
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261483105

A Survey of Procedural Content Generation Techniques Suitable to Game

Development

Conference Paper · November 2011

DOI: 10.1109/SBGAMES.2011.15

CITATIONS

7
READS

110

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Mathematical Morphology Patterns View project

CTdBem Protocol and Pre-Surgical Models in Medical and Dental 3D Printing View project

Fernando Bevilacqua

Universidade Federal da Fronteira Sul

14 PUBLICATIONS   19 CITATIONS   

SEE PROFILE

Marcos Cordeiro d'Ornellas

Universidade Federal de Santa Maria

82 PUBLICATIONS   148 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Fernando Bevilacqua on 06 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261483105_A_Survey_of_Procedural_Content_Generation_Techniques_Suitable_to_Game_Development?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261483105_A_Survey_of_Procedural_Content_Generation_Techniques_Suitable_to_Game_Development?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mathematical-Morphology-Patterns?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CTdBem-Protocol-and-Pre-Surgical-Models-in-Medical-and-Dental-3D-Printing?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Bevilacqua?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Bevilacqua?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_da_Fronteira_Sul?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Bevilacqua?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcos_DOrnellas?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcos_DOrnellas?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_de_Santa_Maria?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcos_DOrnellas?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Bevilacqua?enrichId=rgreq-fe6e5cfb0bf17ad9723b2c3c374b58ac-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ4MzEwNTtBUzo2Njc3NjM0MTI1NzgzMDRAMTUzNjIxODYxMjMyNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


A survey of procedural content generation techniques suitable to game development

Daniel Michelon De Carli∗, Fernando Bevilacqua†, Cesar Tadeu Pozzer‡ and Marcos Cordeiro d‘Ornellas‡
∗NTIC-Universidade Federal do Pampa

Alegrete, Brazil
Email: danielcarli@unipampa.edu.br

†Universidade Federal da Fronteira Sul
Chapecó, Brazil

Email:fernando.bevilacqua@uffs.edu.br
‡Universidade Federal de Santa Maria

Santa Maria, Brazil
Email: {ornellas, pozzer}@inf.ufsm.br

Abstract—The development of a complex game is a time
consuming task that requires a significant amount of content
generation, including terrains, objects, characters, etc that
requires a lot of effort from the a designing team. The quality
of such content impacts the project costs and budget. One of
the biggest challenges concerning the content is how to improve
its details and at the same time lower the creation costs. In this
context procedural content generation techniques can help to
reduce the costs associated with content creation. This paper
presents a survey of classical and modern techniques focused on
procedural content generation suitable for game development.
They can be used to produce terrains, coastlines, rivers, roads
and cities. All techniques are classified as assisted (require
human intervention/guidance in order to produce results) or
non-assisted (require few or no human intervention/guidance
to produce the desired results).

Keywords-Survey; Procedural Generation; Game Develop-
ment; 3D

I. INTRODUCTION

One of the main components of modern games production

is the content design. The outcome of that effort are the

objects and the environments the player will interact with,

for instance. The quality of such content generation directly

impacts the cost of the project and the final content often

requires a team composed of several artists and 3D modelers

in order to be produced. The environment generation, for

instance, demands the creation of the main area (where

player will spend most of them time) and the surroundings

arenas (places that may not be visited by the player). If the

surrounding areas are not so important the creation process

of such content can be tedious and a waste of time for the

team. The time invested on such peripheral areas could be

better used if applied to the main area instead.

In this context procedural techniques have been emerging

as a potential solution for content creation. Even though the

procedural content generation can produce a complete and

polished environment that can be used with no modifications,

it can also be used as a starting point for the designing

team. The artist or the game designer can enhance the

Figure 1. Procedurally generated content [1], [2] and [3].

procedurally generated content in order to make it suitable

for the game context, avoiding the tedious task of creating

surrounding areas from scratch, for instance. The evolution

of procedural generation techniques may allow the creation

of more complex content such as whole scenes, saving

working hours and decreasing the project cost.

The study focused on procedural content generation has

been evolving and resulting in several techniques that can



be applied to game development. The purpose of such

techniques covers the generation of several types of contents

such as continents, terrains, rivers, roads, cities and even

complete worlds. The knowledge of such techniques and

their results can help the creation of new ones and also

facilitate the evaluation of what procedural content gener-

ation method suits better for different game development

scenarios.

This paper presents a survey of procedural content gen-

eration techniques that can be used in game development.

All techniques are grouped according to the their resulting

content type (e.g. terrains, rivers, etc) and after categorized

as assisted (heavily relies on human intervention/guidance

in order to produce the desired results) or non-assisted
(requires a few or no human intervention/guidance in order

to produce the desired results). Every technique is described

and followed by an image that illustrates the visual result

of such technique; information regarding processing time

is provided when available in the reviewed paper, so it is

possible to identify techniques that are suitable for a real-

time approach, for instance.

In the scope of this paper a technique is classified as

non-assisted when the method produces a satisfying result

with no human intervention and/or guidance. If the technique

must be provided with a few adjustments/parameters such as

the number of iterations, a height limit, etc and there is no

need to readjust those elements during the iteration process,

the technique is also classified as non-assisted. If the method

requires a significant amount of time for adjustment and/or

parametrization or if human decisions or interventions must

be performed during most of the process in order to generate

a satisfying result, then the technique is classified as assisted.

The remainder of this paper is organized as follows: sec-

tion II presents techniques related to terrain and continents

generation; section III presents techniques related to roads

and rivers; section IV shows techniques related to cities

and urban spaces; finally section V presents a conclusion

and some thoughts about the applicability and evolution of

procedurally content generation techniques related to game

development.

II. TERRAINS AND CONTINENTS

The terrain is a fundamental part of the content of several

games and it plays an important role in the replayability

process. An interesting terrain will keep the player motivated

to explore new places and spend more time playing. The

procedural generation of terrains and continents has proved

to be feasible and can be seen in several prior works (e.g.

[4], [5], [6]).

Some of the techniques used in procedural generation of

terrains and continents include noise [7], L-systems [8] and

fractals [9]. Those techniques can be used alone, combined

among each other [10], [11], [12], [13], [14] or combined

with other techniques such as erosion simulation e.g [15],

Figure 2. Rendered height maps affected by erosion simulation [16].

Figure 3. A canyon with rocks detached from the cliffs [24].

[16], [17], [18], [19], [20], [21]. The procedural generation

can also be parametrically controlled in order to avoid

completely random content. The parametrization can be

achieved in different ways such as adjusting division limits

[22] or controlling distortion using splines [23]. The terrain

can also be generated interactively though high level tools

using volumetric discrete data structure in order to make the

representation of overhangs, caves and arches easier [24].

Figures 2 and 3 show some of the previously mentioned

techniques.

An assisted method that uses a compact vector-based

model can be used to efficiently and accurately control the

terrain generation process [1]. As pointed by the authors

when a constraint is used the vicinity of that constraint can

lack in control [25], [26] or depends on the characteristics of

another terrain image [2]. In order to avoid that problem the

method uses control curves with the corresponding elevation,

gradient and noise constraint parameters attached to them,

which generates a set of maps that are further combined

in order to produce the final terrain. Those curves are

based on Bezier and diffusion curves [27] and they are

created and adjusted by the operator responsible for the

terrain creation. The curves parameters must be tweaked

by the operator according to the terrain characteristics so

the method can produce the desired outcome. This method

allows the creation of terrains with fine control over the

content and can incrementally add/remove as many details

as needed by adjusting the control curves. Even though the

use of diffusion curves demands a significant amount of time



Figure 4. Different kinds of landscapes (lake and desert) created with 45
and 26 control curves respectively [1].

dedicated to parameters adjustment, causing the operator

to spend more time to achieve any results, this approach

is able to produce much more predictable and controllable

results compared to a pure fractal or non-assisted method.

As exemplified by the authors the operator took almost 45

minutes to carefully edit all the details needed to produce a

complex terrain. Figure 4 illustrates the use of control curves

and their results.

Other assisted approach to terrain generation guided by

constraints is the synthesis from digital elevation models

[2]. In that technique the resulting terrain is automatically

generated based on the visual style of a real terrain data

(e.g. a model provided by a government geological agency)

and meets the feature constraints of the sketch made by the

user. The algorithm breaks the sketch map into small patch

Figure 5. Grand Canyon terrain syntetization. On the left: the user sketch,
the Grand Canyon elevation model and the resulting height map [2].

Figure 6. Mount Jackson (Colorado) terrain syntetization. On the right:
the user sketch, the Mount Jackson elevation model and the resulting height
map [2].

regions and searches through the real terrain height field

for structural feature matches. The extraction of features

(valleys, ridges, hills, etc) from the real terrain height field is

achieved using an adapted Profile recognition and Polygon

breaking Algorithm (PPA) [28]. After those features are

extracted (in form of patches), they are combined into the

resulting terrain according to the matches against the user

sketch. A procedure is applied to smooth the transition

between the different patches. Figures 5 and 6 illustrate the

technique applied to the Grand Canyon and Mount Jackson

elevation models using a user sketch based on the Half-Life

game logo.

Another assisted technique used to terrain and continent

generation is based on interactive genetic algorithms [29].

The author states that some genetic algorithms used in

terrain generation techniques overwhelm the user with pa-

rameters and adjustments that may not be easy to master

and often rely on deep knowledge about the tool or are

required to use real world data as input, such as Digital

Terrain Elevation Data (DTED) [30], [31], [32]. The idea

of the author is to make the user not aware of parameters

and configurations as numbers but as images instead. The

terrain generation is achieved by an interactive genetic



Figure 7. Initial population of terrains available for user selection [29].

algorithm that can be defined as the process of selecting and

combining members of a population in order to produce a

new population (descendants). In the context of this paper,

the population members are complete scenes featuring water,

terrain, illumination and clouds that are presented to the user

as a rendered image. Each of those elements (water, terrain,

etc) is internally represented as an 8 bit chromosome, so

every population member has a set of chromosomes that

defines how the scene it represents is rendered. Starting with

a randomly generated population of 8 members (complete

scenes), the user selects 3 of them that best describe the

desired resulting scene (e.g. if a scene featuring lower

mountains is desired, the user will choose members of the

population that feature such characteristic). After that a new

population is generated based on the combination of genes

(crossover) among the members the user selected and the

rest of the population. Since the members the user selected

have high priority to combine and transmit theirs genes to

further descendants the next generation of members are more

likely to have theirs characteristics, which are the features

the user is looking for. In order to increase the variability of

content each member may suffer a mutation operation which

changes the value of a random bit of any of its features. The

selection and combination process are repeated by the user

until a member of the population with the desired features

is found. Figure 7 shows the initial randomly generated

population of 8 members available for user selection.

Evolving the concept of user input there is a non-

assisted approach that makes a controlled procedural terrain

generation using software agents [33]. Using a set of six

different agent types (coastline, smoothing, beach, mountain,

hill and river agent) parametrized according to designer-

defined constraints, the agent walks in the map generating

content. Depending on the number of agent and their con-

straints/types the user can generate different maps. The agent

interacts with the environment according to its type so a

coastline agent will produce land and coastlines, a mountain

agent will rise the height of the points it visits, a beach

agent will decrease and smooth the height of points near

Figure 8. Several scenes produced with different agents configuration [33].

the coastline, etc. The agents work on the resulting map

simultaneously and the action of one agent can interfere in

the actions of the others. The constraints each agent carries

avoid unnatural terrain patterns, such as a river climbing a

mountain (river agents tend to avoid high points when they

walk through the map). A terrain designer can adjust the

amount of agents, their types and constraints in order to

produce the desired terrain (e.g. a generation without river

agents will show no river in the result, a mountain agent

carrying low height attributes will produce low mountains,

etc). Figure 8 shows a set of 512 x 512 heightmaps generated

using different agents settings; each terrain takes about 20

seconds to be produced by the agents.

Another non-assisted technique generates pseudo-infinite

terrain and continent and is mainly based on Perlin [34]. The

terrain and the coastline are created based on a procedurally

generated matrix that globally describes the features of

every region in the terrain (continents, coastlines, etc). The

matrix is generated with no human intervention or guidance.

The matrix contains low detail information that servers as

a seed to the rest of the algorithm that generates high

detail information. Every point in the terrain is mapped

to an entry in that matrix and then adjusted to meet the

description found. The point receives its height value based

on the matrix description and on a series of transformation

and interpolations influenced by its neighbors. The content

generation of every point is controlled by Perlin noise. The

matrix size is much smaller than the terrain size so several

points of the terrain are mapped to the same entry in the

matrix. It forces the content generation of each point to rely

mostly on its neighbors, using the matrix description as a

clue to guide the content generation. Figure 9 shows a terrain

generated by this technique.

III. ROADS AND RIVERS

A realistic landscapes is composed of different objects

such as trees, roads and rivers. The two latters are important

artifacts to break the artificial homogeneity that sometimes

is created by procedural terrain generation techniques. A



Figure 9. Terrain generated by Charack featuring coastlines and beaches
[34].

landscape featuring roads and rivers seems to be a more

compelling and convincing environment to the player. The

generation of such features, however, is a complex task that

involves the consideration of elements such as path plan-

ning, trajectory cost calculation, constraint analysis to avoid

unreal patterns, discretization of points and so on. Several

procedural techniques have been proposed to generate roads

such as tensor fields to guide the road graph generation [35],

interactive synthesis of urban street networks [36], [37] and

template patterns combined with Voronoi diagrams [38].

A non-assisted method for roads generation is based

on a weighted anisotropic shortest path algorithm [39].

The method finds the path between two pre-defined points

performing a computation on a continuous domain; the space

existing among the origin and the end points of the road is

discretized in a grid composed of several aligned points that

are analyzed as a graph. The method restricts the search to

paths formed by the concatenation of straight-line segments

between those points, computing a path between two points

that minimizes the line integral of a cost-weighting function

along the road path. The line integral calculation is made

by the approximation of a finite sum by discretizing the

integration domain into n intervals. A set of parametrized

cost functions is required and is used to evaluate the line

integral of the cost-weighting function along the road. Those

function are defined by the user and they influence the road

trajectory by constraining the shortest path research. After

the path is calculated the road is generated by excavating

the terrain along the path and generating the road mesh as

well as bridges and tunnels with the appropriate size and

characteristics. Figure 10 shows two roads generated using

this approach.

An assisted technique introduces the concept of pro-

cedural natural systems, an approach aimed at reducing

the time needed to create natural phenomena features in

game maps [40]. As pointed by the authors, a large natural

phenomenon such as a river requires several work hours

of a designing team in order to be realistic and visually

acceptable. Using a level editing tool, for instance, the

operator must excavate the river course, apply the right

Figure 10. Roads procedurally generated and influenced by the environ-
ment (river, mountains, etc) [39].

textures to the river/riverbed and add complementing objects

to the area (trees, bushes, etc). If the course of the river

must be changed, the whole process have to be repeated and

often none of the already created content can be reused. The

approach of a procedural natural system relies on the idea

that natural phenomena consists of three parts: footprint (the

appearance of the phenomenon, including height and texture

definition), shape (the area in the map the phenomenon takes

place) and procedure (the interpolation between the two

formers in order to create the natural system). The footprint

is discretized in four types of environmental features that

must be adjusted to create the desired natural systems: height

(how the terrain height is modified, lowering or raising

the nearby area of the shape, for instance), soil (how the

surface looks like), vegetation (plants and their location)

and water (how much water is available). The shape is

described as a set of connected control points; a shape

can be a curve (first and last control points not connected)

or an area (first and last points connected). The footprint

and the shape are independent elements, so it is possible

to design footprints and shapes separately and mix then

according to the game requirements. In order to design a

river, for instance, the operator must create a footprint that

has the river characteristics e.g. lower heights in the center

of the shape, mud between the water and the rest of the

surrounding surface, small plants close to the mud and water

to fill the lower height part. After the footprint creation, the

operation has to define the shape (place the control points in

the map). The procedure will combine the footprint and the

shape, resulting in a complete river (with water, plants, mud,

etc) following the defined path. If the river course must be

changed, the operator just need to adjust the control points;

if the river appearance must be tweaked, the operator can

change the footprint and all shapes using that footprint in

the map will automatically be updated to reflect the new

appearance. This technique is not limited to rivers, it can be

used to other natural phenomena such as canyons. Figure 11

shows the creation of a meander using natural systems.

IV. CITIES

Cities detonates the human presence in the environment

and they are widely used in games such as fly simulators.

The process of modeling a whole city is a time consuming

task and it requires the analysis of many aspects since



Figure 11. Creating a meander using natural systems: designing the
shape in the game world then applying the height/soil, water and vegetation
features [40].

the city is rich in details, build over human influences

and have historical background. The major aspects behind

the urban areas are population, environment, transports,

vegetation, streets, architecture, elevation, geology and cul-

ture. In addition to that, cities have buildings and roads

as their main components. As a consequence of that in

order to create a complex and a convincing urban area it is

important to generate a wide diversity of buildings and roads.

Those elements must be generated according to the city

cultural and geographic backgrounds, so they are difficult

objects to generate automatically because of their individual

characteristics like style and function. The city generation

subject is recurrent and it is the focus of several related

works [41], [42], [43], [44].

An assisted approach for generating complex road net-

works for cities is based on Bezier curves and real world

data [45]. Using an aerial image of the road network of a real

city, the operator marks the paths using Bezier curves placed

at the center of the road. After that the method interpolates

the curves finding important characteristics and enhancing

them such as interceptions. Those intersections and junction

are created using curve approximation. During the process

new elements are added based on the curves such as the

sidewalks. Those elements are generated using a process of

polygonal approximation. Figure 12 shows a generated road

network and its usage on a real-time application.

Another assisted approach for road generation in cities

is the procedural interactive method based on template

techniques and parametrization algorithms [46]. The method

consists of a random traveling algorithm to connect at-

tributed points and uses templates to define the growing

patterns for road networks. The template mechanism is

like a simplified L-system. The work-flow is described by

three main steps. In the first one the primary roads are

created based on the specified points. The secondary roads

are created though templates applied to the area or using

parametrization mapping. In the last step is the generation

of the third level of roads. The interactive part of that

Figure 12. Road network generation on the top; below the same road
network applied to a real-time application [45].

Figure 13. Urban map generation. On the left the grid style only. On the
right the mixed styles (grid, radial, user defined) [46].

system allows the user to control the creation aspects and

enables modification of road patterns, generation of new

roads, tweaking road density and defining a new population

parameter. Most of the operations are fully interactive, so the

user intervention can improve the reality of the road network

generated. Figure 13 illustrates a generated urban map.

An assisted approach to procedurally generate urban

ecosystems is the interactive procedural system [47]. That

system consists of two main processes: urban model gener-

ation and plant model generation. A socio-economical and

geometrical simulation approach is used in order to generate

the urban model e.g [47], [48]. The plant management algo-

rithm determines the manageability level of contained plants

for each city block. The manageability level determines

the percentage of wild plants allowed in each area that

later will be used by ecosystem simulation. A procedural

planting algorithm seeds the plants and a competition based

ecosystem simulation is used to determine the plants that

will remain. In order to handle the simulation of the plants

development a symmetric and asymmetric plant competition

approach can be used e.g. [49], [50], [51]. Figure 14 shows

the illustration of an urban ecosystem that is still evolving

over the time (trees are growing).

Another assisted approach for city generation is called

CityEngine, a system capable of modeling a complete city

using a small set of statistical and geographical input data

and is highly controllable by the user [3]. Instead of generat-

ing all the content procedurally it creates the city based on a



Figure 14. Urban ecosystem that evolved over the time [47].

Figure 15. A virtual city with approximately 26000 buildings [3].

pipeline composed of several tools. The first step is the road-

generation system that receives the user input (e.g. water,

elevation and population density maps). After the network

of streets is created the remaining areas (between the roads)

are subdivided in allotments and filled with buildings. The

first two steps are based on a L-system. Figure 15 shows

a virtual city generated based on imaginary water, elevation

and population density maps. Figure 16 shows a virtual

representation of Manhattan.

A non-assisted approach for city generation is demon-

strated in a system called PG3D [52]. The tool was designed

to create realistic urban environments based in a spatial

database engine. The process works through a set of stored

procedures in a database and it’s able to generate virtual

environments with real content. In order to achieve that

Figure 16. Virtual Manhattan (Maya render) [3].

Figure 17. A procedurally generated environment [52].

Figure 18. Real-time procedural virtual city [53].

goal PG3D uses its own grammar and shapes; the grammar

is used to define the production and structures rules that

are used in the process of procedural urban environment

generation. The production uses a set of shapes that contains

geometries that represent several types of element such as

surfaces, streets, buildings and so on. Figure 17 shows a

large environment procedurally generated using this tech-

nique.

Another non-assisted approach is the creation of pseudo-

infinite cities generated on demand as the user walks through

the terrain area [53]. The entire city is divided in equally

sized square cells (blocks of the city). Each cell has a set

of buildings that are determined and generated based on a

seed related to the cell position. The generation process is

also influenced by a global seed. Since every building is

created based on a seed (cell position) if the user returns to

a particular location the same buildings will be present. All

geometrical components of the city are generated as they

are encountered by the user. Figure 18 shows a procedurally

generated city achieved with this approach.

V. CONCLUSION

This paper presented an overview of several proce-

dural content generation techniques. All techniques were

grouped according to their resulting content such as ter-

rains/continents, roads/rivers and cities. Additionally each

technique was classified as assisted or no-assisted highlight-

ing the need of human interaction or guidance in order to

produce content using the referenced technique. Classical

and modern methods were reviewed providing substantial

information that can be used directly in the game develop-



ment industry or as a starting point for further research and

creation of new techniques.

In section II five approaches were presented. Three of

them were assisted methods and both the assisted and non-

assisted techniques presented unique approaches to procedu-

ral content generation. Those techniques combine different

methodologies such as control curves, real images, genetic

algorithms, software agents and the definition of pixel values

based on neighbors comparisons. Section III presented the

complexity of roads and rivers generation, a process influ-

enced and guided by elements such as trajectory calculation

and realistic patterns. Two papers were reviewed demonstrat-

ing assisted and non-assisted methods. Finally section IV

presented techniques related to city generation. Six papers

were reviewed and more than three were assisted meth-

ods. The featured techniques used Bezier curves, template

techniques, urban ecosystem and pseudo-random numbers in

order to produce convincing procedurally generated cities.

Non-assisted techniques are more suitable to be used

when a large amount of content must be generated and

such content may not impact in the game play directly e.g.

the very distant surrounding areas of an air base in a flight

simulator game. A non-assisted approach can also be used

as a starting point for further designing tasks such as the

creation of raw data for a terrain that will be later refined

by the game designer. However a non-assisted approach

is mandatory in cases where part of the game content is

generated on-the-fly according to the user decisions; in such

cases the content is not predictable for the game designer

(for any reason ) and needs to be procedurally generated

according to the player context. The creation of a virtual

infinite world requires the use of non-assisted techniques

for instance.

Assisted techniques are more suitable to be used when

a well defined and constrained content set is required.

Assuming the player will spend most of the time deeply

exploring and interacting with such content it must contain

a high rate of details. The assisted techniques can decrease

the creation time because they help the operator to design

detailed content using a guided generation that fully creates

or enhances the final content. Since the assisted techniques

require human intervention and guidance they are more

likely to produce easily predictable content, but their usage

may not be adapted for on-the-fly generation of content

in games. Some assisted approaches demand a significant

amount of time and effort from the user in order to produce

the desired result, so they tend to be better used if integrated

as part of designing tools such as level editors.

Analyzing the evolution of procedurally content genera-

tion techniques over the years one can notice a tendency

of combination between assisted and non-assisted methods.

Even if a technique relies heavily on human guidance to

produce results, it uses that guidance as a constraint in order

to generate detailed content. The use of control curves based

on diffusion equations, for instance, requires the operator to

place the curves and to adjust its parameters (noise, height,

etc) in order to produce a terrain. However the technique is

the main responsible for the interpolation and application of

such parameters in order to produce the result. That modus
operandi is an evolution and a combination of completely

procedural generation approaches (e.g. a height map cre-

ated purely with Perlin noise) and human-only generation

approaches (e.g. a map designed exclusively by an artist).

The amount of effort the operator must spend in adjustments

defines how independent the method is during the generation

process. Despite of that there is always the concern about

the content randomness, because a procedurally generated

content is useful mainly if it fits the context of the game it is

inserted into. A completely random content has no meaning

because it is not predictable and as a consequence it has no

context.

This survey can help studies focused on procedural con-

tent generation targeted for game development. It can be

used to analyze techniques that are able to decrease the costs

of game production as well as enriching the featured content.

REFERENCES

[1] H. Hnaidi, E. Guerin, S. Akkouche, A. Peytavie, and E. Galin,
“Feature based terrain generation using diffusion equation,”
Computer Graphics Forum (Proceedings of Pacific Graphics),
vol. vol.29, no. n.7, 2010.

[2] H. Zhou, J. Sun, G. Turk, and J. M. Rehg, “Terrain synthesis
from digital elevation models,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. vol.13, 2007.

[3] Y. I. H. Parish and P. Müller, “Procedural modeling
of cities,” Proceedings of the 28th annual conference
on Computer graphics and interactive techniques
SIGGRAPH, no. August, 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=383259.383292

[4] S. Greuter, N. Stewart, and G. Leach, Beyond the Hori-
zon: Computer-generated, Three-dimensional, Infinite Virtual
Worlds without Repetition, 2004.

[5] M. Nitsche, C. Ashmore, W. Hankinson, R. Fitzpatrick,
J. Kelly, and K. Margenau, Designing procedural game
spaces: A case study. Citeseer, 2006.

[6] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards auto-
matic personalised content creation for racing games,” 2007
IEEE Symposium on Computational Intelligence and Games,
2007.

[7] K. Perlin, “An image synthesizer,” in Annual Conference on
Computer Graphics, vol. 19, 1985.

[8] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty
of plants. Springer, 1996.

[9] B. Mandelbrot, Fractals: Form, Chance, and Dimension.
Freeman, 1977, vol. 1.



[10] S. C. Dollins, “Modeling for the plausible emulation of large
worlds,” Ph.D. dissertation, Brown University, United States
of America, 2002.

[11] H. Haggström, “Real-time generation and ren-
dering of realistic landscapes,” Ph.D. dis-
sertation, Citeseer, 2006. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.
5489

[12] B. Lintermann and O. Deussen, “A modelling method and
user interface for creating plants,” 1998, computer Graphics
Forum.

[13] O. Linda, “Generation of planetary models by means of
fractal algorithms,” Czech Technical University, Tech. Rep.,
2007.

[14] P. Prusinkiewicz and M. Hammel, “A fractal model of moun-
tains with rivers,” in Proceeding of Graphics Interface 93,
1993.

[15] F. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis
and rendering of eroded fractal terrains,” Annual Conference
on Computer Graphics, vol. vol.23, 1989.

[16] J. Olsen, “Realtime procedural terrain generation - realtime
synthesis of eroded fractal terrain for use in computer games,”
Department of Mathematics And Computer Science IMADA
University of Southern Denmark, 2004.

[17] A. D. Kelley, M. C. Malin, and G. M. Nielson, “Terrain
simulation using a model of stream erosion,” in Annual
Conference on Computer Graphics, vol. 22, 1988.

[18] P. Roudier, B. Peroche, and M. Perrin, “Landscapes synthesis
achieved through erosion and deposition process simulation,”
Computer Graphics Forum, vol. vol.12, 1993.

[19] N. Chiba, K. Muraoka, and K. Fujita, “An erosion model
based on velocity fields for the visual simulation of mountain
scenery,” Journal of Visualization and Computer Animation,
vol. vol.9, 1998.

[20] K. Nagashima, “Computer generation of eroded valley and
mountain terrains,” The Visual Computer, vol. vol.13, 1998.

[21] B. Benes and R. Forsbach, “Layered data representation for
visual simulation of terrain erosion,” in spring conference on
computer graphics, 2001.

[22] K. R. Kamal and Y. S. Uddin, “Parametrically controlled
terrain generation,” in Computer graphics and interactive
techniques in Austalasia and South East Asia, 2007.

[23] R. Szeliski and D. Terzopoulos, “From splines to fractals,” in
Annual Conference on Computer Graphics, vol. 23, 1989.

[24] A. Peytavie, E. Galin, J. Grosjean, and S. MÈrillou, “Arches: a
framework for modeling complex terrains,” Computer Graph-
ics Forum, vol. vol.28, 2009.

[25] J. E. Gain, P. Marais, and W. Straüer, “Terrain sketching,” in
ACM Symposium on interactive 3D graphics, 2009.

[26] B. Rusnell, D. Mould, and M. G. Eramian, “Feature-rich
distance-based terrain synthesis,” The Visual Computer, vol.
vol.25, 2009.

[27] A. Orzan, A. Bousseau, H. Winnemller, P. Barla, J. Thollot,
and D. Salesin, “Diffusion curves: a vector representation for
smooth-shaded images,” ACM Transactions on Graphics, vol.
vol.27, 2008.

[28] G.-S. Song and S.-K. Hsu, “Automatic extraction of ridge and
valley axes using the profile recognition and poligon-breaking
algorithm,” Computers And Geosciences, vol. vol.24, no. n.1,
1998.

[29] P. Walsh and P. Gade, “Terrain generation using an interactive
genetic algorithm,” in Evolutionary Computation (CEC), 2010
IEEE Congress, july 2010.

[30] T. J. Ong, R. Saunders, J. Keyser, and J. J.
Leggett, “Terrain generation using genetic algorithms,”
in Proceedings of the 2005 conference on Genetic
and evolutionary computation, ser. GECCO ’05. New
York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1068009.1068241

[31] M. Frade, F. F. de Vega, and C. Cotta, “Breeding terrains with
genetic terrain programming: The evolution of terrain genera-
tors,” International Journal of Computer Games Technology,
vol. vol.2009, 2009.

[32] R. L. Saunders, “Realistic terrain synthesis using genetic
algorithms,” Texas A&M University, 2006.

[33] J. Doran and I. Parberry, “Controlled procedural terrain
generation using software agents,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. vol.2, no.
n.2, 2010.

[34] F. Bevilacqua, C. T.Pozzer, and M. C. d’Ornellas, “Charack:
tool for real-time generation of pseudo-infinite virtual worlds
for 3d games,” Brazilian Symposium on Games and Digital
Entertainment, no. n.8, October 2009.

[35] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang,
“Interactive procedural street modeling,” ACM Trans.
Graph., vol. vol.27, August 2008. [Online]. Available:
http://doi.acm.org/10.1145/1360612.1360702

[36] D. G. Aliaga, C. A. Vanegas, and B. Beneö, “Interactive
example-based urban layout synthesis,” ACM Transactions
on Graphics, vol. vol.27, no. n.5, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1409060.1409113

[37] C. A. Vanegas, D. G. Aliaga, B. Benes, and P. Waddell,
“Visualization of simulated urban spaces: inferring
parameterized generation of streets, parcels, and aerial
imagery.” IEEE Transactions on Visualization and Computer
Graphics, vol. vol.15, no. n.3, 2008. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/19282549

[38] J. Sun, X. Yu, G. Baciu, and M. Green, “Template-based
generation of road networks for virtual city modeling,” in
Virtual Reality Software and Technology, 2002.



[39] E. Galin, A. Peytavie, N. MarÈchal, and E. GuÈrin, “Proce-
dural generation of roads,” Computer Graphics Forum, vol.
vol.29, 2010.

[40] R. Huijser, J. Dobbe, W. F. Bronsvoort, and R. Bidarra, “Pro-
cedural natural systems for game level design,” Games and
Digital Entertainment, Brazilian Symposium, no. November,
2010.

[41] K. Lynch, The Image of the City. The MIT
Press, 1960, vol. 21, no. October. [Online]. Available:
http://www.amazon.com/dp/0262620014

[42] C. Alexander, S. Ishikawa, and M. Silverstein, “A pattern
language: Towns, buildings, construction (center for environ-
mental structure series),” 1977, new York.

[43] G. Kelly and H. McCabe, “A survey of procedural techniques
for city generation,” ITB, no. December, 2006.

[44] B. Watson, P. Müller, O. Veryovka, A. Fuller, P. Wonka, and
C. Sexton, “Procedural urban modeling in practice,” IEEE
Computer Graphics and Applications, vol. vol.28, 2008.

[45] L. Gang and S. Guangshun, “Procedural modeling of ur-
ban road network,” Information Technology and Applications
(IFITA), vol. vol. 1, 2010.

[46] X. Dou, Y. Qi, F. Hou, and X. Shen, “Interactive urban map
design with template and parameterization,” Image and Signal
Processing, 2009. CISP ’09. 2nd International Congress, vol.
vol. 2, 2009.

[47] B. Beneš, M. A. Massih, P. Jarvis, D. G. Aliaga, and
C. A. Vanegas, “Urban ecosystem design,” in Symposium
on Interactive 3D Graphics and Games, ser. I3D ’11.
New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1944745.1944773

[48] C. A. Vanegas, D. G. Aliaga, B. Beneš, and P. A.
Waddell, “Interactive design of urban spaces using
geometrical and behavioral modeling,” ACM Trans.
Graph., vol. vol.28, December 2009. [Online]. Available:
http://doi.acm.org/10.1145/1618452.1618457

[49] M. Alsweis and O. Deussen, “Modeling and visualization
of symmetric and asymmetric plant competition,” Natural
Phenomena 2005, 2005.

[50] P. Prusinkiewicz, “Generating spatial distributions for multi-
level models of plant communities,” in Graphics Interface,
2002.

[51] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch,
M. Pharr, and P. Prusinkiewicz, “Realistic modeling
and rendering of plant ecosystems,” in Proceedings
of the 25th annual conference on Computer graphics
and interactive techniques, ser. SIGGRAPH ’98. New
York, NY, USA: ACM, 1998. [Online]. Available:
http://doi.acm.org/10.1145/280814.280898

[52] P. B. Silva and A. Coelho, “Procedural modeling of
urban environments for digital games development,” in
Proceedings of the 7th International Conference on Advances
in Computer Entertainment Technology, ser. ACE ’10.
New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1971630.1971667

[53] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-
time procedural generation of ‘pseudo infinite’ cities,”
in Proceedings of the 1st international conference
on Computer graphics and interactive techniques in
Australasia and South East Asia, ser. GRAPHITE ’03.
New York, NY, USA: ACM, 2003. [Online]. Available:
http://doi.acm.org/10.1145/604471.604490

View publication statsView publication stats

https://www.researchgate.net/publication/261483105

