Procedural Content Generation for Game Props? A Study on the
Effects on User Experience

OLIVER KORN, Offenburg University

MICHAEL BLATZ, ADRIAN REES, and JAKOB SCHAAL, KORION GmbH
VALENT|N'_SCHW|ND, University of Stuttgart

DANIEL GORLICH, SRH Hochschule Heidelberg

This work demonstrates the potentials of procedural content generation (PCG) for games, focusing on the
generation of specific graphic props (reefs) in an explorer game.

We briefly portray the state-of-the-art of PCG and compare various methods to create random patterns
at runtime. Taking a step towards the game industry, we describe an actual game production and provide a
detailed pseudocode implementation showing how Perlin or Simplex noise can be used efficiently.

In a comparative study, we investigate two alternative implementations of a decisive game prop: once
created traditionally by artists and once generated by procedural algorithms. 41 test subjects played both
implementations. The analysis shows that PCG can create a user experience that is significantly more
realistic and at the same time perceived as more aesthetically pleasing. In addition, the ever-changing
nature of the procedurally generated environments is preferred with high significance, especially by players
aged 45 and above.

Categories and Subject Descriptors: 1.6.8 [Types of Simulation]: Gaming; Animation; K.8.0 [General]:
Games; D.2.9 [Management]: Productivity

General Terms: Design, Human Factors, Performance, Management
Additional Key Words and Phrases: Procedural content generation, game design, algorithms

ACM Reference Format:

Oliver Korn, Michael Blatz, Adrian Rees, Jakob Schaal, Valentin Schwind, and Daniel Gorlich. 2017. Proce-
dural content generation for game props? A study on the effects on user experience. Comput. Entertain. 15,
2, Article 1 (February 2017), 15 pages.

DOI: http://dx.doi.org/10.1145/2974026

INTRODUCTION AND MOTIVATION

In video games, graphics can be generated in different ways: on the one hand, there
is the traditional creation through skilled artists; on the other hand, graphics can be
generated by algorithms, i.e., procedurally. Thus, the programmers of the algorithm
partially substitute the work previously done by artists. This procedural content gen-
eration (PCQG) is getting more and more attention from the computer games industry.
Especially when many varied iterations of similar elements (e.g., trees, walls, swords)
are required, PCG is an interesting solution.

Authors’ addresses: O. Korn, Offenburg University, Badstr. 24, 77652 Offenburg, Germany; email: oliver.
korn@acm.org; M. Blatz, A. Rees, and J. Schaal, KORION GmbH, Moempelgardstr. 16, 71640 Ludwigsburg,
Germany; emails: {michael.blatz, adrian.rees, info}@korion.de; V. Schwind, University of Stuttgart, VIS,
Pfaffenwaldring 5a, 70569 Stuttgart, Germany; email: valentin.schwind@vis.uni-stuttgart.de; D. Goerlich,
SRH Hochschule Heidelberg, Ludwig-Guttmann-Str. 6, 69123 Heidelberg, Germany; email: daniel.goerlich@
hochschule-heidelberg.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2017 ACM 1544-3574/2017/02-ART1 $15.00

DOI: http://dx.doi.org/10.1145/2974026

Computers in Entertainment, Vol. 15, No. 2, Article 1, Publication date: February 2017.

http://dx.doi.org/10.1145/2974026
http://dx.doi.org/10.1145/2974026

1:2 O. Korn et al.

However, does PCG reach the quality of the artists? To address this question, we
need to look at the development of computer graphics. Just a few years back, the look
of games was mainly limited by technical possibilities. Today games like Minecraft use
a simple “pixel look” deliberately as a stylistic device [Persson 2011]. Therefore, the
current spectrum in game graphics reaches from pixel graphics from the era of the
Commodore 64 to high-definition 3D graphics [Jones 2013].

However, even the best graphics are no guarantee for appreciation. The Call of Duty
series undoubtedly is a flagship of the game industry, produced with great financial
and artistic effort. Still it is notoriously criticized for tube-like level maps with little
freedom of choice. Such restrictions are typical flaws of manually generated levels,
making this series a representative of state-of-the-art manual content generation.
However, the richness of detail and the cinematic quality of some dramatic moments
in the narration can only be achieved through a high level of control, at the cost of the
players’ freedom [Yannakakis and Togelius 2011].

When aiming at such cinematic experiences, more and more cost and effort are
required for the development of high-quality assets. A way to save resources is not using
the artists’ capacity for the production of similar assets. PCG, graphics can be modified
with a variety of randomized parameters at runtime, resulting in completely different
looks of generic assets like rocks or trees. As a logical next step, whole buildings and
eventually whole game worlds can be generated procedurally [Hosking 2013].

The successful game series Borderlands shows that PCG can not only be used to
generate diversity in graphics, but also in gameplay: a countless number of different
weapons, grenades and shields is randomly generated, creating the illusion of technical
variety und fueling the players’ passion for loot, resulting in a vivid game experience.

A holistic procedural approach is taken by Minecraft, which not only generates game
elements but the whole game world procedurally [Persson 2011]. Generation takes
place at runtime, making it possible to constantly discover new areas of the world. In
combination with the many ways to manipulate the game world, this generates a very
high replay value [Belinkie 2010]. Thus, the procedural approach is corresponding well
to a paradigm in game development: “the game enables the experience, but it is not the
experience” [Schell 2015].

Due to the many possibilities of PCG, it is difficult to create a universal formula
for the frequency and type of its implementation. Most games are either created with
PCG elements or without them—thus it usually is impossible to tell how the game
experience would have been different if another type of content generation had been
used. In order to create valid findings on the effects of PCG, a control condition is
required—a game that is identical in all aspects but one: using or not using PCG.

In the case study presented in this work, we used the production of the documentary
game Conquest of the Seven Seas [Korn et al. 2015b] by the game studio KORION to
do just that: one implementation is based on PCG while the other one is using the
traditional artist approach (Figure 1). Both alternatives were played and judged by
41 players. Based on the study, we examine the acceptance of PCG in different age
groups and validate if claims regarding the positive effect of PCG on the replay value
are substantiated.

BACKGROUND

For a better understanding of how PCG can be utilized in games, we provide a short
overview of the most influential methods to create procedural content.

Algorithms for generating procedural graphics are frequent in computer games; yet
there are others focusing on artificial intelligence (e.g., Al Director) or changes of state
(e.g., Markov chains). Thus, the implementation of specific PCG methods strongly
depends on the particular use case.

Computers in Entertainment, Vol. 15, No. 2, Article 1, Publication date: February 2017.

Procedural Content Generation for Game Props? A Study on the Effects on User Experience 1:9

Choosing the appropriate PCG method

The version without PCG featured nine manually generated reefs. Artists designed
them based on pictures of the Australian Great Barrier Reef. The corresponding PCG
implementation had to meet two requirements: respect the hardware limitations of
mobile devices and produce realistic results when compared to photographs of actual
reefs.

This scenario combined the typical limitations of PCG: shortage on resources
(see Introduction) and achieving the highest possible graphical quality (see State of
the Art). As the overall game had a realistic look consisting of very detailed sprites,
the reefs had to be designed at an equal level of detail to match the appearance. With
these demands in mind, the selection could be narrowed down to two methods of PCG:
self-avoiding fractals and Perlin noise. Both methods are suited to produce structures
similar to reefs. Finally, Perlin noise was selected for two reasons:

—The two-dimensional Perlin noise demands less computing effort.

—The generated noise image already offers a suitable structure making it possible to
only draw the desired area and blending the remaining greyscales with the surround-
ings through tone addition. With self-avoiding fractals, the final structure would have
to be calculated separately.

The developers from KORION implemented the procedural generation in
GameMaker Studio by YoYo Games. This IDE allows fast prototyping and offers basic
drawing operations as well as an HTML 5 export.

The pseudocode in Figure 7 shows an implementation of Perlin noise for the reef
structures. The algorithm consists of two parts: initialization and calculation. First, the
variables are set up to define the datatype, as the flooring of integer value calculations
is required. The frequency of supporting discrete gradient points in both directions
is doubled with each octave; the amplitude is multiplied with the persistence value.
Typically, five octaves are iterated.

At the start of each octave, the discrete gradients are randomly chosen between
-amplitude and +amplitude. Then every sample value is calculated in three steps:

(1) Calculate weight for each neighboring discrete gradient point;

(2) Bilinear interpolate these values (w00...w11) to the final result (for this sample at
this octave) by the Blend Function;

(3) Each interpolation is added to the final Perlin noise.

Due to the grey values being adjustable in Perlin noise, it was possible to specify
exactly, which values should be drawn, so, all values that were black or in dark grey
were assigned an alpha value of 0, excluding them from being drawn. The resulting
noise is normalized and cut off below 0.2. Removing this data resulted in the sharp
outline around the remaining values, generating the reef’s distinctive structure. This
structure is a result of the remaining values between 0.2 and 1.0, which are mapped to
grayscale color. Although Perlin noise typically is used for height maps with very soft
edges, this straightforward approach matches the natural appearance in the contours
of reefs very well.

A parametrized example for the function call would be: perlin2D(5, 32, 32, 1,
0.5, 1024, 1024);

We will shortly explain the parameters in this example to ease re-implementations
based on the algorithm presented in Figure 7:

—octaves [3-8]: The number of octaves. A higher number produces a higher quality
noise at the cost of performance. The amount of discrete gradients doubles with each
octave, so performance costs grow exponentially. Normally, a value of 5 is sufficient;

Computers in Entertainment, Vol. 15, No. 2, Article 1, Publication date: February 2017.

1:10 O. Korn et al.

values above 8 do not produce noticeable differences but cost a lot more processing
time. Values below 3 produce very low quality noises.

—startFrequencyX/Y [5-64]: Higher numbers produce higher fluctuations in the re-
sulting noise.

—startAmplitude [0.1-1.0]: This parameter’s effect depends on the use of the noise.
Higher values result in higher values in the generated noise and vice-versa. If the
noise is normalized after generation, the value has no effect as long as it is above or
equal to 0.1.

—persistence [0.1-0.9]: This parameter changes the amplitude of the octaves >1. A
value of 0.5 is a good starting value. Values below 0.1 give octaves >1 too less value
while values above 0.9 make them nearly as strong as the first octave.

—sampleWidth / Height [64-4k_or_more]: The width and height of the produced im-
age/array/noise. Sets the required size of the output.

Note that these parameters are interrelated. For example, a higher amount of octaves
means that the persistence has to be increased accordingly—otherwise higher octaves
would become invisible.

A timer called at the beginning of the generation, showed that level generation (result
in Figure 6, bottom) usually took less than one second. This shows that Perlin noise
indeed allows a resource saving implementation.

As described in State of the Art, the degree to which PCG is applied in games
can easily exceed the implementation shown in this case study. For example, even in
the game presented here, clouds still consist of a number of handmade sprites, while
they could have easily been procedurally generated with methods like Perlin noise.
However, for the purpose of the study, the procedural implementation of just a single
game element was essential.

STUDY

In this section, we describe a comparative study, laid out to determine the effects
of the two alternative reef implementations (with and without PCG) on the players’
experience.

Expected Results

As explained above, PCG is not limited to just affecting the look of a game—it can also
affect the gameplay. While visual variety already reduces the frustration generated by
redundant designs, PCG that affects the gameplay potentially increases replay value.
In the selected game, the reefs differ in every map, constantly demanding tactical plan-
ning and flexible ship maneuvers. Thus, the reefs have a strong impact on the gameplay.
However, while the manually generated reefs differ only in number, appearance, and
position, the procedurally generated ones additionally differ in shape.

Through this constant variation of the map, players were to be motivated to con-
tinuously risk new battles; even lost battles should increase motivation as there is
an element of chance—similar to gambling, but less intense. The prospect of more
advantageous wind conditions and reef positions in the next battle are well suited to
increase the replay value. Our hypothesis was that players would recognize and favor
the greater variation of the PCG approach.

Population and Setup

Forty-one test subjects participated in the study. Twenty-six were aged 18-24, eight
were aged 25-29, and seven were aged 45 and above. To determine if PCG has a
different impact on middle-aged persons, we intentionally included test subjects older
than 45. For the answers to remain as unbiased as possible, we did not indicate that

Computers in Entertainment, Vol. 15, No. 2, Article 1, Publication date: February 2017.

Procedural Content Generation for Game Props? A Study on the Effects on User Experience 1:13

gl

Static Reef: Procedural Reef: Static Reef: Procedural Reef:
Aesthetics Aesthetics Constancy Change

w

N

Fig. 9. Perceived aesthetic quality (columns 1 and 2) and preference with the explicit mentioning of con-
stancy and change (columns 3 and 4) with standard deviations.

with ¥ = 1.8 (SD = 0.7) while the procedural reefs’ appeal with respect to a changing
look was assessed with £ = 3.3 (SD = 0.9). This difference is highly significant with
p < 0.01 and even p < 0.0000001.

Discussion

It is interesting that 85% of the users favor PCG in the last question, as the differences
when analyzing perceived realism and aesthetics were significant but less obvious:
although about 60% of the players preferred the PCG-reefs, 40% of them still pre-
ferred the manually generated ones. We have two possible explanations for this: first,
the changing look might be the most attractive element of the PCG-reefs—so when
directly addressed, this advantage is more prominent; second, the words “constancy”
versus “change” might create certain semantic priming effects, for example, a “modern”
person might be more inclined to embrace change. Thus, the strong effect might also
be attributable to a bias in the users’ self-perception.

However, if such a bias existed, our data indicate that it is restricted to gamers
aged 45 and older: there is both a negative correlation between age and the preference
for static reefs (r = —0.32) and a positive correlation between age and the preference
for procedurally generated reefs (r = 0.28). When comparing the affinity for a game
experience with more variety by procedural reefs (Figure 10), the 26 players aged 18-25
embraced this change more (¥ = 3.3, SD = 0.8) than the eight players aged 25-44 (¥ =
2.8, SD = 1.1) — but the seven players aged 45 and above appreciated change most
(x =4.0,SD = 0.0).

Even when comparing the players aged below and above 45 directly, this difference
is highly significant (p < 0.00001). The stereotype intuition (“PCG creates experiences
for young gamers”) is not supported. It is the gamers aged 45 and above, who enjoy the
effects of PCG most. This may be due to their advantage in life experience: they might
prefer games mirroring the complexity of life—or they simply enjoy being surprised.

CONCLUSION

In this work, we first summarized the historical background of procedural algorithms
in games. Then we described their use in various games and presented established
methods to categorize and structure the use of PCG in games.

Based on the history of PCG, there are numerous ways to incorporate procedural
algorithms in computer games. We showed that Perlin noise is an especially effective

Computers in Entertainment, Vol. 15, No. 2, Article 1, Publication date: February 2017.

1:14 O. Korn et al.

w

N

Age 18-25: Age 25-44: Age >45:
middle change affinity lower change affinity high change affinity

Fig. 10. Age groups and their affinity to change with standard deviations.

method when processing resources are limited. Within an ongoing game production, we
developed an algorithm for generating reefs procedurally. We provided a detailed pseu-
docode implementation showing how Perlin or Simplex noise can be used efficiently.

Based on this procedural implementation and the traditional approach with manual
designs by artists, we evaluated the effects of PCG on the user experience. The study
shows that in comparable structures (here, manually versus procedurally generated
reefs in exactly the same game) the use of PCG can be much more than a way to
save money in production: it can create an experience that users perceive as both
significantly more realistic and significantly more aesthetically pleasing.

Furthermore, users perceive the changing nature of the game environments as a
great advantage. Changing environments are (highly significantly) preferred to tradi-
tional static environments. Interestingly, players aged above 45 enjoy this increased
variation even more than the younger ones.

FUTURE WORK

The work presented here is a comparative study on the effects of PCG. To validate the
findings, similar studies are required. These could be similar in scope, i.e., focusing
on the effects of graphical elements on the gameplay. Ultimately, the scope should be
broadened to examine the use of procedurally generated quests, characters or even
artificial intelligence behaviors. However, such studies are difficult to implement: if
actual games are to be used, the evaluation can only take place in the late phase of a
game production, where the developers can still create alternative versions (at least
for playable sub-aspects of the overall game design).

REFERENCES

Matthew Belinkie. 2010. What makes Minecraft so addictive? Overthinking It (November 2010).

Geoff Boeing. 2016. Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the
limits of prediction. Systems 4, 4 (November 2016), 37. DOI : https://doi.org/10.3390/systems4040037
Mihaly Csikszentmihalyi. 1975. Beyond Boredom and Anxiety, San Francisco, USA: Jossey-Bass Publishers.
Mihaly Csikszentmihalyi, Sami Abuhamdeh, and Jeanne Nakamura. 2005. Flow. In Handbook of Competence

and Motivation. New York, NY, USA: Guilford Press, 598-608.

Markus Funk, Oliver Korn, and Albrecht Schmidt. 2014. An augmented workplace for enabling user-defined
tangibles. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems
(CHI’'14). ACM, New York, NY, USA. DOI:https://doi.org/10.1145/2559206.2581142

Computers in Entertainment, Vol. 15, No. 2, Article 1, Publication date: February 2017.

