suf-
ficient variety in the menu plans.

We measured the variety of menu plans
with constraints for regular dietary plans for
women aged between 19 and 31 with mental
occupation. The variety of the allele that
represents one of the 150 possible soups for
a regular lunch is shown in Figure 5. The
figure shows the occurrence (ordered by
frequency) of each of the 120 soups that
were present more than 15 times (0.1%) in
the best solutions in 15,000 test runs. The

Fig. 4 Distance from the optimum for the worst (upper curve), average (middle curve) and best (lower curve) solution of
ten runs, in the function of the number of iterations.
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most frequent soup in the best solutions of
15,000 runs was present 482 times (~3.2%),
the second 426 times (~2.8%) and the 50th
102 times (~0.7%). Figure 5. also shows
(lower part) the goodness of the best sol-
ution to which the corresponding alleles be-
long. The goodness of an allele is computed
by summing its best fitness (i.e. the best fit-
ness value of all solutions the allele was
part of) with the weighted best fitness val-
ues of its eight neighbors. The goodness
of the ith allele is defined as: g[i] =

f [i] + [(1 – 0.2 j) · (f [i – j] + f [i – j])],

when f [i] is the fitness of the ith allele. The
trend curve (lower part) shows that solutions
containing frequent alleles generally have
better goodness.The results show that the al-
gorithm uses alleles appearing in good sol-
utions more often and the frequency of
usage is approximately inversely propor-
tional to the fitness of the best solution gen-
erated by using the particular allele.

However, it may happen that a run of the
algorithm with properly configured nutri-
tional constraints and rules results in a die-
tary plan that contains several occurrences
of same dishes or dishes made from the
same ingredients. Therefore, we allow more
general rules, like rs = 〈?, ?, 0.5〉 to be re-
corded in our rule-base, which also get
pre-processed during the initialization of
the algorithm. Rule rs will penalize every
solution that has the same value (solution)
represented by its attributes more than one
time. So, if rs is imposed on a daily menu
plan which contains orange drink for break-
fast and lunch as well, then the fitness of
this daily plan will be reduced by 50%.

We measured the effect of the rules on
the variety and mean occurrence of the al-
leles (drinks) considering the solutions for
the meal plan (lunch). The results of the sta-
tistical analysis are shown in Table 3. Two
rules (rA, rB) where imposed on two alleles,
respectively. The strictness of the rules was
decreased from 100% to 75%, 50% and
finally to 25%, giving a total of 16 config-
urations. Rule rA penalized the solutions
that contained drink “A” while rB penalized
solutions with drink “B”.The relative occur-
rences of “A” are shown in the function of
the strictness of the rules in Figure 6.

Fig. 5 The occurrences (ordered by relative frequency, upper figure) of 120 of the 150 possible alleles (soups) in the best
solutions (lunches) of 15,000 runs. The lower figure shows the goodness of the best solution which the respective soup was
part of.

Table 3 Statistical analysis of the distribution of the potential alleles (drinks) in the best solutions (lunches) and the mean
occurrence of the alleles (A, B) on which the rules were imposed.
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We employed a two-sample Kolmogo-
rov-Smirnov goodness-of-fit hypothesis
test with the significance level of 5% to the
two random samples created by recording
the alleles representing drinks in neighbor-
ing configurations, running 1000 times
each (using ten random populations, run-
ning each one 100 times). The table lists
those P values (denoted with KS) for which
the Kolmogorov-Smirnov test has shown
significant difference in the distribution of
the two independent samples.

We observed significant differences for
all of the test pairs with respect to increasing
the strictness of rA (rows in Table 3). How-
ever, the same was not true for all of the
pairs with respect to increasing the strict-
ness of rB (columns in Table 3.), so P values
are not listed for such pairs. The explanation
of this phenomenon is hidden in the differ-
ences between the occurrences of alleles A
and B without penalties, which are 436
(43.6%) for “A” and 68 (6.8%) for “B”, out
of the 1000 possible. Since the number of

instances of “A” is comparable to the possi-
ble instances, rule rA not only changes the
mean occurrence of “A”, but significantly
changes the distribution of the alleles. In
case of penalizing the meals with drink “A”
by 75%, the occurrence count of “A” de-
creases by 133 (~30%) from 436 (100%) to
303 (~70%). As Figure 7 shows, the 103 oc-
currences are shared somewhat propor-
tional among the other alleles (“A” is 15th,
“B” is the 12th allele in Fig. 7).

We performed a single sample Lilliefors
hypothesis test of composite normality on
the samples with an element size of 10 on
100 runs of the algorithm with 10 different
starting populations and counting the occur-
rences of “A” and “B”. The distribution of
the occurrences of “A” in function of the
starting populations proved normal, except
for one case. Again, due to the few occur-
rences of “B” in the test runs, we could not
determine its distribution. We paired the
samples of neighboring configurations and
if both had normal distribution with a sig-
nificance level of 5%, we employed paired
t-tests to check, if there is a significant dif-
ference in the mean occurrences of alleles
“A” and “B”. The results of the paired t-tests
are shown in Table 3, denoted with T. In case
of significant differences, the correspond-
ing P values are also listed. If one of the
samples did not have a normal distribution
we marked the case with an asterisk (*).

Since the sample distribution was not
known for more than half of the samples, we
employed the Wilcoxon signed rank test of
equality of medians with the significance
level of 5% on each sample pair to measure
whether there is significant difference be-
tween the mean occurrences. Results are
shown in Table 3 with the corresponding P
values, and are denoted with Sr. There were
only three situations where there was no
significant difference between the mean
occurrences. These cases are marked with
a hyphen (-).

5. Discussion
The single level tests showed that GAs are
capable of generating menu plans that satis-
fy strict nutritional constraints. The tests

Fig. 6
The relative occurrence of
a particular solution (A)
in function of the strictness
of two rules (penalizing
solutions A and B).

Fig. 7 Occurrence counts of the 15 possible alleles (drinks) in a solution (for lunch) in 1000 runs in function of the strictness
of the rule imposed on the 15th allele
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performed with the multi-level implemen-
tation show that constraint satisfaction re-
mains the same on every level. From the as-
pect of nutritional constraints, our method
outperforms present-day nutrition planning
systems. Recently developed nutrition plan-
ning systems such as CAMPER [6] main-
tain the constraints only on a daily basis, in
contrast, Menugene satisfies constraints on
the meal-by-meal, daily and weekly levels.

The high optimal mutation rate can be
surprising at first. However, the optimal
mutation probability should be high be-
cause a population with 100 or 200 individ-
uals can’t contain much genetic flavor in the
case of the menu generation problem. Mu-
tation is the only operator which can intro-
duce new genetic information in the popu-
lation. Until solutions with proper genetic
parameters appear in the population, the
relatively high mutation probability is
needed.

It is not necessary to generate the pa-
rameters of a nutritional plan simultane-
ously. If one or more parameters have been
previously set, the unassigned ones can be
generated in a way that the whole plan satis-
fies the relevant constraints. A practical ap-
plication of this feature is when one eats at
his/her workplace and can’t choose his/her
lunch for the weekdays. In this case, the
lunches of the weekly plan can be defined
by the end user at the beginning of the week
and MenuGene can develop the whole
weekly menu plan without changing these
lunches. Parameters of the plan can be
changed at any time; the algorithm is ca-
pable of adjusting the weekly plan to com-
pensate for deviations. From a quantitative
point of view, it is more important to keep
the nutritional constraints on a weekly basis
than to keep them on a daily basis or in a
meal. For this reason, MenuGene allows
relatively more deviation from the optimal
values on the lower levels (day/meal), and
tries to keep the strict constraints on a
weekly basis.

The advantage of our approach is that it
uses the same algorithm on every level, thus
the hierarchical structure is easily expand-
able. The method is capable of controlling
the nutrition on longer periods. Monthly op-
timizations could be performed without the
need to plan the whole monthly plan in one

run.After the first week, the plan for the sec-
ond week can be made with the previous
weekly plan in mind.

Harmony is more important on lower
levels. For example, a meal or a daily plan
with two dishes or meals with tomato is not
well assorted. These plans can successfully
be omitted with simple rules. We developed
the data structure of MenuGene in a way
that it can distinguish rules loaded by ex-
perts and users. In this way, users can define
their personalized rules. These rules are
only used for the user that defined them and
have lower priority than the rules given by
experts. As MenuGene uses the rules as pa-
rameters, the rule-base of the system can be
developed while the system is being used.
Incremental development of the rule-base is
similar to that implemented in MIKAS [8].
The increasing number of rules doesn’t have
an impact on the generation time of a plan
because the rule-base of the system is pre-
processed.

6. Conclusions
The paper described the results of the auto-
matic, parameterized menu planner Menu-
Gene that uses a multi-level multi-objective
genetic algorithm for a near-optimum
search. A genetic algorithm-based method
for weekly dietary plan design was pre-
sented with a fitness function that classifies
menus according to the amount of nutrients
and harmony. An abstract scheme was pro-
posed for the consistent handling of the dif-
ferent level problems, for the implementa-
tion of crossover and mutation and for the
coding of chromosomes as well as a fitness
function. Algorithmic tests revealed that a
relatively high mutation rate is desirable and
that after a certain time, the quality of the
solution does not improve much. Our tests
showed that GAs generally produce high
variety, at least in non-overparameterized
configurations, but in any case, rules can be
used to employ the desired level of variety
and harmony.

Future work on MenuGene includes the
development of parallel computation meth-
ods for improving the runtime of the co-
evolution process and the continuous im-

provement of MenuGene’s case-base and
rule-base with a web-based application that
was developed for human experts. The sys-
tem can be tested at http://menugene.irt.
vein.hu.
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