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ABSTRACT

Packet losses increase latency for Web users. Fast recovery
is a key mechanism for TCP to recover from packet losses.
In this paper, we explore some of the weaknesses of the stan-
dard algorithm described in RFC3517 and the non-standard
algorithms implemented in Linux. We find that these algo-
rithms deviate from their intended behavior in the real world
due to the combined effect of short flows, application stalls,
burst losses, acknowledgment (ACK) loss and reordering,
and stretch ACKs. Linux suffers from excessive congestion
window reductions while RFC3517 transmits large bursts
under high losses, both of which harm the rest of the flow
and increase Web latency.

Our primary contribution is a new design to control trans-
mission in fast recovery called proportional rate reduction
(PRR). PRR recovers from losses quickly, smoothly and
accurately by pacing out retransmissions across received
ACKs. In addition to PRR, we evaluate the TCP early
retransmit (ER) algorithm which lowers the duplicate ac-
knowledgment threshold for short transfers, and show that
delaying early retransmissions for a short interval is effec-
tive in avoiding spurious retransmissions in the presence of
a small degree of reordering. PRR and ER reduce the TCP
latency of connections experiencing losses by 3-10% depend-
ing on the response size. Based on our instrumentation on
Google Web and YouTube servers in U.S. and India, we also
present key statistics on the nature of TCP retransmissions.
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1. INTRODUCTION
Web latency plays a key role in producing responsive Web

applications, making information more accessible and help-
ing to advance new cloud-based applications. There are
many factors that contribute to Web latency including con-
tent that is not optimized for speed, inefficient Web servers,
slow browsers, limited network bandwidth, excess losses and
suboptimal network protocols. In this paper, we focus on
reducing latency for TCP connections experiencing packet
losses. Measurements show that over 6% of HTTP responses
served from Google.com experience losses and that these
losses impact user experience. We investigate some of these
loss statistics and revisit TCP’s loss recovery mechanisms
with the goal of reducing Web latency for users.

To get a sense for how much packet losses increase Web
latency, we compare the TCP latency of HTTP responses ex-
periencing losses to their ideal achievable latency. Figure 1
(top plot) shows the average TCP latency for responses with
sizes ranging between 4kB and 8kB broken down in 200ms
round-trip time (RTT) buckets, measured from billions of
user TCP connections to Google Web servers world-wide.
The TCP latency of a HTTP response is measured from
when the server sends the first byte until it receives the ac-
knowledgment (ACK) for the last byte. We define the ideal
response time to be the fixed portion of the network delay,
which we approximate to be the minimummeasured RTT for
any given HTTP response. The approximation works well
because the 4-8kB responses fit well within TCP’s initial
congestion window of 10 segments used on Google servers.
Responses experiencing losses last 7-10 times longer than
the ideal, while those with no losses are very close to the
ideal. The CDF in Figure 1 (bottom plot) shows that the
latency spread for responses with losses is 200 RTTs - about
10x greater than those without losses. Several independent
factors, including slow user network bandwidths, long queu-
ing delays, and TCP’s mechanisms must be addressed for
latency to approach the ideal.

TCP has two primary means of detecting and recovering
from losses. First is fast retransmit, where TCP performs
a retransmission of the missing segment after receiving a
certain number of duplicate acknowledgments (dupacks) [4].
As a fall back, whenever fast retransmission is unsuccessful
or when a sender does not receive enough duplicate ACKs,
TCP uses a second slower but more robust mechanism where
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Figure 1: Top plot shows the average TCP latency
of Google HTTP responses in different round-trip
time buckets for response sizes between 4kB and
8kB. Bottom plot shows CDF of the number of RTTs
taken by responses of all sizes with and without re-
transmissions.

it waits for a duration of retransmission timeout (RTO) be-
fore deducing that a segment is lost.

Our measurements show that fast recovery accounts for
about 25% of all retransmissions in short flows served from
Google Web servers and over 50% of retransmissions in bulk
video traffic. There are two widely deployed algorithms
used to adjust the congestion window (cwnd) during fast
recovery, RFC3517 [8] and rate halving [17], implemented
in Linux. After extensive analysis of these algorithms on
Google servers, we find that in practice both can be either
too conservative or too aggressive resulting in a long recov-
ery time or in excessive retransmissions.

The three main contributions of this paper are as follows:

1. Proportional rate reduction: We designed a new
fast recovery algorithm, proportional rate reduction
(PRR), which is inspired by the rate halving algo-
rithm [17]. PRR recovers from losses both quickly and
smoothly by using Van Jacobson’s packet conservation
principle to pace out retransmissions across received
ACKs. Specifically, PRR improves upon the existing
(non-standard) Linux fast recovery and RFC specified
standard fast recovery under a number of conditions
including: a) burst losses where the losses implicitly
reduce the amount of outstanding data (pipe) below
the slow start threshold value selected by the conges-
tion control algorithm and, b) losses near the end of
short flows where application runs out of data to send.
PRR also performs accurate cwnd adjustments even
under stretch ACKs or ACK loss and reordering. Fur-
thermore, PRR is designed to work with the diverse set
of congestion control algorithms present in today’s In-

ternet [28]: when the recovery finishes, TCP completes
the window adjustment as intended by the congestion
control algorithm.

PRR has been approved to become the default Linux
fast recovery algorithm for Linux 3.x.

2. Experiments with Early Retransmit (ER): We
address the question of how to trigger fast retransmit
for short flows. This question is important because
short HTTP transactions frequently do not receive the
three dupacks necessary to trigger conventional fast re-
covery. We evaluate the TCP early retransmit (ER)
algorithm [2] that lowers duplicate acknowledgment
threshold (dupthresh) for short transfers. Google Web
server experiments show that the Internet has enough
reordering to cause naive ER to exhibit excessive spu-
rious retransmissions. We show that delaying early
retransmissions for a short interval is effective at mit-
igating the spurious retransmissions.

3. Retransmission statistics of Google Web
servers: We analyse TCP data from Google Web and
video servers and present key statistics on the nature
of retransmissions.

The rest of the paper is organized as follows: Section 2
describes TCP measurements of Google’s user traffic. Sec-
tion 3 reviews state-of-the-art fast recovery as described in
the standards and the non-standard Linux variant. In Sec-
tion 4, we present the design and properties of proportional
rate reduction. Section 5 evaluates PRR’s performance on
Google Web and YouTube servers. In Section 6, we describe
the experimental results of early retransmit. Section 7 sum-
marizes related work. Section 8 concludes the paper along
with a discussion on future work.

2. GOOGLEMEASUREMENTS
We sampled TCP statistics on unmodified Google Web

servers world-wide for one week in May 2011. The servers
use a recent version of Linux 2.6 with settings listed in Ta-
ble 4. The servers do not include the changes proposed in
this paper. The global statistics for interactive Web services
are summarized in Table 1. Among the billions of connec-
tions sampled, 96% of the connections negotiated SACK but
only 12% of the connections negotiated Timestamps. The
majority of clients are Microsoft Windows which by default
do not use TCP Timestamps.

Although over 94% of connections use HTTP/1.1 and the
Google Web Servers keep idle TCP connections up to 4 min-
utes, there were on average only 3.1 HTTP requests per con-
nection. The average HTTP response size from Google.com
was 7.5KB, which is similar to the average Web object size
of 7.2KB measured for billions of Web sites in 2010 [21]. The
average user network bandwidth as observed from Google is
1.9Mbps and is in agreement with another study in 2010 [1].
While the average per segment TCP retransmission rate is
2.8%, 6.1% of the HTTP responses have TCP retransmis-
sions.

2.1 Detailed retransmission statistics
We examine the existing1 Linux loss recovery mechanisms

as measured from the Google Web servers. We measure the
1Note PRR is already slated to be released in upstream ker-
nels.



TCP
Total connections Billions
Connections support SACK 96%
Connections support Timestamp 12%
HTTP/1.1 connections 94%
Average requests per connection 3.1
Average retransmissions rate 2.8%

HTTP
Average response size 7.5kB
Responses with TCP retransmissions 6.1%

Table 1: Summary of Google TCP and HTTP statis-
tics sampled for one week in May 2011. The data
include both port 80 and 443 but exclude YouTube
videos and bulk downloads.

DC1 DC2

Fast retransmits 24% 54%
Timeout retransmits 43% 17%
Timeout in Open 30% 8%
Timeout in Disorder 2% 3%
Timeout in Recovery 1% 2%
Timeout Exp. Backoff 10% 4%

Slow start retransmits 17% 29%
Failed retransmits 15% 0%

Table 2: A breakdown of retransmissions on Google
Web servers in two data centers. All percentages
are with reference to the total number of retrans-
missions.

types of retransmissions from a large U.S. data center, DC1,
which primarily serves users from the U.S. east coast and
South America. We selected this data center because it has
a good mix of different RTTs, user bandwidths and loss
rates. We also measured another data-center, DC2, which
is in India and exclusively serves YouTube videos. For ease
of comparison analysis, we also use the same data centers to
experiment with our own changes to fast recovery described
in later sections.

We collect the Linux TCP SNMP statistics from Google
Web servers for 72 hours at DC1 in April 2011 and DC2
in August 2011. Observations described here are consistent
across several such sample sizes taken in different weeks and
months. The average (server) retransmission rates are 2.5%
in DC1 and 5.6% in DC2. DC2 has a higher retransmission
rate because the network in India has lower capacity and
higher congestion.

Table 2 shows the breakdown of TCP retransmission
types. It shows that fast recovery is a key mechanism to
recover losses in both bulk download (video) and short flows
(Web pages). In DC2, the retransmissions sent during fast
recovery, labeled as fast retransmits, comprise 54% of all re-
transmissions. In DC1, fast recovery still recovers nearly a
quarter (24%) of losses. This difference between DC1 and
DC2 is because the long video flows of DC2 have a greater
chance of entering fast recovery compared to the shorter
Web traffic of DC1. The first retransmission upon a time-
out, labeled as timeout retransmits, constitute 43% of the
retransmissions in DC1. This is mainly caused by the Web

DC1 DC2

Fast retransmits/FR 3.15 2.93
DSACKs/FR 12% 4%
DSACKs/retransmit 3.8% 1.4%
Lost (fast) retransmits/FR 6% 9%
Lost retransmits/retransmit 1.9% 3.1%

Table 3: Fast recovery related statistics on Google
Web servers. All numbers are with respect to the
total number of fast recovery events or fast retrans-
mits as indicated.

objects that are too small to trigger fast recovery. More-
over, the highest query volume in DC1 turns out to be from
statistics collection applications such as Google Analytics.
Typically their HTTP responses are tiny and fit entirely into
one segment. As a result losses can not cause any dupacks
so the only available recovery mechanism is a timeout. In-
terestingly, DC1 and DC2 shows very different distribution
of timeouts in various TCP recovery states. In DC1, the ma-
jority of timeouts happen in the open state, i.e., without any
preceding dupacks or other indication of losses.2 However
in DC2, more timeouts occur in non-Open states.

In DC1 and DC2, 17% and 29% of total retransmissions
occur in the slow start phase after the timeout retransmis-
sion has successfully advanced snd.una. These are called
slow start retransmissions because typically the sender has
reset cwnd to one after a timeout and it is operating in slow
start phase. DC2 has more timeout retransmissions than
DC1 because the timeout happens when outstanding data
are typically much larger for video download. The three
types of retransmissions, fast retransmits, timeout retrans-
mits, and slow start retransmits, successfully recover the
losses and constitute 85% and 100% of the total retransmis-
sions in data centers DC1 and DC2 respectively.

For the remaining 15% retransmissions in DC1 termed
failed retransmits, TCP failed to make any forward progress
because no further TCP acknowledgments were received
from the client and the server eventually aborts the connec-
tion. This difference is partially due to differing maximum
timeout setting on the servers in DC1 and DC2, however we
suspect that there may be other contributing factors.

Table 3 shows some additional statistics on how well fast
recovery is performing.

Both data centers exhibit about three fast retransmits per
fast recovery event. This suggests that loss is highly corre-
lated (a property of the network) and provides a sense of how
much the network around each data center exercises TCP’s
loss recovery machinery. This metric should be mostly in-
sensitive to changes in recovery algorithms, although there
may be some higher order effects.

Duplicate segments at the TCP receiver normally trig-
ger DSACKs [9]. The DSACK statistics provide a measure
of network resources that were wasted by overly aggressive
retransmits of nearly all types, except segments with no pay-

2This statistic is particularly odd, because a timeout from
the open state implies that an entire window of data or
ACKs was lost in a single RTT. Although the high volume
of tiny transactions contribute to timeouts from open, they
can not explain numbers this large. Some other mechanism
must be present.



load. In DC1, we see an average of 12% fast-recoveries caus-
ing DSACKS, implying at least a 3.8% spurious retransmis-
sion rate. In DC2 the spurious retransmission rate is at
least 1.4%. Note that since some Web clients don’t gener-
ate DSACKS, these are lower bounds of the actual spurious
retransmissions.

Linux also detects lost retransmissions as described in sec-
tion 3.2. Since the retransmissions are delivered in a new
round trip, they provide some indication of how quickly con-
gestion subsides following the initial packet losses. With
lost retransmission detection, lost retransmissions cause ad-
ditional RTTs in recovery. Without it, they cause timeouts.
In DC1 and DC2, about 2% and 3% fast-retransmits are
lost.

The data shown here is for the Linux baseline, however
these metrics are important for comparing any recovery al-
gorithms, and are used elsewhere.

3. STATE-OF-THE-ART FAST RECOVERY
Our work is based on the Linux TCP implementation,

which includes several non-standard algorithms and exper-
imental RFCs. The goal of this section is two-fold: first,
we highlight the differences between standard TCP recovery
algorithms [4, 8] and the design of widely deployed Linux re-
covery. Second, we discuss the drawbacks of each design,
specifically in the context of short Web transactions.

3.1 Fast recovery in RFC standards
Standard congestion control in RFC5681 [4] requires that

TCP reduce the congestion window in response to losses.
Fast recovery, described in the same document, is the refer-
ence algorithm for making this adjustment. Its stated goal is
to recover TCP’s self clock by relying on returning dupacks
during recovery to clock more data into the network. De-
pending on the pattern of losses, we find that the standard
can be either too aggressive or too conservative.

Algorithm 1: RFC3517 fast recovery

On entering recovery:

// cwnd used during and after recovery.
cwnd = ssthresh = F lightSize/2

// Retransmit first missing segment.
fast retransmit()

// Transmit more if cwnd allows.
Transmit MAX(0, cwnd− pipe)

For every ACK during recovery:

update scoreboard() pipe = (RFC 3517 pipe algorithm)

Transmit MAX(0, cwnd− pipe)

Algorithm 1 briefly presents the standard RFC design for
recovery. A TCP sender enters fast recovery upon receiving
dupthresh number of dupacks (typically three). On entering
recovery, the sender performs the following: 1) sets cwnd
and ssthresh to half of the data outstanding in the network
and, 2) fast retransmit the first unacknowledged segment,
and further transmits more segments if allowed by cwnd.

On subsequent ACKs during recovery, the sender re-
computes the pipe variable using the procedure specified in
RFC 3517. pipe is an estimate of the number of total seg-

Features RFC Linux Default

Initial cwnd 3390 p 10
Cong. control (NewReno) 5681 + CUBIC
SACK 2018 + on
D-SACK 3708 + on
Rate-Halving [17] + always on
FACK [16] + on
Limited-transmit 3042 + always on
Dynamic dupthresh + always on
RTO 2988 p min=200ms
F-RTO 5682 + on
Cwnd undo (Eifel) 3522 p always on
TCP segmentation offload + determined by NIC

+ indicates the feature is fully implemented.
p indicates a partially implemented feature.

Table 4: Loss recovery related features in Linux.
Non-standard features are those without RFC num-
bers.

ments in the network based on the SACK scoreboard. It is
only an estimate because it relies on heuristics that deter-
mine if a segment can be marked as lost. The algorithm then
transmits up to cwnd − pipe segments. Fast recovery ends
when all data that was outstanding before entering recovery
is cumulatively acknowledged or when a timeout occurs.

There are two main problems exhibited by the standard:

1. Half RTT silence: The algorithm waits for half of
the received ACKs to pass by before transmitting any-
thing after the first fast rertansmit. This is because
cwnd is brought down to ssthresh in one step, so it
takes cwnd-ssthresh ACKs for pipe to go below cwnd,
creating a silent period for half of an RTT. This de-
sign wastes precious opportunities to transmit which
sometimes results in nothing being sent during recov-
ery. This in turn increases the chances of timeouts.

2. Aggressive and bursty retransmissions: The stan-
dard can transmit large bursts on a single received
ACK. This is because pipe − cwnd can be arbitrary
large under burst losses or inaccurate estimation of
losses. Furthermore, the more losses there are, the
larger the bursts transmitted by the standard.

Note that both problems occur in the context of heavy
losses, wherein greater than or equal to half of the cwnd is
lost. We will see in Section 5 that such heavy losses are
surprisingly common for both Web and YouTube.

3.2 Fast recovery in Linux
Linux implements a rich set of standard and non-standard

loss recovery algorithms [23]. Table 4 lists the main algo-
rithms related to loss recovery and their default settings.

Linux keeps a SACK scoreboard as described in
RFC 2018 [18] and computes pipe, the estimate of the num-
ber of segments in the network, per RFC3517. Our detailed
analysis of TCP retransmissions is based on the following
four recovery states in the Linux TCP code base:

• Open: There is no missing data and the sender is re-
ceiving in-sequence ACKs.

• Disorder: The sender has received dupacks indicating
that there is data missing, but has not yet retransmit-
ted anything.



• Recovery: There has been a fast retransmit.

• Loss: There has been a timeout and resetting of cwnd
to one to recover TCP’s self clock.

There are three key differences between Linux and
RFC3517.

Linux is more aggressive in marking segments lost because
it implements several algorithms from FACK [16] in addition
to the standard loss detection described in RFC3517. FACK
was developed at an earlier time when network reordering
was relatively rare, so it makes some simplifying assump-
tions. Specifically, fast retransmit can be triggered immedi-
ately by the very first SACK if it indicates that more than
dupthresh segments are missing (so called threshold retrans-
mission). Furthermore, once in fast recovery, all holes below
the highest SACK block are assumed to be lost and marked
for retransmission. Linux also includes a slightly later al-
gorithm for detecting lost retransmissions. If any new data
sent after a retransmission is later SACKed, the retransmis-
sion is deemed to have been lost [17]. If any reordering is
detected then FACK and some of the related algorithms are
disabled, the loss detection falls back to use conventional
dupthresh.

Linux implements the rate halving algorithm [17, 19] in
recovery. When cwnd is reduced, Linux sends data in re-
sponse to alternate ACKs during recovery, instead of wait-
ing for cwnd/2 dupacks to pass as specified in the standard.
A minor problem with rate halving is that it is based on
the original Reno TCP that always halved the cwnd during
fast recovery. Several modern congestion control algorithms,
such as CUBIC [10], reduce the window by less than 50% so
unconditionally halving the rate is no longer appropriate.

While in recovery, Linux prevents bursts by reducing cwnd
to pipe+1 on every ACK that reduces pipe for some reason.
This implies that if there is insufficient new data available
(e.g., because the application temporarily stalls), cwnd can
be become one by the end of recovery. If this happens, then
after recovery the sender will slow start from a very small
cwnd even though only one segment was lost and there was
no timeout!

The main drawbacks of the fast recovery in Linux are its
excessive window reductions and conservative retransmis-
sions, which occur for the following reasons:

1. Slow start after recovery : Even for a single loss
event, a connection carrying short Web responses can
complete recovery with a very small cwnd, such that
subsequent responses using the same connection will
slow start even when not otherwise required.

2. Conservative retransmissions : There are at least
two scenarios where retransmissions in Linux are
overly conservative. In the presence of heavy losses,
when pipe falls below ssthresh, Linux (re)transmits at
most one packet per ACK during the rest of recovery.
As a result, recovery is either prolonged or it enters an
RTO.

A second scenario is that rate halving assumes every
ACK represents one data packet delivered. However,
lost ACKs will cause Linux to retransmit less than half
of the congestion window.

4. PROPORTIONAL RATE REDUCTION
Proportional Rate Reduction is designed to overcome all

four problems mentioned in the previous section.
The PRR algorithm determines the number of segments to

be sent per ACK during recovery to balance two goals: 1) a
speedy and smooth recovery from losses, and 2) end recovery
at a congestion window close to ssthresh. The foundation of
the algorithm is Van Jacobson’s packet conservation princi-
ple: segments delivered to the receiver are used as the clock
to trigger sending additional segments into the network.

PRR has two main parts. The first part, the propor-
tional part is active when the number of outstanding seg-
ments (pipe) is larger than ssthresh, which is typically true
early during the recovery and under light losses. It gradu-
ally reduces the congestion window clocked by the incom-
ing acknowledgments. The algorithm is patterned after rate
halving, but uses a fraction that is appropriate for the tar-
get window chosen by the congestion control algorithm. For
example, when operating with CUBIC congestion control,
the proportional part achieves the 30% window reduction
by spacing out seven new segments for every ten incoming
ACKs (more precisely, for ACKs reflecting 10 segments ar-
riving at the receiver).

If pipe becomes smaller than ssthresh (such as due to ex-
cess losses or application stalls during recovery), the second
part of the algorithm attempts to inhibit any further con-
gestion window reductions. Instead it performs slow start to
build the pipe back up to ssthresh subject to the availability
of new data to send.3

Note that both parts of the PRR algorithm are inde-
pendent of the congestion control algorithm (CUBIC, New
Reno, GAIMD [29] etc.) used to determine the new value of
ssthresh.

We also introduced a complete description of PRR into
the IETF as a possible future RFC [15].

4.1 Examples
We present TCP time-sequence graphs of packet traces to

illustrate and compare the three fast recovery algorithms.
The traces are produced by our Linux kernel implementa-
tion and an internally developed TCP testing tool. The
measurement setup is a simple network with a 100ms RTT
and 1.2Mbps link and a 1000 byte MSS. The server applica-
tion writes 20kB at time 0 and 10kB at time 500ms. TCP
use traditional Reno congestion control, which sets ssthresh
to half of the cwnd at the beginning of recovery.

The first example is shown in Figure 2. Vertical dou-
ble ended arrows represent transmitted data segments that
carry a range of bytes at a particular time. Retransmit-
ted data is red. The green staircase represents advancing
snd.una carried by the ACKs returning to the sender, and
the vertical purple lines represent SACK blocks, indicating
data that has arrived at the receiver, but is above snd.una.

In this example, the first 4 segments are dropped. Since
TCP uses FACK, in all three traces TCP enters fast recov-
ery after receiving first dupack and sets ssthresh to 10 (half
of cwnd). In the PRR trace (top), the proportion part of

3We considered several alternative reduction bound algo-
rithms, as described in [15], and this variant provides the
best combination of features. This combined algorithm
should more properly be called Proportional Rate Reduc-
tion with Slow-Start Reduction Bound (PRR-SSRB), but
we shortened it to PRR.
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Figure 2: A comparison of PRR (top), Linux recov-
ery (middle), and RFC3517 (bottom). Legend for the
plot: Original data transmissions (Black), retransmis-
sions (Red), snd.una (Green), duplicate ACKs with
SACK blocks (Purple).

PRR retransmits one segment every other ACK. At time
460ms, the sender completes the recovery and sets the cwnd
to ssthresh (10). When the application writes 10 segments
into the socket at time 500ms, the segments are sent in one
RTT. The Linux trace (middle) highlights the first problem
in Section 3.2. The retransmission timings are similar to
the PRR trace because Linux does rate-halving. But the
key difference is that cwnd remains pipe + 1 when fast re-
covery completes, pipe is 1 right before recovery completes.
Therefore it takes 4 RTTs to deliver the next 10 segments
in slow-start. The RFC trace (bottom) highlights the first
problem in Section 3.1: the 2nd retransmission happens af-
ter about half of the cwnd of ACKs are received resulting,
in the half RTT silence.

Figure 3 illustrates how PRR reacts to heavy losses. We
use the same setup but drop segments 1 to 4 and 11 to 16.
After first cluster of drops and pipe is larger than ssthresh,
the proportional part of the algorithm is active transmit-
ting on alternate received ACKs. However, after the second
cluster of losses when pipe falls below ssthresh, PRR oper-
ates in slow start part and transmits two segments for every
ACK.

4.2 Pseudo code for PRR
Algorithm 2 shows how PRR determines the number of

bytes that should be sent in response to each ACK in recov-
ery. The algorithm relies on three new state variables:
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Figure 3: PRR algorithm under heavy losses.

Algorithm 2: Proportional Rate Reduction (PRR)

Initialization on entering recovery:
// Target cwnd after recovery.
ssthresh = CongCtrlAlg()

// Total bytes delivered during recovery.
prr delivered = 0

// Total bytes sent during recovery. prr out = 0

// FlightSize at the start of recovery.
RecoverFS = snd.nxt− snd.una

On every ACK during recovery compute:
// DeliveredData is number of new bytes that the
current acknowledgment indicates have been
delivered to the receiver.
DeliveredData = delta(snd.una) + delta(SACKd)
prr delivered+ = DeliveredData
pipe = (RFC 3517 pipe algorithm)

if pipe > ssthresh then
// Proportional Rate Reduction
sndcnt = CEIL(prr delivered ∗
ssthresh/RecoverFS)− prr out

else
// Slow start
ss limit =
MAX(prr delivered− prr out,DeliveredData) + 1
sndcnt = MIN(ssthresh− pipe, ss limit)

sndcnt = MAX(sndcnt, 0) // positive
cwnd = pipe+ sndcnt

On any data transmission or retransmission:
prr out+ = data sent

At the end of recovery:
cwnd = ssthresh



1. prr delivered is the total number of unique bytes de-
livered to the receiver since the start of recovery ac-
counted through cumulative ACKs or through SACKs.

2. prr out is the total bytes transmitted during recovery.

3. RecoverFS is the FlightSize (defined as snd.nxt −
snd.una in RFC 3517 [8]) at the start of recovery.

In addition to these, PRR maintains two local variables:

1. DeliveredData is the number of new bytes that the
current acknowledgment indicates have been delivered
to the receiver.

2. sndcnt determines how many bytes to send in response
to each ACK. Note that the decision of which data to
send (e.g., retransmit lost data or send additional new
data) is independent of PRR.

Algorithm 2 shows how PRR updates sndcnt on every
ACK. When pipe is larger than ssthresh, the proportional
part of the algorithm spreads the the window reductions
across a full round-trip time, such that at the end of re-
covery, prr delivered approaches RecoverFS and prr out
approaches ssthresh. If there are excess losses that bring
pipe below ssthresh, the algorithm tries to build the pipe
close to ssthresh. It achieves this by first undoing the past
congestion window reductions performed by the PRR part,
reflected in the difference prr delivered− prr out. Second,
it grows the congestion window just like TCP does in slow
start algorithm. We note that this part of the algorithm
increases the number of segments in flight during recovery,
however it does so more smoothly compared to RFC3517
which would send ssthresh-pipe segments in a single burst.

A key part of Algorithm 2 is its reliance on the newly
delivered data per acknowledgment, referred above as
DeliveredData. This is a stark difference from the existing
standard and widely implemented TCP algorithms which
make their congestion window adjustments based on the
number of ACKs received as opposed to the actual data
delivered. The use of DeliveredData is especially robust
during recovery. The consequence of missing ACKs is that
later ones will show a larger DeliveredData. Furthermore,
for any TCP connection, the sum of DeliveredData must
agree with the forward progress over the same time inter-
val. In addition, for TCP using SACK, DeliveredData is
an invariant that can be precisely computed anywhere in the
network just by inspecting the returning ACKs.

4.3 Properties of PRR
In this section we discuss a few key properties of PRR

that follow from its design. For each property, we also dis-
cuss the corresponding behavior for RFC3517 and Linux
fast recovery.

1. Maintains ACK clocking: PRR maintains ACK
clocking even for large burst segment losses, primar-
ily due to the slow start part of the algorithm. This
property is not true for the existing RFC3517 standard
which under heavy losses, can send an arbitrarily large
burst of size (ssthresh − pipe), as mentioned in the
RFC problem of bursty retransmissions (Section 3.1).
Linux fast recovery maintains the ACK clocking prop-
erty, however it does so by bringing the congestion
window down to pipe + 1.
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Figure 4: Example illustrating that PRR banks send-
ing opportunities during recovery. Application first has
20 segments to send of which 1 segment is lost. In the
middle of recovery, application has 10 more segments
to transmit. RTT=100ms. Legend for the plot: Origi-
nal data transmissions (Black), retransmissions (Red),
duplicate ACKs with SACK blocks (Purple), snd.una
(Green).

2. Convergence to ssthresh: For small number of
losses (losses ≤ RecoverFS − ssthresh), PRR con-
verges to exactly the target window chosen by the con-
gestion control algorithm, ssthresh. The algorithm for
the most part operates in the proportional mode which
decrements the congestion window until pipe reaches
ssthresh at which point the second part of the algo-
rithm maintains the pipe at the ssthresh value. We
note that for very heavy losses, the property will not
always hold true because there may not be sufficient
ACKs to raise pipe all the way back to ssthresh.

If there is sufficient new data and at least a few
segments delivered near the end of the lossy round
trip, RFC3517 achieves this property regardless of the
amount of loss, because it transmits a large burst.
Linux fast recovery does not achieve this property
when losses are heavy or when the application tem-
porarily runs out of data to send. In both of these
cases, pipe becomes too small and does not grow until
after the recovery ends.

3. Banks sending opportunities during applica-
tion stalls: If an application stalls during recovery,
e.g., when the sending application does not queue
data for transmission quickly enough or the receiver
stops advancing rwnd, PRR stores these missed op-
portunities for transmission. During application stalls,
prr out falls behind prr delivered, causing their differ-
ence prr delivered − prr out to be positive. If the ap-
plication catches up while TCP is still in recovery, TCP
will send a burst that is bounded by prr delivered −

prr out + 1.4 Note that this property holds true for
both parts of the PRR algorithm.

Figure 4 shows an example of the banking property
where after an idle period, the application has new
data to transmit half way through the recovery pro-
cess. Note that the algorithm in the PRR mode allows

4Although this burst might be viewed as being hard on the
network, this is exactly what happens every time there is
a partial RTT application stall while not in recovery. We
have made the response to partial RTT stalls uniform in all
states.



a burst of up to ratio × (prr delivered − prr out)
which in this example is three segments (ratio is 0.5
for New Reno). Thereafter PRR continues spreading
the new segments among incoming ACKs.

RFC3517 also banks missed sending opportunities
through the difference ssthresh − pipe. However,
these banked opportunities are subject to the inaccu-
racies of the pipe variable. As discussed below, pipe is
only an estimate of the outstanding data that can be
inaccurate in certain situations, e.g., when reordered
segments are incorrectly marked as lost. Linux does
not achieve this property since its congestion window
tracks pipe closely, thereby losing any history of missed
sending opportunities.

4. Robustness of DeliveredData: An integral part
of PRR is its reliance on the newly delivered data
per acknowledgment or DeliveredData, as opposed
to RFC3517 and Linux recovery which make their
congestion window adjustments based on the number
of ACKs received and the pipe size. With SACK,
DeliveredData allows a TCP sender to learn of the
precise number of segments that arrived at the re-
ceiver. The properties below follow from the robust-
ness of DeliveredData.

Decouples data transmission from loss estima-
tion/marking: PRR is less sensitive to errors in the
pipe estimator compared to RFC3517 as well as Linux
fast recovery. In recovery, pipe is an estimator, us-
ing incomplete information to continually guess if seg-
ments that are not SACKed yet are actually lost or
out-of-order in the network. pipe can have significant
errors for some conditions, e.g., when a burst of re-
ordered data is presumed to be lost and is retransmit-
ted, but then the original data arrives before the re-
transmission. Both RFC3517 and Linux recovery use
pipe directly to regulate transmission rate in recovery.
Errors and discontinuities in the pipe estimator can
cause significant errors in the amount of data sent.

On the other hand, PRR regulates the transmission
rate based on the actual amount of data delivered at
the receiver, DeliveredData. It only uses pipe to de-
termine which of the two algorithm modes, propor-
tional reduction or slow start, should compute the
number of segments to send per ACK. Since both parts
of the algorithm progressively converge to the same
target congestion window, transient errors in the pipe
estimator have much less impact on the final outcome.

Precision in the number of transmitted seg-
ments: PRR retains its precision in the number of
transmitted segments even in the presence of ACK
loss, ACK reordering, and stretch ACKs such as those
caused by Large Receive Offload (LRO) and Generic
Receive Offload (GRO). The rate halving algorithm
in Linux is not robust under these same scenarios
as it relies heavily on the number of ACKs received,
e.g., Linux transmits one segment on receipt of every
two ACKs during rate halving, and fails to transmit
the right number of segments when receiving stretch
ACKs. Similarly when pipe estimation is incorrect
in any of the above scenarios, RFC3517 also doesn’t
achieve transmission of a precise number of segments.

Data transmitted during recovery is in propor-
tion to that delivered: For PRR the following ex-
pression holds true for the amount of data sent during
recovery:

prr out ≤ 2× prr delivered

The relation holds true for both parts of the PRR al-
gorithm. Transmitted data in RFC3517 and Linux
do not have such a relation to data delivered due to
their reliance on pipe estimate. In fact under heavy
losses, the transmission rate in RFC3517 is directly
proportional to the extent of losses because of the cor-
respondingly small value of pipe value.

5. EXPERIMENT RESULTS
In this section, we evaluate the effectiveness and perfor-

mance of PRR in comparison to RFC3517 and the widely
deployed Linux fast recovery. We ran several 3-way ex-
periments with PRR, RFC3517, and Linux fast recovery
on Google Web servers for five days in May 2011 and on
YouTube servers in India for four days during September
2011. For fair comparisons, all three recovery algorithms use
FACK loss marking. Furthermore they all use CUBIC con-
gestion control. These newer algorithms have the effect of
making RFC3517 slightly more aggressive than envisioned
by its original authors.

There are three metrics of interest when evaluating the
fast recovery schemes: length of time spent in loss recov-
ery, number of timeouts experienced, and TCP latency for
HTTP responses. The recovery time is the interval from
when a connection enters recovery to when it re-enters Open
state. A connection may have multiple recovery events, in
which case the recovery time for each of the events is logged.

We first describe our experiments on Google Web servers
and then go on to describe the YouTube experiments in In-
dia.

5.1 Experiment setup on Google Web servers
All of our Web server PRR experiments were performed

in a production data center (DC1 described in Section 2.1)
which serves traffic for a diverse set of Google applications.
The Web servers run Linux 2.6 with the default settings
shown in Table 4 except that ECN is disabled. The servers
terminate user TCP connections and are load balanced by
steering new connections to randomly selected Web servers
based on the server and client IP addresses and ports.

Calibration measurements over 24-hour time periods show
that the SNMP and HTTP latency statistics agree within
0.5% between individual servers. This property permits us
to run N-way experiments concurrently by changing TCP
configurations on groups of servers. If we run a 4-way ex-
periment, then 5% of current connections are served by an
experimental Web server while the remaining 80% connec-
tions are served by unmodified production Web servers.

The transactions are sampled such that the aggregate rate
for the experiment is roughly one million samples per day.

Note that multiple simultaneous connections opened by a
single client are likely to be served by different Web servers
in different experiment bins. Since we are not looking at
interactions between TCP connections this does not com-
promise the results presented here.



pipe < ssthresh [slow start] 32%
pipe == ssthresh 13%

pipe > ssthresh [PRR] 45%
pipe − ssthresh

Min -338
1% -10
50% +1
99% +11
Max +144

Table 5: Statistics of pipe − ssthresh at the start of
recovery.

Quantiles for cwnd − ssthresh (segments).
Quantile: 5 10 25 50 75 90 95 99
PRR: -8 -3 0 0 0 0 0 0

Table 6: Values for cwnd − ssthresh just prior to
exiting recovery.

5.2 PRR in practice
We measured the percentage of recovery events that PRR

begins operation in the proportional versus the slow start
modes. Measurements, summarized in Table 5, show that
approximately 45% of the fast recovery events start with
operating in the proportional part of the algorithm (pipe
> ssthresh), 32% of the events start in the slow start part
(pipe < ssthresh) and 13% of the events start with pipe ==
ssthresh. Table 6 shows that in approximately 90% of the
recovery events, the congestion window in PRR converges to
ssthresh by the end of recovery. In the rest of the recoveries,
the segment losses were too heavy for slow start to complete
building the pipe value to ssthresh.

5.3 Performance of PRR vs RFC3517 and
Linux

We first compare the recovery times, followed by retrans-
mission statistics and impact on TCP latency for HTTP
responses.

Figure 5 shows that PRR reduces the time spent in recov-
ery as compared to both RFC3517 and Linux fast recovery.
PRR has a shorter recovery time primarily due to its smaller
number of timeouts during recovery, as we will see shortly.

Table 7 shows the value of cwnd on exiting recovery. PRR
sets cwnd to ssthresh on exiting recovery, and therefore
has a similar cwnd distribution to that of RFC3517. Note
that the slightly larger values of cwnd for PRR compared to
RFC3517 are because of the reduced number of timeouts in
the recovery phase. As described in Section 3.2, Linux pulls
the cwnd value down to at most pipe + 1 in recovery. A
consequence of this is that for short HTTP responses which
have limited new data to transmit, over 50% of recovery
events in Linux end with cwnd smaller than three segments.

Table 8 compares the retransmission statistics. The main
point is that PRR reduces the number of timeouts in re-
covery by 5% compared with Linux and by 2.6% compared
with RFC3517. Furthermore, PRR reduces the number of
retransmissions by 3% compared to RFC 3517. We also
note that RFC3517 incurs greater lost retransmissions as
compared to PRR. This is due to the fact that when pipe
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Figure 5: A comparison of time spent in recovery for
PRR, RFC3517 and Linux.

Quantiles for cwnd after recovery (segments).
Quantile: 10 25 50 75 90 95 99
PRR: 2 3 6 9 15 21 35

RFC 3517: 2 3 5 8 14 19 31
Linux: 1 2 3 5 9 12 19

Table 7: A comparison of PRR, RFC 3517 and Linux
recovery.

falls far below ssthresh, RFC3517 sends most of the re-
transmissions as a single large burst, thereby increasing the
likelihood of drops in retransmissions. About 32% of the
fast recovery events start of with pipe strictly lower than
ssthresh. In these cases, RFC3517 has the possibility of
transmitting large bursts, with the largest burst size up to
338 segments, and about 1% of the recovery events might
generate bursts greater than ten segments (Table 5).

We picked two representative Google services, search and
page ads, to evaluate the latency differences. Table 9 shows
the quantiles for TCP latency measured. Compared to
Linux fast recovery, PRR and RFC3517 reduce the average
latency of the responses with retransmissions by 3-10%, and
the overall latency (including responses without losses) by 3-
5%. PRR achieves similar latency as compared to RFC3517,
however, it does so without sending large bursts.

5.4 YouTube in India
We evaluated the three algorithms in our India YouTube

video servers, to observe how they performed with long-
running TCP transfers. The YouTube service is built on
progressive HTTP which normally uses one TCP connec-
tion to deliver an entire video. The server sends the first
couple tens of seconds of video as fast as possible, then it
rate-limits the transfer based on the video encoding rate to
minimize wasted network capacity if a user cancels the rest
of the video. However, for most video downloaded in In-
dia, there is little or no difference between the throttled and
un-throttled data rates because there is little or no surplus
network capacity above the video encoding rate. In this case



Retransmissions measured in 1000’s of segments.
Retransmission type Linux baseline RFC 3517 diff. [%] PRR diff [%]
Total Retransmission 85016 +3119 [+3.7%] +2147 [+2.5%]

Fast Retransmission 18976 +3193 [+17% ] +2456 [+13%]
TimeoutOnRecovery 649 -16 [-2.5%] -32 [-5.0%]
Lost Retransmission 393 +777 [+198%] +439 [+117%]

Table 8: A comparison of retransmission statistics and timeouts of PRR, RFC 3517 and Linux recovery.

Google Search Page Ads
Quantile Linux RFC 3517 PRR Linux RFC 3517 PRR

25 487 -39 [-8%] -34 [-7%] 464 -34 [-7.3%] -24 [-5.2%]
50 852 -50 [-5.8%] -48 [-5.6%] 1059 -83 [-7.8%] -100 [-9.4%]
90 4338 -108 [-2.4%] -88 [-2%] 4956 -461 [-9.3%] -481 [-9.7%]
99 31581 -1644 [-5.2%] -1775 [-5.6%] 24640 -2544 [-10%] -2887 [-11.7%]

Mean 2410 -89 [-3.7%] -85 [-3.5%] 2441 -220 [-9%] -239 [-9.8%]

Table 9: A comparison of TCP latency (ms) for PRR, RFC 3517 and Linux recovery. Quantiles are shown
for responses that have at least one retransmission.

TCP is busy most of the time and there are long stretches
where the data rate is determined entirely by TCP conges-
tion control and the network, i.e., TCP is effectively in bulk
transfer mode.

We sampled roughly 0.8 million connections in 96 hours
and list key statistics in Table 10. Video downloads served
with different fast recovery algorithms have almost identical
sample size and average transfer size (2.3MB per connec-
tion).

The network transmit time measures the total time per
connection when there is unacknowledged data in the TCP
write queue, i.e., when TCP is actively transmitting data.
Similarly, the network recovery time is that part of the net-
work transmit time when the sender is in either fast recovery
or timeout-recovery. Overall, RFC3517 has the best perfor-
mance since on average it delivered video in 4.7% less net-
work transmit time than the Linux baseline. PRR is about
3% faster than the baseline.

The video downloads in India spent 43% to 46% of the net-
work transmit time recovering from losses. While RFC3517
spent more time and sent more retransmission in recovery
than PRR and Linux baseline did, it also delivers more
data during fast recovery: 5% more bytes compared to
Linux baseline. This is because the network losses are clus-
tered such that in fast recovery, pipe drops below ssthresh
for about 40% of the events (not shown in table), causing
RFC3517 to send as much data necessary to keep the pipe at
ssthresh. This aggressive transmission, described as Prob-
lem 2 in Section 3.1, causes 16.4% of the RFC3517 fast-
retransmits to drop, while Linux and PRR both lose less
than 5% of the fast-retransmits. Furthermore after recov-
ery, Linux transitions directly into slow-start 56% of the
time. Both PRR and RFC3517 end with cwnd at or close
to sshtresh and do not need to perform this extra slow-start.

In summary, RFC performs the best but it retransmits
too aggressively and has much higher (retransmission) drop
rate. PRR achieves good performance with a slight increase
of retransmission rate.

6. EARLY RETRANSMIT
As observed in section 2.1, the average Google HTTP re-

sponse is only 7.5kB or about 5-6 segments. Early retrans-
mit (ER) [2] is designed to overcome the well known limita-
tion with fast retransmit: if a loss occurs too close to the end
of a stream, there will not be enough dupacks to trigger a
fast retransmission. ER lowers the dupthresh to 1 or 2 when
the outstanding data drops to 2 or 3 segments respectively.

Clearly, any reordering can falsely trigger early retrans-
mit. If this happens near the end of one HTTP response, the
sender will falsely enter fast recovery which lowers the cwnd
and slows the next HTTP response over the same connec-
tion. To make ER more robust in the presence of reordering,
RFC 5827 describes three mitigation algorithms:

1. Disabling early retransmit if the connection has de-
tected past reordering.

2. Adding a small delay to early retransmit so it might
be canceled if the missing segment arrives slightly late.

3. Throttling the total early retransmission rate.

We implemented the first two algorithms. The first one
is straightforward because Linux already detects reordering
based on SACK. For the second algorithm, we use the RTO
timer to delay the early retransmission for a configurable
short interval. The sender cancels early retransmit if it re-
ceives an ACK during this interval. We do not implement
the last mitigation because it only makes sense for servers
facing a homogeneous user pool.

6.1 Results
We used the experimental framework described in Sec-

tion 5.1 to run a 4-way experiment for 72 hours in April
2011. We compared: the baseline (original kernel), the naive
ER without any mitigation, ER with first mitigation, and
ER with both mitigations.

The statistics show that naive early retransmit causes a
significant increase, 31%, in the number of fast retransmits
for a 2% reduction in the number of timeouts relative to
unmodified Linux TCP. These come at a substantial cost: a



Linux baseline RFC 3517 PRR
Network Transmit Time (s) 87.4 83.3 84.8
% Time in Loss Recovery 42.7% 46.3% 44.9%

Retransmission Rate % 5.0% 6.6% 5.6%
% Bytes Sent in FR 7% 12% 10%

% Fast-retransmit Lost 2.4% 16.4% 4.8%
Slow-start after FR 56% 1% 0%

Table 10: India YouTube video transfers loss recovery statistics. The average transfer size is 2.3MB and
average RTT is 860ms.

Quantile Linux ER
5 282 258 [-8.5%]
10 319 301 [-5.6%]
50 1084 997 [-8.0%]
90 4223 4084 [-3.3%]
99 26027 25861 [-0.6%]

Table 11: A comparison of TCP latency (ms) for
Linux baseline and ER with both mitigations.

27% increase in the number of “undo” events where it was
determined that the retransmission was spurious, and the
cwnd change is reversed. We were surprised by the amount
of small reordering in the network. After we inspected the
TCP traces with Google network operators, we confirmed
that the reordering happens outside of Google networks, i.e.,
in the Internet.5

The first mitigation is not as effective because most HTTP
connections are short. Although Linux also implements RFC
2140 [27] which caches the reordering history of past connec-
tions of the same IP, the cache hit rate is very low due to
the server load-balancing and the size of web server farm.

The second mitigation, using a short timer to slightly
delay the early retransmit, provides a substantial improve-
ment, because it gives time for the ACKs from out–of–order
segments to arrive and cancel the pending early retransmis-
sion. For the timer, we used 1/4 of the smoothed RTT bound
to the range of 25ms to 500ms. One of the things that we
noticed when we were tinkering with the timer design was
that it does not affect the results much. This insensitivity to
timer details is interesting, because it gives some hints about
typical reordering distance, but we chose not to investigate
it at this point and picked a reasonable compromise design.

ER with both mitigations can reduce 34% of the timeouts
in Disorder state with 6% of early retransmits identified as
spurious retransmissions via DSACKs. Some losses in ER
with mitigation are now repaired by fast recovery instead
of by timeout, therefore the total number of retransmissions
remain almost the same as the baseline (1% increase). We
compare the TCP latencies in ER with both mitigations and
the original Linux in Table 11. Responses that do not expe-
rience losses or fit entirely into one segment are excluded be-
cause ER can not repair these responses. For the remaining
responses, ER with both mitigations reduces latencies up to

5The traces also reveal that such reorderings are likely due
to router load-balancing on the forward paths where the
last sub-MSS segment is SACKed before the prior full MSS
segment. Clearly, the mitigations in ER are needed [6].

8.5% and is most effective for short transactions. However,
the overall latency reduction by ER is significantly limited
in Google Web servers. Since the number of timeouts in dis-
order is very small compared to timeouts occurring in the
open state.

We end the section with a note on the combined experi-
ments with PRR and early retransmit. The main observa-
tion is that the two mechanisms are independent features of
TCP fast recovery, wherein the early retransmit algorithm
determines when a connection should enter recovery, while
PRR improves the recovery process itself.

7. RELATED WORK
Several researchers have investigated the performance of

TCP loss recovery in TCP traces of real user traffic [12, 5, 22,
26]. In data from 1995 it was observed that 85% of timeouts
were due to receiving insufficient duplicate acknowledgments
to trigger Fast Retransmit [12]. Interestingly, Google still
shows 46% to 60% retransmissions happen during timeout
recovery. In a study of the 1996 Olympic Web servers it was
estimated that SACKmight only save 4% of the timeouts [5].
The authors invented limited transmit which was standard-
ized [3] and widely deployed. An analysis of the Coral CDN
service identified loss recovery as one of the major perfor-
mance bottlenecks [26]. The idea of progressively reducing
the window, rather than a half RTT silence, has been ex-
plored before [11], including prior work by Mathis [19].

Improving the robustness and performance of TCP loss re-
covery has been a recurrent theme in the literature. TCP re-
covery improvements fall into several broad categories: bet-
ter strategies for managing the window during recovery [11,
16, 5]; detecting and compensating for spurious retransmis-
sions triggered by reordering [7, 13, 14]; disambiguating loss
and reordering at the end of a stream [24]; improvements to
the retransmission timer and its estimator.

The Early Retransmit algorithm shares many similarities
with thin stream support for TCP [20], which is designed to
help applications such as interactive games and telephony
that persistently send small messages over TCP.

8. CONCLUSION
Proportional rate reduction improves fast recovery under

practical network conditions. PRR operates smoothly even
when losses are heavy, is quick in recovery for short flows,
and accurate even when acknowledgments are stretched, lost
or reordered. In live experiments, PRR was able to reduce
the latency of short Web transfers by 3-10% compared to
Linux recovery and proved to be a smoother recovery for
video traffic compared to the standard RFC3517. While



these seem like small improvements, we would like to em-
phasize that even delays as small as 100ms in page load
times have been shown to impact user satisfaction in several
independent experiments [25]. Based on its promise in live
experiments, PRR was accepted to be in the mainline Linux
as the default fast recovery algorithm, and is proposed as an
experimental RFC in the IETF [15].

Going forward, we will revisit the effectiveness of the RTO
mechanisms in practice. Measurements show that timeouts
(and any subsequent exponential backoffs) in short flows
constitute over 60% of the retransmissions. Most of these
occur when flows are in the Open state and receive no du-
plicate acknowledgments. Our research will address if and
how timeouts can be improved in practice, especially for
short flows.
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