
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228922424

Rule-based layout solving and its application to procedural interior generation

Conference Paper · January 2009

CITATIONS

30
READS

427

4 authors:

Some of the authors of this publication are also working on these related projects:

Virtual eCoaching and Storytelling technology for post-traumatic stress disorder treatment (VESP) View project

Tim Tutenel

Delft University of Technology

22 PUBLICATIONS 525 CITATIONS

SEE PROFILE

Rafael Bidarra

Delft University of Technology

120 PUBLICATIONS 1,676 CITATIONS

SEE PROFILE

Ruben Michaël Smelik

TNO

21 PUBLICATIONS 481 CITATIONS

SEE PROFILE

Klaas Jan de Kraker

TNO

26 PUBLICATIONS 623 CITATIONS

SEE PROFILE

All content following this page was uploaded by Rafael Bidarra on 27 February 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/228922424_Rule-based_layout_solving_and_its_application_to_procedural_interior_generation?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228922424_Rule-based_layout_solving_and_its_application_to_procedural_interior_generation?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Virtual-eCoaching-and-Storytelling-technology-for-post-traumatic-stress-disorder-treatment-VESP?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Tutenel?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Tutenel?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Delft_University_of_Technology?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Tutenel?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rafael_Bidarra?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rafael_Bidarra?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Delft_University_of_Technology?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rafael_Bidarra?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben_Smelik?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben_Smelik?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/TNO?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben_Smelik?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Klaas_Jan_De_Kraker?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Klaas_Jan_De_Kraker?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/TNO?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Klaas_Jan_De_Kraker?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rafael_Bidarra?enrichId=rgreq-7c8108ba4898d5ef84cce41189f0ee89-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMjQyNDtBUzoxMDMyNDgxOTUyMjc2NjFAMTQwMTYyNzY5NjYyNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Rule-based layout solving and
its application to procedural interior generation*

Tim Tutenel and Rafael Bidarra
Delft University of Technology

Delft, The Netherlands
timt@graphics.tudelft.nl, r.bidarra@ewi.tudelft.nl

Ruben M. Smelik and Klaas Jan de Kraker
TNO Defence, Security and Safety

The Hague, The Netherlands
{ruben.smelik|klaas_jan.dekraker}@tno.nl

 Abstract
Due to the recent advancement in procedural generation techniques, games are presenting players with ever
growing cities and terrains to explore. However most sandbox-style games situated in cities, do not allow
players to wander into buildings. In past research, space planning techniques have already been utilized to
generate suitable layouts for both building floor plans and room layouts. We introduce a novel rule-based
layout solving approach, especially suited for use in conjunction with procedural generation methods. We
show how this solving approach can be used for procedural generation by providing the solver with a user-
defined plan. In this plan, users can specify objects to be placed as instances of classes, which in turn contain
rules about how instances should be placed. This approach gives us the opportunity to use our generic solver
in different procedural generation scenarios. In this paper, we will illustrate mainly with interior generation
examples.

Keywords: Procedural generation; constraint solving

1 INTRODUCTION
Many recent games that play in an urban setting feature huge cities, e.g. "Grand Theft Auto IV" (2008) or
"Assassin's Creed" (2007). The player is however limited to entering only a handful of the many hundreds of
buildings. It would obviously take too long for designers to model by hand the interiors of all these buildings with
rooms and furniture, but with current procedural generation techniques, the interiors of these buildings could have
been generated automatically.

This would not only increase the perceived realism of the game, more importantly, it would allow for new
gameplay. The player could break into buildings to hide from enemies or to find food or other items like first-aid
kits. It could also make chase sequences more interesting, and give players even more to explore in sandbox-style
games.

Clearly, the difference in quality between hand-designed and procedurally generated content in the game world
should not be too noticeable. In comparison to manually designed content, current procedural content can look dull
and repetitive. However, there are several characteristics of building interiors that make them a suitable candidate
for automated techniques. For example, often the interiors in a common house roughly follow the same structure. In
a kitchen, we often see cabinets and counter being placed against the walls, with a table or perhaps an extension to
the counter as an island in the middle of the room. Similarly, in a living room the couches are often placed around a
small table and oriented towards the television set. Many such observations could be translated into rules and
procedures to automatically generate these interior spaces.

Moreover, research in solving of space layout problems aimed at room interiors has already generated promising
results. Several methods of solving different kinds of layout constraints among objects inside a room have been
proposed, as we will show in the next section. We developed a rule-based layout solver, which is especially suited
for procedural methods: based on a plan or a procedure, objects (e.g. furniture) are fed to the solver, which tries to fit
them based on a set of rules defined for those objects and the ones that are already placed. We also define object
features to steer the layout (e.g. areas around an object that should remain empty) or to link them to other objects.
Furthermore, our approach was designed to be integrated with a comprehensive semantic class library which is
explained in Tutenel, et al. (2009). In this paper, however, we will only briefly describe how these semantic classes

* This research has been supported by the GATE project, funded by the Netherlands Organization for Scientific
Research (NWO) and the Netherlands ICT Research and Innovation Authority (ICT Regie).

are used in our method. A more detailed discussion about how semantics can play an important role in the design of
game worlds can be found in Tutenel, et al. (2008).

We first present the general idea of our rule-based layout solver in Section 3, after which we go into more detail
about the layout planner which feeds the solver in Section 4. Finally, in Section 5, we show several examples where
the solver is used to generate different layout problems.

2 RELATED WORK
Research on procedural generation of content suitable for game worlds has focused on many different aspects,
including a variety of techniques that generate height maps for terrains or models for vegetation. A recent survey of
procedural methods can be found in Smelik, et al. (2009).

Because of the characteristics of room interiors, we focus here on buildings and floor plan generation examples.
We mentioned before that, in almost every room that has a specific function, patterns are visible. Many of these
patterns are also hierarchical in nature: chairs are placed around the table, plates on top of the table and the cutlery,
in turn, is placed next to the plates. A similar observation is made with respect to the decomposition of buildings and
their facades. A wall contains a door and windows and those windows consist of a windowsill, the frame of the
window and the glass inside that frame. Many algorithms based on this kind of decomposition supply shape
grammars to generate the buildings and facades. See for example, the work of Wonka, et al. (2003), Yong, et al.
(2004), Müller, Vereenooghe, et al. (2006), Müller, Wonka, et al. (2006) and Larive and Gaildrat (2006).

In floor plan generation methods we see the notion of shape grammars come up as well. In Rau-Chaplin, et al.
(1996) and Rau-Chaplin and Smedley (1997), a shape grammar is presented to layout the different areas in a house.
When this process is finished, these areas are assigned a function. A different method to automatically creating floor
plans is proposed in Martin (2006). First a graph is generated in which every node represents a room and every edge
corresponds to a connection between rooms. Next, these nodes are given a center location and the rooms are formed
using growth rules.

An important advantage of procedurally generating building interiors is shown in Hahn, et al. (2006). Their
research focused on generating only the rooms that are visible from the current viewpoint. This is obviously an
efficient way of handling large buildings with many different rooms (e.g. office sky scrapers). To maintain changes
made in the world, all changes are tracked and stored. When a room is removed from memory at one point, and is
regenerated later on, the stored changes are again applied to the regenerated room.

Layout solving based on object rules is also applied in manual scene editing systems. In Xu, et al. (2002), objects
contain rules describing which type of objects their surface supports. For example, food, plates or cups can be
supported by a table or a counter. Smith, et al. (2001) use similar links, but they apply them to areas. They define
offer and binding areas between objects, e.g. the area underneath a table can be an offer area that is linked to the
binding area of a chair. In the WordsEye system, described in Coyne and Sproat (2001), natural language sentences
are transformed to a list of objects with a set of constraints, based on which a scene is generated.

Declarative modeling of virtual environments (see Gaildrat (2007), Le Roux, et al. (2001) and Le Roux, et al.
(2004)) combines constraints and semantic knowledge in the form of implicit constraints, to help the user generate a
scene. In the description phase, the designer can express how a scene should look like. These descriptions are
translated into constraints that are then fed to some constraint solver. Our layout solver uses a similar workflow: it
uses rules defined for objects to come up with a set of constraints for to the solver.

A number of constraint solving techniques have already been researched to create room layouts in the form of
space planning problems. Charman (1993) gives an overview of how existing constraint solving techniques that are
not specifically focused on space planning can be applied to these problems. He discusses the efficiency of the
solving techniques and compares several space planners. Many improvements for the discussed constraint solving
techniques have been researched in the years following this study, so the results concerning the efficiency are no
longer relevant. The discussed techniques, with their recent improvements, are however still applicable to layout
solving. The planner he proposed, steered by the conclusions from his study, works with axis-aligned 2D rectangles
with variable position, orientation and dimensions. Users can express geometric constraints on these parameters,
which can be combined with logical and numerical operators. While our approach has similarities in the actual
solving method, i.e. they both express the possible positions of an object as a union of areas; we propose different
ways of expressing rules between the objects. While direct geometric constraints can still be expressed in our
system, we allow more freedom to what these constraints can relate to and allow more indirect approaches through
the use of features which will be explained in Subsection 3.1.

In the past, several space planning methods were developed using constraint logic programming (CLP). Even
some decades ago, this approach was researched (see: Pfefferkorn (1975) and Honda and Mizoguchi (1995)). A

more recent system that used CLP was created by Calderon, et al. (2003). It is a framework that generates a number
of different layout solutions for a number of objects, through which the user of the framework can interactively find
desirable solutions. The rules for the objects are all expressed in predicate logic statements. This gives the
opportunity to provide users with more or less natural language-like rules. In our approach we tend to work to a
more visual solution, which we think might be more suitable for designers of game worlds.

3 A RULE-BASED LAYOUT SOLVING APPROACH
The main idea of our approach can be summarized as follows: given a starting layout, find the possible locations of a
new object, based on a set of rules for that new object and objects in the layout. The relationships between objects
can be defined in two ways: the explicit way, for example defining that the sofa needs to face the TV and that it
should be no more than five meters away from it; and the implicit way, through the use of features, which we will
explain next. An important aspect of our approach is the use of hierarchical blocks in the solving process. When
placing a table with some chairs around it and a couple of plates on top, these objects are combined and treated as
one block. This way, the solving process is made more efficient.

3.1 FEATURE-BASED CLASS REPRESENTATIONS

In our solving approach, each class can define a geometric representation valid for all instances of that class. This
geometric representation consists of a number of so-called object features, which are 3D shapes containing a tag.
These tags can refer to specific feature types. For a feature type, rules are defined about which features can and
cannot overlap with them. For example, the OffLimit features cannot overlap any other features, e.g. the solid parts
of objects (usually the entire bounding box). The Clearance feature denotes that this area of the object needs to be
kept free e.g. for a person to walk or to use the object like the area in front of a closet. These features cannot overlap
with other features, except other Clearance features.

As an example, a geometric representation for a table consists of five OffLimit features, corresponding to the four
legs and the table top. The top feature can be assigned a TableTop tag. This way we can define that, for example,
objects like a cup or a plate should be placed on a feature with the TableTop tag. The geometric representation is
defined for a specific class, in this example the Table class. The shapes of the features are defined relative to the
object, e.g. on top, or to the left of the object. This allows designers to link 3D models of different sized tables to the
same Table class, and the five features will automatically be added to the models. It is however necessary that the
models are uniformly oriented to enable the system to handle the relative descriptions of the feature shapes; e.g.
when defined that we need a Clearance feature in front of every closet, the system will not generate the features
correctly if a model with the wrong orientation is used.

Another example of how one can use features to position objects is the common case that an object should be
placed against the wall. When creating the starting state for laying out a room, Wall features are added to the solver
on the room’s walls. By expressing that an object needs to be located with its back against such a feature, this rule
can be enforced.

3.2 CLASS RELATIONSHIPS

In the previous section, we explained how we can implicitly add relationships between objects with the help of
features. More detailed relationships can be defined in the rules that are used by the solving mechanism. These rules
can be specified in two ways. They can be associated with a class, which will add the rule to every instance of that
class, but the rule can also be defined in the layout planner (see Section 4), which gives the opportunity to define
rules to objects that are not generally applicable. For example, a chair in a waiting room is generally placed against
the wall, so this rule is specified only in the waiting room plan.

When creating the rules, one can express object relationships in a number of ways. First, we can create a direct
link with an already placed object in the layout. This is only useful when creating a layout plan (see Section 4),
because in a general class rule you cannot be sure which objects are already placed. The second way of expressing a
relationship, which can be used in a general definition, is by linking an object to objects belonging to a specific
class. We could, for example, define as a rule of the Sofa class, that when there is an instance of the TV class present
in the room, a sofa should be facing that TV.

It is clear that in this approach a hierarchical relationship is created between the objects in a layout. For a
designer, most of these hierarchies are clear, so he or she can make use of this knowledge by creating sub-plans. An
interesting example of this is an office desk setup. A number of objects like an office chair, a telephone or a
computer are all positioned relative to the desk. It is therefore practical to define a custom plan for creating such a

desk layout. Not only is it easier to reuse already created plans, it also provides an opportunity to speed up the
solving process. Instead of placing the desk and all its related objects immediately, we can first place a Desk feature
in the layout. This Desk feature could contain sub-features to guarantee clearance areas for example; still it will
definitely be faster than individually placing the desk and all its related objects. After a suitable layout for an office
space is generated using these Desk features, the features can then be replaced by all its related objects. This has the
advantage that the placement of these related objects has become a sub-problem, for which it is faster to generate a
solution.

3.3 SOLVING MECHANISM

In this section we describe how the solving approach works. First, we find all possible locations for a new object,
based on the ground type of the object, its features, and the features of the already placed objects in the current
layout. This ground type is the feature type on which the object can be placed. This could be a TableTop for a cup, a
Floor for a table or a Counter for a kitchen sink. All these features have a shape which makes up the basic location
for the new object. Above, we mentioned that OffLimit and Clearance features have a special meaning in this phase
of the solving procedure. Based on the features of these types, unwanted overlaps are trimmed from the found
locations. To allow for different orientations of the object, we perform this procedure for a discrete set of angles. In
our system we use Minkowski addition to calculate the unwanted areas: when a feature of the new object should not
overlap with an already placed feature, the Minkowski sum of the already placed feature and the new feature is
trimmed from the possible locations. Based on the possible locations defined by the rules connected to the object,
the list of possible locations is further refined. This mechanism is further illustrated here in pseudo code. Based on
the input of a new object and the current layout, this algorithm creates a list of possible locations for the new object:

//--- Creating the list of possible locations of the new object based on the object’s
//--- features and the features already placed in the current layout
//--- We start off with locations of the ground type features available in the layout
possibleLocList = currentLayout.GetFeatureLocationsOfType(newObject.GroundType)

//--- Now we prune this list of possible locations based on the overlap rules of the
//--- features in the new object and the already placed features in the current layout
for each objFeature in newObject
{
 //--- Each feature in the current layout that cannot overlap with the currently assessed
 //--- feature is subtracted from the possibleLocList
 for each layoutFeature in currentLayout
 {
 if (! objectFeature.OverlapAllowedWith(layoutFeature))
 {
 //--- Using the Minkowski Sum, we create an area that contains all locations for
 //--- which the object feature would overlap with the layout feature
 illegalAreaAroundFeature = (layoutFeature.Shape).MinkowksiSum(objFeature.Shape)

 //--- Now we subtract this area from the list of possible locations
 possibleLocList = possibleLocList.Minus(illegalAreaAroundFeature)
 }
 }
}

//--- The possible location list is intersected with the possible locations based on each
//--- individual rule for the new object
for each rule in newObject
{
 ruleLocationList = rule.CreatePossibleLocations()
 possibleLocList = possibleLocList.Intersection(ruleLocationList)
}

We have two kinds of rules that can be handled by the solver. The area-based rules define a possible placement
area for an object. This could be an area next to a feature or an object, on top of an object, etc. These are handled
first by the solver and the intersection of these areas and the already found areas are now the provisional possible
locations for the new object. Next, the so-called grid-based rules are handled. The current list of possible areas is cut
into a grid of smaller areas, of which the size can be set inside the rules (when placing a table in a room, we can use
larger grid sizes than when placing a fork on the table). For the center point of these areas a list of geometric

constraints can be evaluated, ranging from a required distance to a certain object or feature, whether another object
is visible from that area, etc. The areas for which these constraints do not hold are discarded.

This black-or-white approach is not always desirable. We want to be able to define that an object of a particular
class attracts or detracts objects of another class. For this we use attractors and detractors. These assign weights for
the possible placement areas found previously. These weights will deem some locations as unlikely but not
completely invalid for a specific object. In the final step of the process, we first pick an area based on the weights
and subsequently we pick a random location within that area.

The same approach can be applied when designing a room by hand. When the designer wants to add a new
object in a layout, the possible locations can be shown as a guide. Another possibility is to snap to a valid position
closest to where the designer dragged the new object. This makes our solving approach suitable for both manual and
automatic layout systems.

Performance is always an important issue for any solving approach. However, a generic approach will not be
able to take advantage of many optimizations available for more specialized solving methods. In the algorithm
above, it becomes clear that the number of features available in the layout could create an important bottleneck for
the performance. Every time an object is added to the layout, all its features are added as well and the pruning of
possible object locations based on the features in the layout will take longer and longer. The worst-case complexity,
i.e. when every feature cannot overlap with every other feature in the layout, is near O(n2) with n the number of
features in the new objects that need to be added to a layout. This is the reason why the hierarchic subdivision of the
scene is very important, since the new object will only take into account the already placed features in the sub layout
that is considered at that moment, so n will be the number of new objects added to the sub layout which can be
considerably smaller. An optimized scene management system that stores the features of the layout can obviously
further improve the performance of our approach. Our current implementation of this approach does not include
mechanisms to detect contradicting rules. However, because of the step by step approach, it is quite easy to give the
user insight in how a specific rule influences the possible locations for an object in an example. The system could
show what areas are deemed valid or invalid by each rule, after which these rules could be adjusted by the user.

4 LAYOUT PLANNER
The job of the layout solver, discussed in the previous section, is to place an object in a layout, making sure the rules
defined for that object in the class description hold. The layout planner submits objects to the solver one by one. A
planner works based on a procedure: a list of rules that need to be executed in order. Examples for such rules might
be: “place X instances of class Y”, or “place as many objects of class Z as possible”. This planner can also contain
elements like if-then-else statements or loops: “keep adding cupboards until the total amount of storage space
exceeds 1.3 cubic meters”, or “if context is “dinner” place 5 plates on a table in front of a chair and stack 10 plates

in storage features, else stack 15 plates in storage features”. We can extend the previous example and define that in a
context “after dinner” the plates should be placed on the sink. Note that currently, context in our solver is simply a
list of tags that describe the current context, e.g. {“weekend”, “after dinner”, “near Christmas”…}. Based on these
rules the planner will feed the layout problem solver. The problem solver, in turn, will make sure the rules defined in
the classes are respected and therefore a valid solution will be generated.

An important rule that is available in the planner is the backtracking rule. When a point in a layout process is
reached where an important object cannot be placed anymore, this could be solved by backtracking and choosing a
different location for previously placed objects. At their old location, these objects might have prevented the
placement of the new object.

When adding a new object to the layout, the corresponding features are placed accordingly, but the planner also
allows the designer to directly add features to the layout. One of the feature types that is useful in a planner step is
the Area feature. It is used to create a rough provisional layout, which in later steps can be filled with specific
objects. This way, the Area features serve as kind of placeholders for the eventual objects. We could, for example,
start our living room plan by first placing a sitting area and a dining area. Later, when we add a dining table to the
layout, a rule is added that it should be placed inside the previously marked dining area. When placing a new Area
feature, it behaves like an OffLimit feature, i.e. it may not overlap with any other feature and therefore guarantees the
new feature area is empty. But when the feature is already placed, overlap with all other features is allowed with the
exception of other Area features, and so the feature areas can be filled with the appropriate objects.

To edit and test the layout plans, we created a tool that allows designers to see how changes he or she makes to
the plan affect the result. Because this result is obviously very dependent on the situation, we immediately show the
effect of the changes on multiple examples (see Figure 1). Due to the nature of the problem designers will never be
able to check all possible solutions, but by checking some solutions under different circumstances, major problems
or unwanted behavior will quickly be noticed.

Figure 1: The impact of changes in the plan is immediately shown in multiple example situations.

5 EXAMPLES
When testing the layout solver, we mainly focused on room interiors. We will now show some results from a couple
of the example scenarios we used. In our living room example, we used a plan that involved placing a dining area
with a table and some chairs, a sitting area with a TV, a coffee table and two sofas, some furniture like a lamp and
some cupboards and finally some extra objects like vases, plates and cups. This plan involved many of the example
rules we explained in previous chapters, as well as some object relationships through linked features. It also contains
some backtracking, e.g. when the coffee table cannot be placed in front of the TV. An example of such a layout can
be seen in Figure 2. This is a moderately complex layout plan with, in total, 30 placed objects of 13 different classes
each with between one and three rules, and it takes on average 152 milliseconds (on an Intel Core 2.4 GHz
processor) to create a valid layout. This makes if fast enough to be used to generate and populate rooms at runtime.
The solver could, in the background, generate the appropriate layout for the rooms closest to the player’s current

position. This approach will also result in a decrease of disk space necessary to store a game world, which can be
important for online games, since downloading new areas of an online world can sometimes take a considerable
amount of time and bandwidth and therefore more stress on the server.

We created a factory example to show how feature areas can be used to create a rough layout by positioning the
(invisible) feature areas, and then positioning corresponding objects inside those areas. In the first steps of the plan
we add some feature areas, each with their preferred size and rules. In this case we have a storage area, a locker area
and a vehicle area. The locker area needs to be placed against the wall and the vehicle area close to both the entry
gate and the storage area. Then we add the actual objects, each with their class rules, plus the extra rule that they
need to be located in the correct feature area.

Using a similar approach we can use our solver to generate floor plans for a building. In our example in Figure 4,
we used a fixed shape of the building. The bottom wall is next to the street. The rooms are represented as feature
areas in the solver and are shown as rectangles in the images. We added some rules to the room areas, e.g. the hall
should connect to the street-side wall and the living room should be adjacent to the kitchen. To grow the boxes to
form the actual rooms, we used a separate method that expanded the rooms (based on priority) until it reached an
outside wall or another room.

Figure 2: An example of a living room layout which took on average 152ms to generate layout with 30 objects of 13 classes.

Figure 3: An example of a factory floor. First the different areas are positioned (left), and after that these areas are filled with the
preferred objects (right). The scene includes over 100 objects and took 431ms to generate.

Figure 4: By placing some feature areas we can lay out the positions of rooms inside a building.

We use features in the form of a path to position road-side objects. With our basic constraint possibilities, we can
define rules on the distance between the objects, and by adding a rule that they should be located on the path
features next to the road, we can easily add objects on roads with different widths and properties. In our example in
Figure 5, we created two roads with different widths and lanes on the same path. In the top example, no street lights
are added, and therefore delineators with a reflector are used as an alternative, which is common for smaller roads in
a rural area. The traffic sign that denotes the speed limit is placed at the border of a zone marked with a feature area.

Figure 5: The road side objects are automatically adjusted to a different road width and when no street lights are placed,
delineators with a reflector are added (see top image). The top scene contains 49 objects and took 620ms; the bottom scene

contains 32 objects and took 318ms.

These examples show that our solving approach is generic and applicable to many different layout problems

common to procedural generation of game worlds. Throughout the paper, we focused on creating room interiors,
since it offers many different examples of layout problems that can be handled by our solving approach. But the
same approach, only with other classes, each with their proper placement rules, can be applied to floor plan creation
and road-side scenarios. This is due to the fact that we allow for abstract feature-based representations of class
instances.

6 CONCLUSION
In the ever increasing game worlds, it is becoming impossible for a designer to create every part of the game world
by hand. We proposed and implemented a layout solving approach that presents a solution to speed up manual
design methods, by solving some placement rules of newly placed objects, and that can also be used to create parts
of the game world automatically.

We highlighted that our approach is capable of generating room interiors fast enough to be usable at runtime, i.e.
by creating interior layouts only when necessary. This way, a huge game world in an urban environment could be
extended with the possibility of entering buildings without designers spending weeks and months on creating every

layout by hand. They do however remain in control over the generation procedure, by creating the plans that decide
which objects are added to the layout, and by defining the rules that are to be followed when placing these objects.
This also means that the knowledge we have about how best to plan a layout, and how objects relate to one another,
can be captured in the plan and the class rules.

To keep the approach generic, we chose the use of abstract class representations with the help of features to
allow the class rules to be reused for different objects belonging to the same class. Moreover this allows the system
to be used in many different scenarios. New classes can easily be created, just by defining a representation and some
general rules that should apply to all instances of that class. We showed some different interior layout examples, as
well as a floor plan layout and a scene with some road-side objects, all created with the same solving mechanism.
We can conclude that our approach is usable in both automatic and user-assisted design, and that it can solve
different kinds of layout problems that are commonly noticed in game world creation.

We are currently integrating our solving approach with a more comprehensive semantics-based class library that
stores the knowledge base for the used objects (Tutenel, et al. (2009)) in order to capture even more user knowledge
in the class definitions and in the rules as well. We also plan to expand on the system we created based on our
approach with a clear and visual editor for the classes, the rules and the plans.

REFERENCES

Assassin's Creed (2007). http://assassinscreed.uk.ubi.com/experience/ Retrieved March 10, 2009

Calderon, C., Cavazza, M., and Diaz, D. (2003). A New Approach to the Interactive Resolution of Configuration
Problems in Virtual Environments. In Proceedings of Smart Graphics 2003, Heidelberg, Germany.

Charman, P. (1993). Solving Space Planning Problems Using Constraint Technology. Institute of Cybernetics -
Estonian Academy of Sciences.

Coyne, B., and Sproat, R. (2001). WordsEye: an Automatic Text-to-Scene Conversion System. In Proceedings of
International Conference on Computer Graphics and Interactive Technologies (SIGGRAPH 2001), Los
Angeles, California, USA.

Gaildrat, V. (2007). Declarative Modelling of Virtual Environments, Overview of issues and Applications. In
International Conference on Computer Graphics and Artificial Intelligence (3IA 2007), Athens, Greece.

Grand Theft Auto IV (2008). http://www.rockstargames.com/IV/ Retrieved March 10, 2009

Hahn, E., Bose, P., and Whitehead, A. (2006). Persistent Realtime Building Interior Generation. In Proceedings of
the 2006 ACM SIGGRAPH Symposium on Videogames, Boston, Massachusetts, USA.

Honda, K., and Mizoguchi, F. (1995). Constraint-Based Approach for Automatic Spatial Layout Planning. In
Proceedings of the 11th Conference on Artificial Intelligence for Applications, 1995, Los Angeles,
California, USA.

Larive, M., and Gaildrat, V. (2006). Wall Grammar for Building Generation. In Proceedings of the 4th International
Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, Kuala
Lumpur, Malaysia.

Le Roux, O., Gaildrat, V., and Caubet, R. (2001). Using Constraint Propagation and Domain Reduction for the
Generation Phase in Declarative Modeling. In Conference on Information Visualisation, IV'2001, London,
UK.

Le Roux, O., Gaildrat, V., and Caubet, R. (2004). Constraint Satisfaction Techniques for the Generation Phase in
Declarative Modeling. In M. Sarfraz (Ed.). Geometric Modeling: Techniques, Applications, Systems and
Tools (pp. 194-215): Kluwer Academic Publishers Norwell, MA, USA.

Martin, J. (2006). Procedural House Generation: A Method for Dynamically Generating Floor Plans. In Proceedings
of the 2006 symposium on Interactive 3D graphics and games, Redwood City, California, USA.

Müller, P., Vereenooghe, T., Wonka, P., Paap, I., and Van Gool, L. (2006). Procedural 3D Reconstruction of Puuc
Buildings in Xkipché. In Proceedings 7th International Symposium on Virtual Reality, Archaeology and
Intelligent Cultural Heritage - VAST2006, Nicosia, Cyprus.

Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool, L. (2006). Procedural Modeling of Buildings. ACM
Transactions on Graphics, 25(3), 614-623.

Pfefferkorn, C. E. (1975). A Heuristic Problem Solving Design System for Equipment or Furniture Layouts.
Communications of the ACM, 18(5), 286-297.

Rau-Chaplin, A., MacKay-Lyons, B., and Spierenburg, P. (1996). The LaHave House Project: Towards an
Automated Architectural Design Service. In Proceedings of the International Conference on Computer-
Aided Design (CADEX'96), Hagenberg, Austria.

Rau-Chaplin, A., and Smedley, T. J. (1997). A Graphical Language for Generating Architectural Forms. In
Proceedings of the 1997 IEEE Symposium on Visual Languages, Capri, Italy.

Smelik, R. M., de Kraker, K. J., Groenewegen, S. A., Tutenel, T., and Bidarra, R. (2009). A Survey of Procedural
Methods for Terrain Modelling. TBP in Proceedings of CASA Workshop on 3D Advanced Media In
Gaming And Simulation (3AMIGAS), Amsterdam, The Netherlands.

Smith, G., Salzman, T., and Stuerzlinger, W. (2001). 3D Scene Manipulation with 2D Devices and Constraints. In
Graphics Interface Proceedings 2001, Ottawa, Ontario, Canada.

Tutenel, T., Bidarra, R., Smelik, R. M., and de Kraker, K. J. (2008). The Role of Semantics in Games and
Simulations. Computers in Entertainment, 6(4), 1-35.

Tutenel, T., Bidarra, R., Smelik, R. M., and de Kraker, K. J. (2009). Using Semantics to Improve the Design of
Game Worlds. (Submitted for publication).

Wonka, P., Wimmer, M., Sillion, F., and Ribarsky, W. (2003). Instant Architecture. ACM Transactions on Graphics
(TOG), 22(3), 669-677.

Xu, K., Stewart, J., and Fiume, E. (2002). Constraint-Based Automatic Placement for Scene Composition. In
Graphics Interface Proceedings 2002, University of Calgary.

Yong, L., Congfu, X. U., Zhigeng, P., and Yunhe, P. (2004). Semantic Modeling Project: Building Vernacular
House of Southeast China. In Proceedings of the 2004 ACM SIGGRAPH International Conference on
Virtual Reality Continuum and its Applications in Industry, Singapore.

View publication statsView publication stats

https://www.researchgate.net/publication/228922424

