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Search-Based Procedural Generation of Maze-Like Levels.

Daniel Ashlock and Colin Lee and Cameron McGuinness

Abstract—A correctly designed dynamic programming algo-
rithm can be used as a fitness function to permit the evolution
of maze-like levels for use in games. This study compares
multiple representations for evolvable mazes including direct,
as well as positive and negative indirect representations. The
first direct representation simply specifies, with a binary gene,
which squares of a grid are obstructed. The second paints the
maze grid and passage is allowed only between colours that are
the same or adjacent in a rainbow. The positive and negative
representations are developmental and evolve directions for
adding barriers or digging “tunnels”. These representations are
tested with a design space of fitness functions that automatically
generate levels with controllable properties. Fitness function
design is the most difficult part of automatic level generation
and this study gives a simple framework for designing fitness
functions that permits substantial control over the character of
the mazes that evolve. This technique relies on using checkpoints
within the maze to characterize the connectivity and path
lengths within the level. Called checkpoint based fitness, these
fitness functions are built on a menu of properties that can
be rewarded. The choice of which qualities are rewarded, in
turn, specifies within broad limits the characteristics of the
mazes to be evolved. Three of the representations are found to
benefit from a technique called sparse initialization in which a
maze starts mostly empty and variation operators fill in details
while increasing fitness. Different representations are found to
produce mazes with very different appearances, even when the
same fitness function is used. The example fitness functions
designed around dynamic programming with checkpoints are
found to permit substantial control over the properties of the
evolved mazes.

I. INTRODUCTION

THE problem of level generation is a key task within
the field of Procedural Content Generation (PCG). Its

goal is to provide a map for a level in a game together
with populating that level with challenges and rewards. This
study is focused on automating the first half of this task,
map generation. The maps generated in this study are best
thought of as mazes and the goal is to create an evolutionary
algorithm-based system that gives the user a good deal of
control over what types of mazes are being generated. The
issues of culs-de-sac, branching and reconvergence of the
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paths in the maze, and the representation used to encode the
mazes are all explored in this study.

This study evolves maps and so is an example of search-
based procedural content generation, a variant of PCG which
incorporates search rather than trying to write a PCG system
that can generate acceptable content in a single pass. A
survey and the beginnings of a taxonomy of search-based
PCG can be found in [21]. The different representations
and fitness functions tested in this study yield maps with
very different appearances from building-like floor plans
to intestinal mazes. These various appearances are useful
for designing different parts of a game - an above ground
structure and a natural cavern have a very different look and
feel.

Though automated level generation in video games can ar-
guably be traced back to the roguelikes of the 1980s (Rogue,
Hack, NetHack, . . . ), the task has recently received some
research interest. In [18] levels for 2D sidescroller and top-
down 2D adventure games are automatically generated using
a two population feasible/infeasible evolutionary algorithm.
In [20] multiobjective optimization is applied to the task
of search-based procedural content generation for real time
strategy maps. In [11] cellular automata are used to generate,
in real time, cave like levels for use in a roguelike adventure
game.

The work in the current study grows out of work published
in [3]. This earlier study generated two sorts of mazes.
The first is based on the zones of control of chess pieces,
while the second is based on the chromatic progression of
the rainbow. The chess puzzles presented, aside from not
using a standard sized chess board, are very similar to chess
mazes introduced by Bruce Albertson as a type of puzzle
used to teach chess moves to novice players [1], [2]. The
chromatic mazes were used to demonstrate the generality
of the technique. Both types of mazes used in the earlier
study were made more difficult for a player by the fact that
the walls are not directly visible. Chess mazes have barriers
defined by where various chess pieces, placed on the board,
can attack; the chromatic mazes only permit a player to move
between squares whose colours are adjacent on the rainbow.
In both cases, the human player must deduce the permitted
moves.

One of the fitness functions used in the earlier research
computed the length of the shortest path from entrance to
exit of the maze. When the fitness function was maximized
this had the effect of making the maze as long as possible,
given the representation used to encode the maze. Maxima
of this fitness function are winding paths that do not branch.
This caused the evolved mazes to have a feature that would
be undesirable in many circumstances: the mazes generated



are trivial, with the only remaining challenge being to
deduce the rules for where a player may move. An alternate
fitness function, which attempted to minimize the difference
between the shortest path from entrance to exit and some
targeted value, was also introduced and resulted in mazes
which contained some non-trivial features such as branching
and culs-de-sac.

The primary contributions of this study are, first, to explore
a variety of representations for encoding mazes and, second,
to give a framework for designing fitness functions that give
the user substantial control over the character of the mazes
that evolve.

A. Dynamic Programming

Dynamic programming [10] is an ubiquitously useful al-
gorithm. It can be applied to align biological sequences [14],
to find the most likely sequence of states in a hidden Markov
model that explain an observation [22], or to determine if a
word can be generated from a given context free grammar
[12]. Dynamic programming works by traversing a network
while recording, at each network node, the cost of arriving
at that node. When the cost of a new path is not superior
to one that is already found, the search is pruned, otherwise
the minimum cost of reaching the node is updated and search
continues. A number of variants of a dynamic programming
algorithm are used in this study, each representing a different
fitness function. Details of these algorithms are given in
Section III. In the course of dynamic programming, other
variables may be saved and propagated along with the records
of shortest paths. An example of creating mazes with a
dynamic programming based fitness function, intended as
robot path planning algorithms, appeared in [6].

The remainder of this study is organized as follows.
Section II specifies several representations for evolvable
mazes. Section III gives several possible fitness functions
that emphasize different qualities in a maze. Section IV
specifies the experiments performed. Section V gives and
discusses the results, contrasting the outcomes of different
fitness functions. Section VI states conclusions and suc-
cinctly summarizes the contributions of the study. Section
VII outlines possible next steps for this line of research.

II. REPRESENTATIONS FOR MAZE GENERATION

Representation is a key issue in the design of an evolution-
ary algorithm [17]. Representation is a point at which domain
knowledge can be incorporated. Changing representations
can, in the best case, result in thousands-fold improvements
in performance [9], though usually more modest improve-
ments are obtained. Four representations are explored in this
study.

1) A direct representation, in which open and blocked
squares within a rectangular grid are specified directly
as a long, binary gene. This representation will be
called the first direct representation.

2) A direct representation, in which the squares within
a grid are assigned colours from the set { red, or-
ange, yellow, green, blue, violet}. These colours are

specified directly as a long gene over the alphabet
{R,O, Y, G, B, V }. An agent can move between ad-
jacent squares if they are (i) the same colour or (ii)
adjacent in the above ordering. This representation
will be called the second direct representation or the
chromatic representation.

3) An indirect positive representation in which the chro-
mosome specifies structures that are placed on an
empty grid to form the level. In this representation,
walls are explicit and rooms and corridors implicit.

4) An indirect negative representation in which the chro-
mosome specifies material to remove from a filled
grid to form the level. In this representation, rooms
and corridors are explicit while walls and barriers are
implicit.

In each of these representations the issue of feasibility
(can a player traverse the maze at all) is of some concern. In
all three non-chromatic representations, the expressed maze
amounts to a specification of obstructed and unobstructed
squares on a rectangle of width X and height Y . In three
of the representations a new technique called sparse initial-
ization was used. Sparse initialization places relatively few
obstructed squares in the mazes in the initial population. This
makes them easy, low-fitness mazes but leaves all members
of the initial population feasible. Greater complexity and
higher fitness are then discovered incrementally by the vari-
ation operators. The details of sparse initialization are given
in the descriptions of the individual representations.

With the exception of the mazes using 50×20 grid shown
in Figure 11, all the mazes in this study use a 30× 30 grid.

Fig. 1. An example of an evolved maze using the first direct representation.
The entrance and exit are marked with large circles, smaller circles indicate
checkpoints used by the fitness function.



A. Details of the first direct representation

For an X×Y board the direct representation is a string of
XY bits. Two variation operators are used: uniform crossover
with probability pc and uniform mutation with probability
pm. The uniform crossover operates on two chromosomes,
exchanging their bits at each location with independent
probability pc. Uniform mutation operates by flipping the
bit at each location with probability pm. Actual rates for
these operators are given in the description of experiments
in Section IV. In addition, two experiments are performed
using traditional one and two point crossover. An example
of a maze evolved with the first direct representation is shown
in Figure 1.

Fig. 2. An example of a chromatic maze. The large black circles mark the
entrance and exit, the smaller white dots mark checkpoints.

The probability that a maze in which obstructed and
unobstructed squares are equally likely can be traversed
is so close to zero that a 500-member initial population,
encountered during algorithm development, contained zero
traversable mazes. In order to address this problem, a pa-
rameter 0 < fill < 1 was added to the algorithm that is
the probability a given square will be obstructed (that a bit
in the chromosome will be one). This parameter is set to
fill = 0.05 in all experiments - a 1/20th full set of initial
mazes. The effect of this is to start with traversable mazes of
relatively low fitness and permit the variation operators to fill
in added obstructions so as to increase fitness in a selection-
guided manner. We call this technique sparse initialization.

B. Details of the chromatic representation

For an X × Y board the second direct representation is
a string of XY values in the range 0 ≤ x ≤ 5 mapping
onto {R,O, Y, G, B, V }. Two variation operators are used:
uniform crossover with probability pc and uniform mutation
with probability pm. The uniform crossover operates on two

chromosomes, exchanging their colors at each location with
independent probability pc. Uniform mutation operates by
generating a new colour at each location with probability pm.
Actual rates for these operators are given in the description
of experiments in Section IV. An example of a maze evolved
with the chromatic representation is shown in Figure 2.

Similarly to the first direct representation, a form of sparse
initialization is needed with the chromatic representation.
The form of sparse initialization used is to initialize the
grid to have squares that are green and yellow with those
colours being equally likely. A maze initialized in this
fashion permits movement between all pairs of squares while
making it very easy for mutation to create barriers.

This representation is very different from the others in the
following sense. The other representations all specify which
squares of a grid are obstructed. The chromatic representation
does not directly obstruct any square within the grid: rather
it imposes rules about which squares it is possible to move
between. This means that it creates implicit walls between
squares that define the maze rather than defining it with
obstructed squares. Implicit walls create a situation in which
the number of bits in a minimal description of a chromatic
maze is much larger, at the same grid size, than for the first
direct representation. This is because each pair of adjacent
squares has a potential barrier between them rather than each
square being a potential barrier.

Fig. 3. An example of a positive, indirectly encoded evolved maze. The
large red circles mark the entrance and exit while the smaller green ones
mark checkpoints.

C. Details of the positive, indirect representation

This representation is similar to the one used in [6]. It is
stored as a linear array of integers in the range 0 ≤ n ≤
9999. The integers are used in pairs to specify barriers in
an originally empty X × Y arena with walls at its edge.



The first integer is bit-sliced into a one-bit number, a three-
bit number, and a remainder R which is taken modulo the
larger of X or Y to yield the length of the barrier. The one-
bit number determines if a barrier is penetrating or not. The
three bit number is interpreted as a direction for the barrier
to run from its starting point W, NW, N, NE, E, SE, S, or
SW. The second integer i is split as x = i mod X and
y = ((i div X) mod Y ) to obtain the starting point (x, y) of
the barrier on the grid. The operator div represents integer
division without remainder. A penetrating barrier runs from
its starting point to its length or the edge of the arena. A non-
penetrating barrier stops when it encounters any other barrier.
Figure 4 gives an example of unpacking this representation.

There is an additional parameter used in the positive,
indirect representation: it is permitted to lay down at most
a fixed number Lim of filled squares. Once this number
of squares is reached, the remainder of the barrier being
laid down, and all other barriers following it, are skipped.
Two variation operators are used: uniform crossover with
probability pc and uniform mutation with probability pm. The
uniform crossover operates on two chromosomes, exchang-
ing integers at each location with independent probability pc.
Uniform mutation operates by replacing the integer at each
location with a new integer chosen at random in the range
0 ≤ n ≤ 9999 with probability pm. Actual rates for these
operators, the number of pairs of integers in a chromosome,
and the maximum number of filled squares Lim are given
in the description of experiments in Section IV. An example
of a maze evolved with the positive representation is shown
in Figure 3.

As with the direct representations, there is a very high
probability that a maze created with this positive, generative
representation will have no path from the entrance to the
exit of the maze unless either the number of barriers is kept
quite small or barriers start with very short lengths. A maze
with few barriers is not likely to be interesting no matter
how cleverly they are placed; for this reason initial barriers
(but not those created by mutation) have lengths in the range
1 ≤ L ≤ 3. This is a third form of sparse initialization.

D. Details of the negative, indirect representation

This representation is stored as a linear array of integers
in the range 0 ≤ n ≤ 9999. The integers are used in pairs to
decide where to remove material, in the form of rectangular
rooms and corridors, from an initially filled X × Y grid.
A pair of 4 × 4 rooms are always placed over the entrance
and exit of the maze to increase their “size” in the dynamic
programming environment, decreasing the chance a given
specification of material removal will fail to join the entrance
and exit.

The first integer in a pair is bit-sliced into a two-bit number
and a remainder R which is used to determine corridor length
or room dimensions. The two-bit number determines the
type: skip, north-south corridor, east-west corridor, or room.
The length of a corridor is the remainder modulo X or Y ,
as appropriate. The dimensions of the room are width =
R mod 4 + 2 and height = (R div 4) mod 4 + 2 to yield

dimensions for a rectangular room with both side lengths
uniformly distributed in the range 2 ≤ height, width ≤ 5.
The upper left corner (A, B) of the room or corridor are
computed from the second integer N by computing A =
N mod X and B = (N div X) mod Y where the division
is integer division. The “skip” type for objects makes it easy
for mutation to remove features from a maze. Figure 5 gives
and example of unpacking a gene of the sort used by this
representation.

Two variation operators are used: uniform crossover with
probability pc and uniform mutation with probability pm. The
uniform crossover operates on two chromosomes, exchang-
ing integers at each location with independent probability pc.
Uniform mutation operates by replacing the integer at each
location with a new integer chosen at random in the range
0 ≤ n ≤ 9999 with probability pm. Actual rates for these
operators, the number of pairs of integers in a chromosome,
and the maximum number of filled squares Lim are given
in the description of experiments in Section IV. An example
of a maze evolved with the negative, indirect representation
is shown in Figure 6.

Fig. 6. An example of a negative, indirectly encoded evolved maze. The
larger red circles mark the entrance and exit while the smaller green ones
mark checkpoints.

The problem of most random mazes being untraversible
did not arise with mazes encoded with the negative generative
representation to anything like the degree it did with the
direct and positive generative representations. For this reason
no form of sparse initialization was used with the negative
representation.

III. FITNESS FUNCTION DESIGN

This section specifies elements from which fitness func-
tions for maze-like levels can be built and specifies fitness
functions used in the experiments in this study. The key to



Fig. 4. An example of unpacking a gene for the positive, indirect representation with six numbers (136,123,133,165,144,50) specifying three barriers.
The barriers are shown as thick lines running from their beginning grid square to their ending grid square. In practice all squares containing a part of
a barrier are registered as “full”. Note that barrier #3 stops at barrier #2 after only expressing five of its nominal length of 9 - this is an example of a
non-penetrating barrier.

the system presented for constructing fitness functions are
the presence of checkpoints. A checkpoint is nothing more
than a position on the grid used to build the maze. Noting
which checkpoints are on a shortest path from entrance
to exit permits substantial control over what features of
a maze are rewarded by a fitness function. The dynamic
programming algorithm notes, for each grid square that is
currently the tip of a shortest path, which checkpoint(s) have
been encountered along any shortest path from the entrance
to that square. When new shortest path (tying the length
of an existing path) is discovered leading to a grid square,
any checkpoints discovered along that path are also added
to the checkpoints recorded for that square. This recording
of checkpoints within the dynamic programming algorithm
permits membership and the various sorts of reconvergence
defined below to be computed.

A. Definitions

The mazes in this study are assumed to have a single
entrance square and a single exit square, typically in the
upper left and lower right corner, respectively. This constraint
is not difficult to relax in practice but yields a far cleaner
mathematical environment for exploring fitness functions.
Mazes are defined on a rectangular grid of squares in this
study.

Definition 1: The entrance (or start) square will be de-
noted as s, and the exit (or end) square will be denoted as

e.
Definition 2: The set of checkpoints of a grid is a prede-

termined subset of the squares of the grid, this set is denoted
by C.

Definition 3: The length of a minimal length path between
any square x and the entrance square is denoted as |x|. This is
also known as the distance between x and s. If this distance
does not exist (because there is no unobstructed path from s
to x) we set |x| = −1.

Definition 4: A checkpoint is a member of a square x if
it is on a minimal length path from the entrance square to
the square x.

Definition 5: The set of members of a square x is denoted
by Mx. The definition of the set of members of x yields a
compact method of specifying which checkpoints share a
particular relation with a square.

Definition 6: A square x is a reconvergence of check-
points ci and cj if both ci and cj are members of x. Notice
that a reconvergence is a common point along shortest paths
through multiple checkpoints.

Definition 7: The primary reconvergence of checkpoints
ci and cj is the smallest path length from the entrance square
to any square which is a reconvergence of checkpoints ci and
cj if a reconvergence exists, otherwise it is 0. The primary
reconvergence value is denoted as prc(ci, cj). We define this
quantity to measure when paths from the entrance through
pairs of checkpoints first happen to converge.



Fig. 5. An example of unpacking a gene for the negative, indirect representation with eight numbers (31,53,0,n/a,46,63,53,96) specifying four objects, one
of which is ignored. The number n/a is not specified because it is part of a pair of type “skip”. The removed rooms and corridors are shown as discrete,
overlapping objects in the figure to illustrate the order of their application. In practice the removed material would be represented as unobstructed grid
squares. The 4× 4 rooms placed at the entrance and exit are shown in this figure.

Definition 8: Any square y which is a reconvergence of
checkpoints ci and cj whose distance to the entrance square
is equal to the primary reconvergence of ci and cj is said to
be a witness to the primary reconvergence of ci and cj .

Definition 9: An isolated primary reconvergence of
checkpoints ci and cj is a witness to the primary recon-
vergence of ci and cj which has no checkpoints other than
ci and cj as members. The function iprc(ci, cj) = 0 if
no isolated primary reconvergence of ci and cj exists and
iprc(ci, cj) = prc(ci, cj) otherwise.

Definition 10: A square x is a cul-de-sac if both |x| ≥ 0
and for all adjacent squares y, |x| ≥ |y|.

Definition 11: The set of all culs-de-sac in a maze is
denoted by Z .

B. Fitness Functions

Assume the fitness function to be maximized is FF . We
declare that FF = 0 if the entrance or exit squares are
obstructed or if the exit square e has fewer than k members.
The parameter k, the mandatory exit checkpoint membership
level gives an interesting form of control over the types of
maze that evolve, as we will see in the Sections IV and V.
If e has k or more members, then FF = Fi for one of the
Fi given below.

• Exit Path Length Fitness

F1 = |e|

The earlier study [3] found that this fitness function
encourages mazes consisting of a single, long, winding
path.

• Primary Reconvergence Sum Fitness.

F2 =
∑

x,y∈C
prc(x, y)

This fitness function strongly encourages accessibility
of all checkpoints with the nature of this accessibility
controlled by k. If a checkpoint is not required to be
on a shortest path to the exit then higher fitness results
from placing it at the end of a cul-de-sac.

• Isolated Primary Reconvergence Sum Fitness

F3 =
∑

x,y∈C
iprc(x, y)

Isolated reconvergence is harder to achieve than simple
reconvergence. It strongly encourages that paths branch,
run over checkpoints, and then meet up again later.

• Cul-de-sac Count Fitness

F4 = |Z|

• Cul-de-sac Length Fitness

F5 =
∑
x∈Z
|x|

IV. DESIGN OF EXPERIMENTS

A very similar evolutionary algorithm was used for all
experiments. The algorithm is steady state [19] using size
seven single tournament selection. This model of evolution
proceeds by mating events that generate pairs of new struc-
tures that are reinserted into the population before the next
mating event. Size seven single tournament selection chooses
seven member of the population without replacement. The
two best are copied over the two worst. The binary variation



operator is applied to the two copies, then the unary variation
operator is applied to each of the copies. The algorithm
is run for 500,000 mating events, saving summary fitness
statistics for the population every 2,000 mating events. Such
a block of 2,000 mating events is called a generation. Each
experiment consisted of 30 replicates of the evolutionary
algorithm performed with distinct random number seeds.
The crossover and mutation rates are set to pc = 0.05 and
pm = 0.01.

Both of the direct representations and the positive gen-
erative representations use a population size of 120 while
the negative generative representation uses a population size
of 1000. The direct and positive representations used sparse
initialization while the negative representation did not: its
larger population size makes it very likely that mazes with
positive fitness are present in the initial populations for the
negative representation.

For all representations both sparse initialization and large
populations were tested for their ability to yield an initial
population with a majority of feasible mazes. Which of
these two options was found to be better was different
for different representations. Note that since the negative
representation removes material from an initially full grid,
sparse initialization would require a more complex structure
rather than a simpler one as is the case in the other three
representations.

Since our purpose is to make a qualitative comparison
of the types of maze evolved with the three representations
rather than to compare their fitness this rather substantial
difference in initialization technique and population size is
not a problem: each algorithm was tuned to produce an
initial population with solvable mazes not to compare the
representation’s ability to solve the same optimization task.

A. Initial Experiments.

A set of nine initial experiments were performed us-
ing fitness functions F1-F3 with each of the three
non-chromatic representations. These all used a 30 ×
30 grid for the maze with checkpoints set C =
{(6, 24), (12, 18), (18, 12), (24, 6)}. The entrance is square
(0,0) while the exit is square (29,29). The mandatory exit
checkpoint membership level was set to k = 3.

B. Experiments with Culs-de-sac.

A pair of experiments were conducted, using the first direct
representation, to test fitness functions F4 and F5, which
maximize the number or distance from the entrance of culs-
de-sac. These experiments use the first direct representation
with the same settings and checkpoints as the other exper-
iments that use the first direct representation. As with the
other experiments some requirements are placed on the maze:
there must be a path from the entrance to the exit and all
checkpoints must be in unobstructed squares.

C. Changing the board size.

Three experiments, using identical algorithm settings
to the initial experiments for all three non-chromatic

representations using fitness function F3 were per-
formed on a 50 × 20 grid with checkpoints C =
{(5, 15), (15, 15), (5, 35), (15, 35)}. These experiments are
supposed to demonstrate the ability of the algorithm to work
for non-square boards and boards of other sizes.

D. Experiments with the Chromatic Representation.

Four experiments were conducted, consisting of 30 repli-
cates each, with the chromatic representation. These experi-
ments differed from one another in using fitness functions
F1, F2, F3, and F4. These experiments use a 30 × 30
grid and otherwise use the same algorithm settings as the
initial nine experiments, except that the required number of
checkpoints that must be members of the exit square were
reduced to k = 1. These experiments are intended to see
if the various fitness functions used in this study work well
with a representation that specifies barriers implicitly.

E. Verification of Sparse Initialization and Crossover.

The sparse initialization and the choice of a low-rate
uniform crossover were both based on preliminary experi-
mentation with a development version of the software created
for this study. Four additional experiments were performed,
based on the initial experiment with the first direct represen-
tation using F1. Two of these experiments replaces uniform
crossover with one-point and two-point crossover. The other
two increased the fill parameter from 0.05 to 0.1 and 0.2.
Recall that this parameter governs the probability that a
square in the first direct representation be obstructed.

V. RESULTS AND DISCUSSION

Figure 7 shows a maze from each of the nine original
experiments. Up to the limitations imposed by the represen-
tation, mazes evolved with fitness function F1 which rewards
only the length of the path from the entrance to the exit
produced long winding paths with little or no branching and
only a few side corridors. This is true of all thirty replicates
for each of the three experiments using F1. The effect of the
k parameter, when this fitness function is used, is to force
the checkpoints to be on this path. This means a designer
can use checkpoints to shape the path to some degree.

For the mazes generated using F2, the requirement that
three checkpoints be members of the exit comes into play. If
none of the checkpoints are required to be on a shortest path
to the exit then it is very likely to have one checkpoint on
such a path and place the others at the end of long culs-de-
sac. This maximizes the reconvergence numbers for pairs of
checkpoints very well. When we require, by setting k > 1,
that several checkpoints be on a path from the entrance to
the exit then the algorithm placed the required number of
checkpoints on paths from entrance to the exit and places
remaining checkpoints at the end of culs-de-sac. In all three
of the mazes shown in Figure 7 the lower left checkpoint is
at the end of a long cul-de-sac. The mazes evolved with the
negative and first direct representation place the checkpoints
in a branching structure while the positive representation
places all three on a long, winding path.



Direct, F1 Positive F1 Negative F1

Direct, F2 Positive F2 Negative F2

Direct, F3 Positive F3 Negative F3

Fig. 7. Shown is a maze from each of the nine initial experiments. The mazes are organized so that all mazes in a column use the same representation
and all mazes in a row use the same fitness function. The large, red circles mark the entrance and exit while the small, green dots mark the checkpoints.
These mazes are 30× 30 and the entrance, at (0,0) is in the upper left corner while the exit, at (29,29) is in the lower right.

All three of the mazes evolved with F3 place all four
checkpoints on distinct paths to the exit. The pattern of
branching varies somewhat and both generative representa-
tions produce more additional large branches. This fitness
function was the most likely, during algorithm development,
to produce entire populations that are all of zero fitness. It
also is not as strongly impacted by the value of k as the need
to produce unique reconvergences to obtain fitness forces
checkpoints to be on direct paths from the entrance to the
exit. A checkpoint in a cul-de-sac can give rise to at most one

unique reconvergence while one along a path from entrance
to exit can have a unique reconvergence with every other
checkpoint.

The different population sizes chosen for experiments with
different representations were the result of initial experimen-
tation with the goal of finding a population size that permitted
the algorithm to generate acceptable results. In [8] it is shown
that, for some problems, very small populations sizes are
superior while others function better with large populations.
The relationship between final quality and initial population



size is complex, obscure, and representation dependent. Since
the goal of this study is to show what different representa-
tions and fitness functions can do, we did not perform an
extensive parameter study to locate good initial population
sizes and rather used a quick ad hoc set of trials.

The first direct representation produces almost “intestinal”
patterns that are more reminiscent of a natural cave than
the results produced by the two indirect representations.
The positive representation generated the sparsest maps as
well as those that looked like intentional or planned struc-
tures. The negative representation produced mazes with a
distinct character from the other two, but hard to describe
stylistically. Examination of the full range of evolved mazes
shows that the negative representation was the best at placing
checkpoints on distinct paths from the entrance to the exit;
the direct representation was second best by this criterion; the
positive representation came in a distant third in this regard.

In the initial stages of the research reported in [6], a ver-
sion of the direct representation was tried and failed horribly:
no path from entrance to exit was found in almost all mazes
in the initial population. In this study the use of sparse
initialization (in both the direct and positive representations)
solved this problem. In this case sparse initialization means
initialization to a state of the maze where relatively few
squares are obstructed. The decision to use low-rate uniform
crossover in this study was made before sparse initialization
was implemented, as a means of enhancing the heritability
of feasible mazes. When this choice was later revisited for
the first direct representation in a final experiment, reported
in section V-D, we find that the performance of standard
crossover is similar to but significantly superior to the
uniform crossover used in most of the experiments.

The use of sparse initialization is interesting to consider
from the perspective of a fitness landscape as well. Sparse
initialization was used to create a situation in which there
are a very large number of different paths, on average,
from entrance to exit and from either entrance or exit to
each of the checkpoints. This means that minimal path
length and all the reconvergence scores are fairly small.
In essence we intentionally create solutions that are very
likely to be (i) low fitness and (ii) feasible. This means
that we are relying on the variation operators, guided by
selection, to climb the hills of the adaptive landscape. Since
high fitness mazes are typically very close, when distance is
measured in mutations, to infeasible mazes this is probably
an effective strategy. Examine the maze in Figure 7 for
the direct representation and F1 (which simply maximizes
the path length from entrance to exit). Inspection shows a
majority of the unobstructed locations will block the path
from entrance to exit if they are filled in.

If we look at the mazes generated with F3, which encour-
ages large, isolated primary reconvergences, then while no
single loci in the gene will block the path from entrance to
exit. Inspection shows that several loci can zero out as many
as three of the isolated reconvergences if they are mutated.
This means that for F3, even though mutations to zero fitness

are uncommon, mutations to much lower fitness are common
in high fitness, nonsparse structures. We thus see that sparse
initialization also places chromosomes in a part of the fitness
landscape that is far less rugged than the regions containing
high fitness structures.

Fig. 9. Mean fitness over the course of evolution, in the first evolutionary
replicate, using fitness function F3 with the positive representation. Shown
with confidence intervals representing a 95% confidence interval.

Examining Figure 8 we see that all nine sets of exper-
iments experienced substantial optimization of the fitness
function: verifying this is one of the reasons for using a
mean-over-replicates fitness plot of this type. Several of
these plots, particularly the one using F3 and the negative
representation, suggest that there is still an upward trend.
This is not a great concern; the algorithm can easily be
run for a longer time. Of greater importance is the fact
that it is not clear that the global optima of any of these
fitness functions is the most desirable maze or level design.
These algorithms are supposed to provide a broad selection
of mazes and the fitness functions are rough heuristics, not
clear statements of entirely desirable objectives. Figure 9
shows the behavior of population average fitness in a single
run. Notice that the major improvements are via a type of
innovative leap (recall a “generation” consists of 2000 mating
events of steady state evolution) rather than steady progress.
In addition the increase in the width of the confidence
intervals on mean fitness as mean fitness improves supports
the earlier assertion that high fitness parts of the fitness
landscape are mutationally near to cliffs. The innovation
represents climbing such a cliff while the high variation in
mean fitness represents individuals that have fallen off such
cliffs.

A. Experiments with Culs-de-sac

Figure 10 shows an example maze evolved with each of
F4 and F5. The F4 maze optimizes the number of culs-de-
sac in the maze. This, together with the requirement that the
checkpoints appear in the area accessible from the entrance,
yields a maze with a large number of loops and side passages
relative to those produced with the other fitness functions.
The function F5 sums the size (distance from the entrance)



Direct F1 Positive F1 Negative F1

Direct F2 Positive F2 Negative F2

Direct F3 Positive F3 Negative F3

Fig. 8. This figure shows the mean fitness, over all thirty replicates, for each of the three representations and fitness functions used in the initial experiments.
The mazes are organized so that all mazes in a column use the same representation and all mazes in a row use the same fitness function.

of all the culs-de-sac. It produces a maze similar to those
produced by F1, maximizing the length of the path from
entrance to exit, but with more and longer side passages.

The F4 mazes are, upon cursory inspection, the most
complex and diverse of the sets of mazes evolved with
the various fitness functions presented. This suggests that
investigation of fitness functions that count culs-de-sac is
worth more attention.

B. Experiments with Different Board Sizes

These experiments represented a check on the ability of
the algorithm, for all three non-chromatic representations,
to work on a different board size and with different ar-
rangements of checkpoints. Examples of mazes for each
representation are shown in Figure 11. A visual inspection of
the 30 mazes produced in each experiment (data not shown)
shows that the algorithm is slightly more likely to place
checkpoints at the end of long culs-de-sac when the board
has a 5:2 aspect ratio but otherwise the results were similar
to those obtained for the 30× 30 grid.

C. Chromatic mazes

Figure 12 shows an example of a chromatic maze and its
key from each of the four experiments. The initialization to
green and yellow colours is most visible in the mazes evolved
with F4. The other fitness functions all yield a fairly even
distribution of colours.

The resulting mazes have similar characters to those
evolved with the other three representations. The maze
evolved with F1 is very long but can be solved by mere
persistence; it has few side branches and no real choices
other than forward and back. The mazes created with F2

and F3 place checkpoints not required to be on a shortest
path to the exit at the end of long culs-de-sac. The mazes
created with F3 have more branches than those created with
F2.

The mazes created with F4, which rewards having culs-
de-sac, creates a maze with the largest number of branches,
closed loops, and reconverging paths. This is also consistent
with the behavior of F4 in the experiments run with the other
representations.



F1

F2

F3

F4

Fig. 12. Chromatic mazes and keys. Black squares are inaccessible from the entrance. Smaller red circles denote checkpoints, larger grey ones the entrance
and exit of the maze. The fitness function used to evolve each maze is given to the lower right of its key rendering.



F4

F5

Fig. 10. Example mazes for fitness functions F4 and F5 using the first
direct representation. The algorithm that produced these mazes also requires
that all four checkpoints appear in the part of the maze accessible from the
entrance. The large red circles mark the entrance and exit while the small
green ones denote checkpoints.

Contrasting the chromatic mazes, rendered directly, with
their keys shows that the implicit character of the barriers
between squares makes this type of maze much harder to
solve than one where the barriers are clearly visible. The
chromatic representation is one of a large collection of
possible representations for implicitly specified mazes. Chess
mazes, such as those evolved in [3], are another implicit
maze specification. The experiments in this study show that
the space of fitness functions defined here can be applied to
implicitly specified mazes.

Direct, F3

Positive, F3

Negative, F3

Fig. 11. Examples of 50 × 20 mazes for all three non-chromatic
representations. Large red circles mark the entrance and exit while small
green ones mark the checkpoints.

D. Sparse Initialization and Choice of Crossover Operator

Table I and Figure 13 show the results of varying the
crossover operator for the first direct representation using
F1. The initial choice of the low rate uniform crossover
was made while experimenting with the problem of initial
populations with zero fitness. One point crossover exhibits
slightly higher performance than uniform crossover, but the
difference is not significant. Two point crossover outper-
formed both uniform and one-point crossover significantly.
The margin of improvement is small, 14.4/362.5 ∼= 4.0%.
Figure 13 shows that none of the different crossover operators
were particularly faster at reaching the final fitness level.
This suggests that the choice of crossover operator is not
important, but that future work with these representations and
similar representations may wish to use two-point crossover.

The results of varying the fill parameter were more dra-
matic. When the fill parameter was set to 0.05, the standard
setting, all 30 replicates produces a maze with positive
fitness. When fill = 0.1 17 of 30 replicates produced a
feasible maze. When fill = 0.2 none of the 30 replicates
produced a feasible maze. This result strongly supports the
use of sparse initialization for the first direct representation.
It also tends to support its use based on early experimentation



Crossover Confidence
Operator Fitness Interval
Uniform 362.5± 4.0 (358.5,366.5)
One-Point 365.1± 2.5 (362.6,367.6)
Two-point 376.9± 2.6 (374.3,379.5)

TABLE I
SHOWN ARE 95% CONFIDENCE INTERVALS FOR EXPERIMENTS WITH

THE FIRST DIRECT REPRESENTATION USING F1 WITH DIFFERENT
CROSSOVER OPERATORS.

with the chromatic representation and the indirect, positive
representation.

It might be natural to ask why not just set fill = 0, starting
with an empty grid and letting the variation operators do
all the work. One of the factors that permits evolutionary
algorithms to function is the random initialization. This
initialization and the subsequent shake-out of the population
acts to select the basin of attraction of the dynamical system
represented by the evolutionary algorithm in which a given
replicate arrives at its final solution. Even a modest amount
of randomization, such as that represented by a setting of
fill = 0.05 is likely to substantially increase the diversity of
mazes located by the EA.

E. Algorithm speed

Running a set of 30 replicates for 500,000 mating events
requires about as much time as a coffee break (8-20 min-
utes). The actual timing is somewhat variable, depending
on the fitness function used. Oddly this is not because the
different fitness functions require different amounts of time
to compute. The current version of the algorithm computes
all the elements required by any of the fitness functions
and then performs a trivial computation to return the exact
fitness function being tested. This was done to permit rapid
exploration of the space of fitness functions and to leave
a hook for future research on multicriteria optimization
based versions of this software. The bottleneck in the fitness
function is running the dynamic programming algorithm. The
mazes of the sort that get a high score from F4 require that far
more squares be visited (with repetition for multiple paths
from the entrance to a square) than the mazes that evolve
under the influence of F1. This phenomena is most apparent
when sparse representations are used: dynamic programming
runs very slowly on an almost empty maze. If the researcher
watches the trace of a run, the rate of data reports jumps
upward as the fitness increases.

The current version of the algorithm is more than adequate
for producing huge libraries of mazes with similar properties
but different details. Optimizing to compute only the factors
needed in a given fitness function will yield a small increase
in speed, but the real point to look for speed improvement is
the dynamic programming algorithm. The algorithms used
in this study were designed to make explorations of the
space of fitness functions easy rather than being optimized

Fig. 13. Mean fitness over thirty replicates for uniform, one-point, and
two-point crossover, as a function of number of generations. A generation
consists of 2,000 mating events.

for speed. Substantial research exists on optimizing dynamic
programming algorithms and the algorithm used here can be
parallelized trivially by running one copy of the evolutionary
algorithm on each processor. In addition, useable mazes
arise long before 500,000 mating events. Optimizing the
effort/return tradeoff of evolution is another area where
additional speed may be obtained.

F. Fitness landscapes and sparse initialization

Both direct representations and the positive indirect rep-
resentation used a form of sparse initialization. The effect
of this type of initialization is to create mazes with very
few obstructions. A maze with few obstructions is likely,



for all five fitness functions, to have low positive fitness.
In particular, zero fitness because a lack of any path from
the entrance to exit is avoided by sparse initialization. This,
in turn, makes the variation operators bear the brunt of the
burden of generating high fitness mazes. The experiments
show that they do this effectively. The experiments in which
the fill parameter was varied show that sparse initialization
is necessary.

Examine Figure 9. This figure shows that, in one run,
as the mean fitness of the population increases so does the
variance of the fitness. Examining the evolved mazes shown,
it is obvious that there are many squares which, if obstructed,
will cause a catastrophic decrease in fitness. These two pieces
of evidence demonstrate that high fitness mazes are likely
to have mutants with much lower fitness. Colloquially, the
heights of the fitness landscape have many cliffs. The sudden
increase in fitness shown in Figure 9 is probably driven by a
sudden jump up one of these cliffs. This “high fitness implies
instability” may be an example of a type of self-organized
criticality. It also provides a reason, in addition to ad-hoc
observation of unfit initial populations and the experiments
varying fill with the first direct representation, why sparse
initialization may be a good idea.

VI. CONCLUSIONS

The primary contributions of this study are threefold. First,
the study demonstrates that four different representations can
be used, with the same fitness functions, to generate maze
like levels for use in games. The representations generate
mazes with very different appearances and characters.

Second, this study defines several elements, computable
with a simple dynamic programming algorithm, that can be
used to build a large number of different fitness functions.
Five such fitness functions are tested in this study, and many
others can be built from primary reconvergence, isolated
primary reconvergence, path length from entrance to exit,
number of culs-de-sac, path lengths of culs-de-sac, number
of checkpoints that are accessible, and number of checkpoints
on shortest paths from the entrance to the exit of the maze.
The study also demonstrates that the mazes generated with
different fitness functions are substantially different from one
another in terms of branching factors, loops within the maze,
and the placement and length of culs-de-sac.

Third, the study demonstrates that the fitness functions
yield comparable results on all four representations tested,
including the chromatic representation which specifies a
maze implicitly rather than explicitly.

The key rendering of the chromatic representation is a
tool for apprehending the connectivity and solubility of the
implicitly represented maze in an explicit form. The used of
multiple renderings, some of which are available only to a
designer, is a potentially rich area. Processing the data from
the dynamic programming algorithm in various ways could
yield many views useful to a designer.

Sparse initialization, used in all the representations except
the negative indirect representation, is a simple but poten-
tially valuable technique for use in the implementation of

the representations presented in this study and, potentially,
others. Its value was directly verified for one representation
and fitness function and is suggested by results during algo-
rithm development for the other two representations where
it is used.

While exact quantization of the optimized speed of pro-
cedural content generation via the methods prototyped in
this study remains to be done, the study demonstrates that
procedural generation of a variety of different types of maze
like maps can be performed rapidly. For off line generation of
libraries of content, the techniques in this study are already
beyond the speed required for application. Real time content
generation is certainly within the realm of the possible once
the algorithms have been optimized.

VII. NEXT STEPS

The most obvious next step for this research is to build
a GUI tool for designing maze-like game levels. In this
context the algorithm would act as a designer’s assistant.
A dialog box for piecing together a fitness function out of
the elements described here would permit a designer a great
deal of freedom to control the types of maze that evolve.
The number of fitness functions not explored in this study is
immense. As researchers found new elements these could be
added to the list of options. A palette of representations,
including but not limited to those presented here, would
increase the flexibility of the tool.

A clear direction in which to extend this research it to find
other fitness function elements that could be used to increase
the reach of the techniques. Elements that are easy to com-
pute from the variables present in the dynamic programming
algorithm used in this study would be most desirable. One
such element would be the number of inaccessible squares
in a maze, either in absolute terms, or that are nominally
unobstructed but not accessible from the entrance of the
maze.

The use of checkpoints, while key to defining many of the
fitness function elements used, was not extensively explored
in this study. The mazes in this study used four checkpoints
and only two different arrangements of those checkpoints
were tested. Varying the number and arrangement of check-
points should yield a great deal of control over the type of
mazes that arise, however that is beyond the scope of this
initial study It is expected that there will be some unexpected
consequences of moving checkpoints and varying the number
of checkpoints used. Likewise changing the k parameter,
denoting the number of checkpoints that must be a member
of the exit square, requires more exploration.

While several representation were tested in this study,
many others are possible. Grammatical systems, particularly
L-systems [13], [16] seem a natural candidate. We are aware
of no research generating mazes with L-systems. Our group
has worked with L-systems for other purposes [4], [5], [7]
and our intuition is that the sort of constraint handling
performed with dynamic programming would be difficult
to achieve with L-systems. Nevertheless L-system remain a



technology of interest, in particular because a successful L-
system representation would generate levels with remarkable
speed. We note that Parish and Muller [15] have used L-
systems to design road networks, a similar task to maze
design.

Another factor that would work well with the dynamic
programming based fitness functions presented in this study
is the incorporation of measures of area filled. At its simplest,
this could consists of noting how many squares of a maze
grid were filled in. More sophisticated measures could test
for the presence of open areas of at least a given shape or
of a particular size.

Another obvious venue, not treated in the current paper, is
the use of multicriteria optimization. Given that we generate
multiple fitness elements it is obvious to attempt simulta-
neous optimization of multiple criteria. A maze that had
a long path from entrance to exit but also maximized the
sum of its two largest isolated reconvergence numbers would
have a different character from the mazes shown in this
study. A maze with many culs-de-sac and a high sum-of-
reconvergences is another that intuition suggests would be
interesting.

One method for designing large maps is to build tiles and
then snap the tiles together on a square or hexagonal lattice.
If a set of openings on the boundary of a tile are defined,
then the techniques used in this paper would be a natural tile-
generating engine. Even simple fitness functions such as sum
of path lengths between pairs of boundary openings would
yield complex tiles as long as the number of openings is at
least three.

It is also possible to create a far more complex type of
structure with a simple variation of this technique. Imagine
we have a level where each square has a different level. If
we have two agents, one of which can leap up or down only
a height of ten feet and the other of which can leap up or
down twenty feet. Then we have, in a given array of heights,
two distinct maze connectivities. Using F1 on the maze with
ten foot connectivity and F3 on the maze with twenty foot
connectivity and then applying multicriteria optimization to
both functions would yield a maze in which the second agent
would have far greater freedom of movement.

In requiring, explicitly or implicitly, that the checkpoints
appear within the accessible portion of the maze, we suggest
a more general technique: required features. Suppose that
portions of the grid are pre-defined and immutable, such as
a central cavern or rooms that must be included in particular
position on the map. Such fixed features can be imposed
on the grid before a given maze-specifying representation
is used. If checkpoints are placed inside these features,
maze properties relative to those features can be controlled
as in the work presented here. Such a system permits a
designer to specify basic features of the maze and then let
the evolutionary algorithm “fill in the details” to complete a
level. The fitness function can be written with desired details,
e.g. a long distance between two particular features, in mind.
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