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       Abstract 
Due to the recent advancement in procedural generation techniques, games are presenting players with ever 
growing cities and terrains to explore. However most sandbox-style games situated in cities, do not allow 
players to wander into buildings. In past research, space planning techniques have already been utilized to 
generate suitable layouts for both building floor plans and room layouts. We introduce a novel rule-based 
layout solving approach, especially suited for use in conjunction with procedural generation methods. We 
show how this solving approach can be used for procedural generation by providing the solver with a user-
defined plan. In this plan, users can specify objects to be placed as instances of classes, which in turn contain 
rules about how instances should be placed. This approach gives us the opportunity to use our generic solver 
in different procedural generation scenarios. In this paper, we will illustrate mainly with interior generation 
examples. 

 
Keywords: Procedural generation; constraint solving 

 

1  INTRODUCTION 
Many recent games that play in an urban setting feature huge cities, e.g. "Grand Theft Auto IV"  (2008) or 
"Assassin's Creed"  (2007). The player is however limited to entering only a handful of the many hundreds of 
buildings. It would obviously take too long for designers to model by hand the interiors of all these buildings with 
rooms and furniture, but with current procedural generation techniques, the interiors of these buildings could have 
been generated automatically. 

This would not only increase the perceived realism of the game, more importantly, it would allow for new 
gameplay. The player could break into buildings to hide from enemies or to find food or other items like first-aid 
kits. It could also make chase sequences more interesting, and give players even more to explore in sandbox-style 
games. 

Clearly, the difference in quality between hand-designed and procedurally generated content in the game world 
should not be too noticeable. In comparison to manually designed content, current procedural content can look dull 
and repetitive. However, there are several characteristics of building interiors that make them a suitable candidate 
for automated techniques. For example, often the interiors in a common house roughly follow the same structure. In 
a kitchen, we often see cabinets and counter being placed against the walls, with a table or perhaps an extension to 
the counter as an island in the middle of the room. Similarly, in a living room the couches are often placed around a 
small table and oriented towards the television set. Many such observations could be translated into rules and 
procedures to automatically generate these interior spaces. 

Moreover, research in solving of space layout problems aimed at room interiors has already generated promising 
results. Several methods of solving different kinds of layout constraints among objects inside a room have been 
proposed, as we will show in the next section. We developed a rule-based layout solver, which is especially suited 
for procedural methods: based on a plan or a procedure, objects (e.g. furniture) are fed to the solver, which tries to fit 
them based on a set of rules defined for those objects and the ones that are already placed. We also define object 
features to steer the layout (e.g. areas around an object that should remain empty) or to link them to other objects. 
Furthermore, our approach was designed to be integrated with a comprehensive semantic class library which is 
explained in Tutenel, et al. (2009). In this paper, however, we will only briefly describe how these semantic classes 
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are used in our method. A more detailed discussion about how semantics can play an important role in the design of 
game worlds can be found in Tutenel, et al. (2008). 

We first present the general idea of our rule-based layout solver in Section 3, after which we go into more detail 
about the layout planner which feeds the solver in Section 4. Finally, in Section 5, we show several examples where 
the solver is used to generate different layout problems. 

2  RELATED WORK 
Research on procedural generation of content suitable for game worlds has focused on many different aspects, 
including a variety of techniques that generate height maps for terrains or models for vegetation. A recent survey of 
procedural methods can be found in Smelik, et al. (2009). 

Because of the characteristics of room interiors, we focus here on buildings and floor plan generation examples. 
We mentioned before that, in almost every room that has a specific function, patterns are visible. Many of these 
patterns are also hierarchical in nature: chairs are placed around the table, plates on top of the table and the cutlery, 
in turn, is placed next to the plates. A similar observation is made with respect to the decomposition of buildings and 
their facades. A wall contains a door and windows and those windows consist of a windowsill, the frame of the 
window and the glass inside that frame. Many algorithms based on this kind of decomposition supply shape 
grammars to generate the buildings and facades. See for example, the work of Wonka, et al. (2003), Yong, et al. 
(2004), Müller, Vereenooghe, et al. (2006), Müller, Wonka, et al. (2006) and Larive and Gaildrat (2006). 

In floor plan generation methods we see the notion of shape grammars come up as well. In Rau-Chaplin, et al. 
(1996) and Rau-Chaplin and Smedley (1997), a shape grammar is presented to layout the different areas in a house. 
When this process is finished, these areas are assigned a function. A different method to automatically creating floor 
plans is proposed in Martin (2006). First a graph is generated in which every node represents a room and every edge 
corresponds to a connection between rooms. Next, these nodes are given a center location and the rooms are formed 
using growth rules. 

An important advantage of procedurally generating building interiors is shown in Hahn, et al. (2006). Their 
research focused on generating only the rooms that are visible from the current viewpoint. This is obviously an 
efficient way of handling large buildings with many different rooms (e.g. office sky scrapers). To maintain changes 
made in the world, all changes are tracked and stored. When a room is removed from memory at one point, and is 
regenerated later on, the stored changes are again applied to the regenerated room. 

Layout solving based on object rules is also applied in manual scene editing systems. In Xu, et al. (2002), objects 
contain rules describing which type of objects their surface supports. For example, food, plates or cups can be 
supported by a table or a counter. Smith, et al. (2001) use similar links, but they apply them to areas. They define 
offer and binding areas between objects, e.g. the area underneath a table can be an offer area that is linked to the 
binding area of a chair. In the WordsEye system, described in Coyne and Sproat (2001), natural language sentences 
are transformed to a list of objects with a set of constraints, based on which a scene is generated. 

Declarative modeling of virtual environments (see Gaildrat (2007), Le Roux, et al. (2001) and Le Roux, et al. 
(2004)) combines constraints and semantic knowledge in the form of implicit constraints, to help the user generate a 
scene. In the description phase, the designer can express how a scene should look like. These descriptions are 
translated into constraints that are then fed to some constraint solver. Our layout solver uses a similar workflow: it 
uses rules defined for objects to come up with a set of constraints for to the solver. 

A number of constraint solving techniques have already been researched to create room layouts in the form of 
space planning problems. Charman (1993) gives an overview of how existing constraint solving techniques that are 
not specifically focused on space planning can be applied to these problems. He discusses the efficiency of the 
solving techniques and compares several space planners. Many improvements for the discussed constraint solving 
techniques have been researched in the years following this study, so the results concerning the efficiency are no 
longer relevant. The discussed techniques, with their recent improvements, are however still applicable to layout 
solving. The planner he proposed, steered by the conclusions from his study, works with axis-aligned 2D rectangles 
with variable position, orientation and dimensions. Users can express geometric constraints on these parameters, 
which can be combined with logical and numerical operators. While our approach has similarities in the actual 
solving method, i.e. they both express the possible positions of an object as a union of areas; we propose different 
ways of expressing rules between the objects. While direct geometric constraints can still be expressed in our 
system, we allow more freedom to what these constraints can relate to and allow more indirect approaches through 
the use of features which will be explained in Subsection 3.1. 

In the past, several space planning methods were developed using constraint logic programming (CLP). Even 
some decades ago, this approach was researched (see: Pfefferkorn (1975) and Honda and Mizoguchi (1995)). A 



more recent system that used CLP was created by Calderon, et al. (2003). It is a framework that generates a number 
of different layout solutions for a number of objects, through which the user of the framework can interactively find 
desirable solutions. The rules for the objects are all expressed in predicate logic statements. This gives the 
opportunity to provide users with more or less natural language-like rules. In our approach we tend to work to a 
more visual solution, which we think might be more suitable for designers of game worlds. 

3  A RULE-BASED LAYOUT SOLVING APPROACH 
The main idea of our approach can be summarized as follows: given a starting layout, find the possible locations of a 
new object, based on a set of rules for that new object and objects in the layout. The relationships between objects 
can be defined in two ways: the explicit way, for example defining that the sofa needs to face the TV and that it 
should be no more than five meters away from it; and the implicit way, through the use of features, which we will 
explain next. An important aspect of our approach is the use of hierarchical blocks in the solving process. When 
placing a table with some chairs around it and a couple of plates on top, these objects are combined and treated as 
one block. This way, the solving process is made more efficient. 

3.1 FEATURE-BASED CLASS REPRESENTATIONS 

In our solving approach, each class can define a geometric representation valid for all instances of that class. This 
geometric representation consists of a number of so-called object features, which are 3D shapes containing a tag. 
These tags can refer to specific feature types. For a feature type, rules are defined about which features can and 
cannot overlap with them. For example, the OffLimit features cannot overlap any other features, e.g. the solid parts 
of objects (usually the entire bounding box). The Clearance feature denotes that this area of the object needs to be 
kept free e.g. for a person to walk or to use the object like the area in front of a closet. These features cannot overlap 
with other features, except other Clearance features. 

As an example, a geometric representation for a table consists of five OffLimit features, corresponding to the four 
legs and the table top. The top feature can be assigned a TableTop tag. This way we can define that, for example, 
objects like a cup or a plate should be placed on a feature with the TableTop tag. The geometric representation is 
defined for a specific class, in this example the Table class. The shapes of the features are defined relative to the 
object, e.g. on top, or to the left of the object. This allows designers to link 3D models of different sized tables to the 
same Table class, and the five features will automatically be added to the models. It is however necessary that the 
models are uniformly oriented to enable the system to handle the relative descriptions of the feature shapes; e.g. 
when defined that we need a Clearance feature in front of every closet, the system will not generate the features 
correctly if a model with the wrong orientation is used. 

Another example of how one can use features to position objects is the common case that an object should be 
placed against the wall. When creating the starting state for laying out a room, Wall features are added to the solver 
on the room’s walls. By expressing that an object needs to be located with its back against such a feature, this rule 
can be enforced. 

3.2 CLASS RELATIONSHIPS 

In the previous section, we explained how we can implicitly add relationships between objects with the help of 
features. More detailed relationships can be defined in the rules that are used by the solving mechanism. These rules 
can be specified in two ways. They can be associated with a class, which will add the rule to every instance of that 
class, but the rule can also be defined in the layout planner (see Section 4), which gives the opportunity to define 
rules to objects that are not generally applicable. For example, a chair in a waiting room is generally placed against 
the wall, so this rule is specified only in the waiting room plan. 

When creating the rules, one can express object relationships in a number of ways. First, we can create a direct 
link with an already placed object in the layout. This is only useful when creating a layout plan (see Section 4), 
because in a general class rule you cannot be sure which objects are already placed. The second way of expressing a 
relationship, which can be used in a general definition, is by linking an object to objects belonging to a specific 
class. We could, for example, define as a rule of the Sofa class, that when there is an instance of the TV class present 
in the room, a sofa should be facing that TV. 

It is clear that in this approach a hierarchical relationship is created between the objects in a layout. For a 
designer, most of these hierarchies are clear, so he or she can make use of this knowledge by creating sub-plans. An 
interesting example of this is an office desk setup. A number of objects like an office chair, a telephone or a 
computer are all positioned relative to the desk. It is therefore practical to define a custom plan for creating such a 



desk layout. Not only is it easier to reuse already created plans, it also provides an opportunity to speed up the 
solving process. Instead of placing the desk and all its related objects immediately, we can first place a Desk feature 
in the layout. This Desk feature could contain sub-features to guarantee clearance areas for example; still it will 
definitely be faster than individually placing the desk and all its related objects. After a suitable layout for an office 
space is generated using these Desk features, the features can then be replaced by all its related objects. This has the 
advantage that the placement of these related objects has become a sub-problem, for which it is faster to generate a 
solution. 

3.3 SOLVING MECHANISM 

In this section we describe how the solving approach works. First, we find all possible locations for a new object, 
based on the ground type of the object, its features, and the features of the already placed objects in the current 
layout. This ground type is the feature type on which the object can be placed. This could be a TableTop for a cup, a 
Floor for a table or a Counter for a kitchen sink. All these features have a shape which makes up the basic location 
for the new object. Above, we mentioned that OffLimit and Clearance features have a special meaning in this phase 
of the solving procedure. Based on the features of these types, unwanted overlaps are trimmed from the found 
locations. To allow for different orientations of the object, we perform this procedure for a discrete set of angles. In 
our system we use Minkowski addition to calculate the unwanted areas: when a feature of the new object should not 
overlap with an already placed feature, the Minkowski sum of the already placed feature and the new feature is 
trimmed from the possible locations. Based on the possible locations defined by the rules connected to the object, 
the list of possible locations is further refined. This mechanism is further illustrated here in pseudo code. Based on 
the input of a new object and the current layout, this algorithm creates a list of possible locations for the new object: 

//--- Creating the list of possible locations of the new object based on the object’s 
//--- features and the features already placed in the current layout 
//--- We start off with locations of the ground type features available in the layout 
possibleLocList = currentLayout.GetFeatureLocationsOfType(newObject.GroundType) 
 
//--- Now we prune this list of possible locations based on the overlap rules of the 
//--- features in the new object and the already placed features in the current layout 
for each objFeature in newObject 
{ 
 //--- Each feature in the current layout that cannot overlap with the currently assessed  
 //--- feature is subtracted from the possibleLocList 
 for each layoutFeature in currentLayout 
 { 
  if ( ! objectFeature.OverlapAllowedWith(layoutFeature) ) 
  { 
   //--- Using the Minkowski Sum, we create an area that contains all locations for 
   //--- which the object feature would overlap with the layout feature 
   illegalAreaAroundFeature = (layoutFeature.Shape).MinkowksiSum(objFeature.Shape) 
 
   //--- Now we subtract this area from the list of possible locations 
   possibleLocList = possibleLocList.Minus(illegalAreaAroundFeature) 
  } 
 } 
} 
 
//--- The possible location list is intersected with the possible locations based on each 
//--- individual rule for the new object 
for each rule in newObject 
{ 
 ruleLocationList = rule.CreatePossibleLocations() 
 possibleLocList = possibleLocList.Intersection(ruleLocationList) 
} 

We have two kinds of rules that can be handled by the solver. The area-based rules define a possible placement 
area for an object. This could be an area next to a feature or an object, on top of an object, etc. These are handled 
first by the solver and the intersection of these areas and the already found areas are now the provisional possible 
locations for the new object. Next, the so-called grid-based rules are handled. The current list of possible areas is cut 
into a grid of smaller areas, of which the size can be set inside the rules (when placing a table in a room, we can use 
larger grid sizes than when placing a fork on the table). For the center point of these areas a list of geometric 



constraints can be evaluated, ranging from a required distance to a certain object or feature, whether another object 
is visible from that area, etc. The areas for which these constraints do not hold are discarded. 

This black-or-white approach is not always desirable. We want to be able to define that an object of a particular 
class attracts or detracts objects of another class. For this we use attractors and detractors. These assign weights for 
the possible placement areas found previously. These weights will deem some locations as unlikely but not 
completely invalid for a specific object. In the final step of the process, we first pick an area based on the weights 
and subsequently we pick a random location within that area. 

The same approach can be applied when designing a room by hand. When the designer wants to add a new 
object in a layout, the possible locations can be shown as a guide. Another possibility is to snap to a valid position 
closest to where the designer dragged the new object. This makes our solving approach suitable for both manual and 
automatic layout systems. 

Performance is always an important issue for any solving approach. However, a generic approach will not be 
able to take advantage of many optimizations available for more specialized solving methods. In the algorithm 
above, it becomes clear that the number of features available in the layout could create an important bottleneck for 
the performance. Every time an object is added to the layout, all its features are added as well and the pruning of 
possible object locations based on the features in the layout will take longer and longer. The worst-case complexity, 
i.e. when every feature cannot overlap with every other feature in the layout, is near O(n2) with n the number of 
features in the new objects that need to be added to a layout. This is the reason why the hierarchic subdivision of the 
scene is very important, since the new object will only take into account the already placed features in the sub layout 
that is considered at that moment, so n will be the number of new objects added to the sub layout which can be 
considerably smaller. An optimized scene management system that stores the features of the layout can obviously 
further improve the performance of our approach. Our current implementation of this approach does not include 
mechanisms to detect contradicting rules. However, because of the step by step approach, it is quite easy to give the 
user insight in how a specific rule influences the possible locations for an object in an example. The system could 
show what areas are deemed valid or invalid by each rule, after which these rules could be adjusted by the user. 

4  LAYOUT PLANNER 
The job of the layout solver, discussed in the previous section, is to place an object in a layout, making sure the rules 
defined for that object in the class description hold. The layout planner submits objects to the solver one by one. A 
planner works based on a procedure: a list of rules that need to be executed in order. Examples for such rules might 
be: “place X instances of class Y”, or “place as many objects of class Z as possible”. This planner can also contain 
elements like if-then-else statements or loops: “keep adding cupboards until the total amount of storage space 
exceeds 1.3 cubic meters”, or “if context is “dinner” place 5 plates on a table in front of a chair and stack 10 plates 

in storage features, else stack 15 plates in storage features”. We can extend the previous example and define that in a 
context “after dinner” the plates should be placed on the sink. Note that currently, context in our solver is simply a 
list of tags that describe the current context, e.g. {“weekend”, “after dinner”, “near Christmas”…}. Based on these 
rules the planner will feed the layout problem solver. The problem solver, in turn, will make sure the rules defined in 
the classes are respected and therefore a valid solution will be generated. 

An important rule that is available in the planner is the backtracking rule. When a point in a layout process is 
reached where an important object cannot be placed anymore, this could be solved by backtracking and choosing a 
different location for previously placed objects. At their old location, these objects might have prevented the 
placement of the new object. 

When adding a new object to the layout, the corresponding features are placed accordingly, but the planner also 
allows the designer to directly add features to the layout. One of the feature types that is useful in a planner step is 
the Area feature. It is used to create a rough provisional layout, which in later steps can be filled with specific 
objects. This way, the Area features serve as kind of placeholders for the eventual objects. We could, for example, 
start our living room plan by first placing a sitting area and a dining area. Later, when we add a dining table to the 
layout, a rule is added that it should be placed inside the previously marked dining area. When placing a new Area 
feature, it behaves like an OffLimit feature, i.e. it may not overlap with any other feature and therefore guarantees the 
new feature area is empty. But when the feature is already placed, overlap with all other features is allowed with the 
exception of other Area features, and so the feature areas can be filled with the appropriate objects. 

To edit and test the layout plans, we created a tool that allows designers to see how changes he or she makes to 
the plan affect the result. Because this result is obviously very dependent on the situation, we immediately show the 
effect of the changes on multiple examples (see Figure 1). Due to the nature of the problem designers will never be 
able to check all possible solutions, but by checking some solutions under different circumstances, major problems 
or unwanted behavior will quickly be noticed. 



 
 

 
 

Figure 1: The impact of changes in the plan is immediately shown in multiple example situations. 

 

5  EXAMPLES 
When testing the layout solver, we mainly focused on room interiors. We will now show some results from a couple 
of the example scenarios we used. In our living room example, we used a plan that involved placing a dining area 
with a table and some chairs, a sitting area with a TV, a coffee table and two sofas, some furniture like a lamp and 
some cupboards and finally some extra objects like vases, plates and cups. This plan involved many of the example 
rules we explained in previous chapters, as well as some object relationships through linked features. It also contains 
some backtracking, e.g. when the coffee table cannot be placed in front of the TV. An example of such a layout can 
be seen in Figure 2. This is a moderately complex layout plan with, in total, 30 placed objects of 13 different classes 
each with between one and three rules, and it takes on average 152 milliseconds (on an Intel Core 2.4 GHz 
processor) to create a valid layout. This makes if fast enough to be used to generate and populate rooms at runtime. 
The solver could, in the background, generate the appropriate layout for the rooms closest to the player’s current 

position. This approach will also result in a decrease of disk space necessary to store a game world, which can be 
important for online games, since downloading new areas of an online world can sometimes take a considerable 
amount of time and bandwidth and therefore more stress on the server. 

We created a factory example to show how feature areas can be used to create a rough layout by positioning the 
(invisible) feature areas, and then positioning corresponding objects inside those areas. In the first steps of the plan 
we add some feature areas, each with their preferred size and rules. In this case we have a storage area, a locker area 
and a vehicle area. The locker area needs to be placed against the wall and the vehicle area close to both the entry 
gate and the storage area. Then we add the actual objects, each with their class rules, plus the extra rule that they 
need to be located in the correct feature area. 

Using a similar approach we can use our solver to generate floor plans for a building. In our example in Figure 4, 
we used a fixed shape of the building. The bottom wall is next to the street. The rooms are represented as feature 
areas in the solver and are shown as rectangles in the images. We added some rules to the room areas, e.g. the hall 
should connect to the street-side wall and the living room should be adjacent to the kitchen. To grow the boxes to 
form the actual rooms, we used a separate method that expanded the rooms (based on priority) until it reached an 
outside wall or another room. 

 



 
 

Figure 2: An example of a living room layout which took on average 152ms to generate layout with 30 objects of 13 classes. 

 

 
 

Figure 3: An example of a factory floor. First the different areas are positioned (left), and after that these areas are filled with the 
preferred objects (right). The scene includes over 100 objects and took 431ms to generate. 

 

 
 

Figure 4: By placing some feature areas we can lay out the positions of rooms inside a building. 



We use features in the form of a path to position road-side objects. With our basic constraint possibilities, we can 
define rules on the distance between the objects, and by adding a rule that they should be located on the path 
features next to the road, we can easily add objects on roads with different widths and properties. In our example in 
Figure 5, we created two roads with different widths and lanes on the same path. In the top example, no street lights 
are added, and therefore delineators with a reflector are used as an alternative, which is common for smaller roads in 
a rural area. The traffic sign that denotes the speed limit is placed at the border of a zone marked with a feature area. 

 
 

 
 

Figure 5: The road side objects are automatically adjusted to a different road width and when no street lights are placed, 
delineators with a reflector are added (see top image). The top scene contains 49 objects and took 620ms; the bottom scene 

contains 32 objects and took 318ms. 

 
These examples show that our solving approach is generic and applicable to many different layout problems 

common to procedural generation of game worlds. Throughout the paper, we focused on creating room interiors, 
since it offers many different examples of layout problems that can be handled by our solving approach. But the 
same approach, only with other classes, each with their proper placement rules, can be applied to floor plan creation 
and road-side scenarios. This is due to the fact that we allow for abstract feature-based representations of class 
instances. 

6  CONCLUSION 
In the ever increasing game worlds, it is becoming impossible for a designer to create every part of the game world 
by hand. We proposed and implemented a layout solving approach that presents a solution to speed up manual 
design methods, by solving some placement rules of newly placed objects, and that can also be used to create parts 
of the game world automatically. 

We highlighted that our approach is capable of generating room interiors fast enough to be usable at runtime, i.e. 
by creating interior layouts only when necessary. This way, a huge game world in an urban environment could be 
extended with the possibility of entering buildings without designers spending weeks and months on creating every 



layout by hand. They do however remain in control over the generation procedure, by creating the plans that decide 
which objects are added to the layout, and by defining the rules that are to be followed when placing these objects. 
This also means that the knowledge we have about how best to plan a layout, and how objects relate to one another, 
can be captured in the plan and the class rules. 

To keep the approach generic, we chose the use of abstract class representations with the help of features to 
allow the class rules to be reused for different objects belonging to the same class. Moreover this allows the system 
to be used in many different scenarios. New classes can easily be created, just by defining a representation and some 
general rules that should apply to all instances of that class. We showed some different interior layout examples, as 
well as a floor plan layout and a scene with some road-side objects, all created with the same solving mechanism. 
We can conclude that our approach is usable in both automatic and user-assisted design, and that it can solve 
different kinds of layout problems that are commonly noticed in game world creation. 

We are currently integrating our solving approach with a more comprehensive semantics-based class library that 
stores the knowledge base for the used objects (Tutenel, et al. (2009)) in order to capture even more user knowledge 
in the class definitions and in the rules as well. We also plan to expand on the system we created based on our 
approach with a clear and visual editor for the classes, the rules and the plans. 
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