
MelbourneDAC 2003

Undiscovered Worlds – Towards a Framework for
Real-Time Procedural World Generation

Stefan Greuter, Jeremy Parker

RMIT Centre for Animation and Interactive Media

stefan.greuter@gmx.de, jeremy.parker@rmit.edu.au

Nigel Stewart, Geoff Leach
RMIT School of Computer Science and IT

nigels@nigels.com, gl@cs.rmit.edu.au

ABSTRACT: With advances in computer hardware,
3D game worlds are becoming larger and more
complex. Consequently the development of game
worlds becomes increasingly time and resource
intensive. This paper presents a framework for
generation of entire virtual worlds using procedural
generation. The approach is demonstrated with the
example of a virtual city.

KEYWORDS: Games Culture, Games System
Design, Games Theory, Interactive Architecture,
MUDs, Virtual Reality, Virtual Worlds

INTRODUCTION
The visual quality of three-dimensional, polygon based
computer games improves with each new generation of
graphics hardware. In fact the processing speed of graphic
hardware doubles every year. Each new generation of
computer hardware facilitates computer games that
feature game worlds in higher detail and larger extent. All
object geometries and textures in a game world need to be
created in a process that can be very time consuming. As
game worlds grow, more time and resources are required
for their creation. Where do we go from here?

Approaches to minimize the costs for the creation of game
worlds include reusing textures and geometries for objects
that occur frequently throughout the game, such as trees
and crates. However, the repetitive use of artwork is often
obvious to the user, and counteracts the verisimilitude of a
believably realistic virtual world. Another approach is to
generate recurring objects or even entire game worlds in a
so-called procedural approach, which not only adds a
controllable randomness to the virtual world but also
yields outcomes that are unexpected in form and
appearance.

This paper presents a framework for the real-time
procedural generation of virtual worlds, and is aimed at a
non-technical audience. The virtual worlds are self
contained and neither import nor export data. The worlds
can expand to an extent that would require many lifetimes
to explore, which we term ‘pseudo infinite’ [1]. The
framework is suitable for real-time virtual worlds running
on commodity hardware and has been prototyped with the
example of a virtual city. A more technical description of
our work [1] appeared recently at Graphite 2003.

Related Work
Previous research into the generation of plants [2], trees
[3] and cities [4] has demonstrated that a variety of
objects of the same type but with a different visual
appearance, can be generated using a procedural
approach. Such objects show no apparent repetition and
create a much more realistic picture of the randomness
and variety that exists in our real world.

Procedural modelling of natural phenomena such as plants
and terrains has been of great interest to researchers.
However, other areas such as procedural generation of
manmade structures such as walls and buildings, is less
common. Few applications use generated procedural
geometry and textures to create entire virtual worlds. Two
example applications are Intel’s procedural world demo
[5] and Virtual Gardening [6].

Intel’s procedural world demo [5] shows procedurally
generated terrain with trees and two dimensional cloud
layer based on Perlin noise [7]. The terrain can be freely
explored on the horizontal plane in real-time and expands
around the user’s point of view.

Virtual Gardening [6] is an application which features the
interactive design of a virtual garden environment. The
program simulates the growth of plants and trees over
time, influenced by changing seasons.

FRAMEWORK COMPONENTS
Our framework for real-time procedural world generation
is illustrated in Figure 1. It consists of three major
components: view frustum filling, geometry caching and
geometry generation. View frustum filling constrains
procedural generation of geometry to regions visible from
the viewpoint. Geometry caching stores a temporary
database of previously generated geometry. The building
geometry generator is a collection of procedures for
constructing particular types of objects.

View Frustum Filling
A virtual world can be seen as a collection of discreet
three-dimensional objects. During navigation however,
only a fraction of the entire virtual world is visible to the
user. View frustum filling determines the visibility of
object-spaces within the cameras viewing volume. Each
visible object-space is evaluated for its object-type; then
the object can be generated.

MelbourneDAC 2003

Figure 1: Framework Architecture

View frustum culling is a similar technique, commonly
used in computer games to restrict rendering to potentially
visible geometry. The alternative proposed in this
framework is to constrain procedural generation to
potentially visible regions, rather than culling pre-existing
geometry.

Caching
While the user is navigating through the world only a few
new visible objects appear on the horizon. The geometry
of most other objects remains the same. A caching data
structure facilitates the use of already generated objects in
memory. In subsequent frames cached objects can be
drawn without regenerating them. We reported previously
that caching is faster, by a factor of approximately 8 [1],
than regenerating all objects on the screen for every
frame. The object remains in memory until it is no longer
needed. The cache keeps track of all objects and removes
the least recently used objects from memory. Visible
objects which are not available in the cache need to be
generated (or re-generated) by the geometry generator.

Geometry Generator
The procedural geometry generator is a collection of
procedural object-types that produces outcomes that are
repeatable but not identical. The generation of each
object-type is based on one seed value and optional
parameters. By changing the seed value and parameters a

variety of building geometries of different height, width
and depth can be generated. However, the objects that the
algorithm generates will always be a variation of a certain
object-type, which is subject to its own set of generation
rules. Hence an office building generator can only
generate a variety of office buildings in within the
boundaries set by the specifications. The final outcome of
the generation, however, can not be predicted and is
sometimes even unexpected.

PROCEDURAL CITIES
Our framework has been implemented using the example
of a simple virtual city consisting of a regular street grid
and skyscraper type buildings. The visual appearances of
the generated buildings are inspired by the shape and
diversity of buildings in Melbourne. The generated city is
extremely large, consisting of 4x1018 geometrically
different buildings; about 600,000,000 times the world’s
current human population. The entire city can be freely
explored from a first person perspective. One of our
virtual cities is illustrated in Figure 2.

City Consistency
The generation of objects and their properties is based on
a global citySeed and the objects position in within the
city. Hence it is possible to re-generate the identical
building on a previously position visited A similar system
has been outlined by Lecky-Thompson [8].

MelbourneDAC 2003

Figure 2: Real Time Procedural City

Figure 3: Floor Plan Generation

Figure 4: Building Facade Generation

Building Floor Plan Generation
In the virtual city we used an iterative function system to
generate floor plans of buildings, which are extruded to
building facades. Each building consists of several floor
plans. Floor plans are two-dimensional polygons that are
composed of regular polygons and rectangles in an
iterative process [1]. The floor plan generation process is
illustrated in Figure 3.

Building Facade Generation
The facade of each building is composed of several steps.
Each step consists of a floor plan that is extruded by an
arbitrary height. The extrusion process starts with the top
floor. Every consecutive step consists of a floor plan that
adds at least one more polygon. The final extruded step
consists of the most complex floor plan. The building
extrusion is illustrated in Figure 4. The virtual city uses a
limited set of textures, which in principle could also be
procedurally generated.

DISCUSSION
The proposed framework is not limited to generation
of only virtual cities. By changing parameters such
as scale, range of variety, generation algorithms and
textures, places can be generated that are have nothing in
common with a virtual city. The framework merely
provides the foundation on which three dimensional
virtual worlds can be built without the need to model
objects and variations of objects manually.

Many computer game levels can not be completed in the
first attempt; they need to be replayed several times.
Repeated playing of the same static level, however,
exposes the player to an already explored and therefore
familiar environment, which typically offers few if any,
new or surprising elements. Game levels that are
generated in a procedural approach offer more variety and
extent to stimulate players with new and exciting content
to explore. A new game world could be generated by the
proposed framework every time the player starts a new
game. As the level content is generated as needed, even
areas that are ‘off the beaten track’ can be explored.
Potentially, the game engine can monitor a player’s
performance and adjust the level of difficulty to maintain
the challenge of the game and increase its longevity.

Research on procedural generation of varying three-
dimensional content could also benefit other disciplines.
The findings of this research could provide an
inspirational tool for designers and architects wishing to
explore and combine various forms of generated
structures. Figure 5 illustrates an example of the variety
that can be achieved using procedural building generation
in varying levels of complexity. Flight-simulators, for
example, could confront pilots with procedurally
generated training scenarios that challenge the pilot’s
abilities and rapid decision-making skills. The framework
could be extended to mix real data with generated data.
An urban planning simulation could provide a view of a

MelbourneDAC 2003

Figure 5: Procedural Variety

particular location in a city using existing geometric data
while backdrop objects are generated. The framework
could also be used by the lay person to explore their own
creations of virtual worlds without the need to design each
individual building.

CONCLUSION AND FURTHER WORK
We have proposed a framework for the procedural
generation of entire virtual worlds in real-time. In contrast
to commercial game engines, our approach does not rely
on virtual worlds which are stored on disk or transmitted
over the Internet. The generated worlds can be extremely
large in extent without repetitive use of identical objects.
As in the real world, objects can appear to be similar but
they are not identical.

The framework has been demonstrated with the example
of a virtual city. The city is a self-contained space and is
populated with a simple street grid and generated building
structures with various geometries. The city can be
explored in real-time at interactive frame rates on
consumer PCs with graphics hardware.

The proposed framework poses many problems and
opportunities, both technically and creatively.

From a technical point of view, our implementation does
not include collision detection. There are no laws of
physics preventing the user from flying through a
building. Secondly, the framework does not track building
changes such as damage or aging.

On the creative side the framework requires more
procedural object-types to generate virtual worlds other
than cities. Such object types could be plants, trees and
terrain. Especially the procedural generation of plants,
trees and terrain are well researched areas which would
complement the framework and make the generation of
virtual worlds of a more natural character, like forests,
mountain ranges or tropical islands possible. Although we
focussed in our demonstration on a more ‘realistic’
representation of a virtual world, the framework is not
limited to only generate ‘realistic’ looking 3D spaces. By
adding custom made static or procedural objects the
framework can also generate a variety of abstract forms
which can be explored in real time.

In essence a user could create themselves may kinds of
virtual worlds with this framework. By selecting the
generation algorithms and by manipulating the parameters
that drive the generation process the world can be
populated with objects that are generated, rather than
creating all objects manually. By changing the
parameters, the user can enter in a world that looks
different every time and that goes on virtually forever.

ACKNOWLEDGMENTS
This research is partially funded by a scholarship from the
German Academic Exchange Service (DAAD) and an
International Postgraduate Research Scholarship (IPRS)
from the Australian government and RMIT University.

REFERENCES
1. Greuter, S., Parker, J., Stewart, N., et al. Real-time

Procedural Generation of 'Pseudo Infinite' Cities, in
Proc. GRAPHITE 2003, (Melbourne, 2003) ACM
SIGGRAPH pp. 87-94.

2. Prusinkiewicz, P., Lindenmayer, A., Hanan, J. S., et al.
The Algorithmic Beauty of Plants. Springer, New
York, 1990

3. Oppenheimer, P. E. Real Time Design and Animation
of Fractal Plants and Trees, in Proc. ACM
SIGGRAPH, (Dallas, 1986) ACM pp. 55 - 64.

4. Parish, Y. I. H. and Müller, P. Procedural Modelling of
Cities, in Proc. ACM SIGGRAPH, (Los Angeles,
2001) ACM Press pp. 301 - 308.

5. Macri, D. and Pallister, K. "Procedural 3D Content
Generation." (2001) http://cedar.intel.com/
Access: 03.02.2001

6. JFP Inc. "Virtual Gardening." (1999)
http://www.jfp.co.jp/garden_e/
Access: 12.11.2002

7. Perlin, K. An Image Synthesizer, in Proc. ACM
SIGGRAPH, (San Francisco, 1985) pp. 287-296

8. Lecky-Thompson, G. W. Infinite Game Universe:
Mathematical Techniques. Charles River Media,
Hingham, Massachusetts, 2001

