How Do Centralized and Distributed Version Control
Systems Impact Software Changes?

Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, Danny Dig
EECS School at Oregon State University
{brindesc,codobanm,shmarkas,digd}@eecs.oregonstate.edu

ABSTRACT

Distributed Version Control Systems (DVCS) have seen an
increase in popularity relative to traditional Centralized Ver-
sion Control Systems (CVCS). Yet we know little on whether
developers are benefitting from the extra power of DVCS.
Without such knowledge, researchers, developers, tool build-
ers, and team managers are in the danger of making wrong
assumptions.

In this paper we present the first in-depth, large scale
empirical study that looks at the influence of DVCS on the
practice of splitting, grouping, and committing changes. We
recruited 820 participants for a survey that sheds light into
the practice of using DVCS. We also analyzed 409M lines of
code changed by 358300 commits, made by 5890 developers,
in 132 repositories containing a total of 73M LOC. Using this
data, we uncovered some interesting facts. For example, (i)
commits made in distributed repositories were 32% smaller
than the centralized ones, (ii) developers split commits more
often in DVCS, and (iii) DVCS commits are more likely to
have references to issue tracking labels.

1. INTRODUCTION

Distributed Version Control Systems (DVCS) like Git [2]
or Mercurial [6] are widely used today. Over the last cou-
ple of years GITHUB [4], which is the most popular repos-
itory hosting service for Git projects, has taken the open
source community by storm. At the end of 2012, GitHub
hosted over 4.6M repositories. Compare this with the previ-
ous paradigm, CVCS, epitomized by SVN [9] and CVS [1].
SOURCEFORCE [7], the primary repository hosting service
for SVN had about 300K repositories by the end of 2012.
Also, our own survey of 820 developers shows that 65% use
DVCS and 35% use CVCS.

DVCS brings a whole set of novel capabilities. Using
DVCS, developers (i) can work in isolation on local copies
of the repositories enabling them to work offline while still
retaining full project history, (ii) they can cheaply create
and merge branches, and (iii) they can commit individual
changed lines in a file, as opposed to being forced to commit
a whole file like in CVCS.

Are developers truly taking advantage of these DVCS fea-
tures or are they simply paying the steep learning price with-
out benefiting from them? Despite the large scale adoption
of DVCS, we know little about the state of the practice in us-
ing this new paradigm. Without such knowledge, developers
and managers are left in the dark when deciding whether it
is worth to invest time and effort to transition to these new
tools. Also, researchers are in danger of making errors when

mining repositories, due to confounding effects imposed by
DVCS. Finally, tool builders can build the wrong tools if
they are not aware of developers’ habits.

In this paper we present the first large-scale study that an-
swers in-depth questions about the extent to which DVCS
influences the practice of managing changes. To this end,
we designed and launched a survey. We recruited 820 par-
ticipants, 85% of them being developers from industry. 56%
have ten or more years of programming experience. 51%
work in teams larger than 6 developers.

To get further insights into how DVCS affects code changes,
also we analyzed 409M lines of code changes from 358300
commits, made by 5890 developers, in 132 repositories con-
taining a total of 73M LOC. Our corpus contains both pure
and hybrid repositories. Pure repositories use the same VCS
throughout their lifecycle. Hybrid repositories started in
the centralized paradigm and switched to the distributed
paradigm. The hybrid repositories can reveal whether chang-
ing the version control system influences developers’ prac-
tices.

For the centralized paradigm we chose SVN as the best
representative. For the distributed paradigm we chose Git.

Using the data from our survey and our mining of repos-
itories, we answer 12 research questions organized in three
overarching themes:

Theme 1: How does the VCS type affect developers’ be-
havior?

RQ 1: Does the type of VCS affect the size of commits?

RQ 2: Do developers split their commits into logical units
of change? How do they do it?

RQ 3: How often and why do developers squash their com-
mits?

RQ 4: Why do developers prefer one Version Control Sys-
tem over another?

RQ 5: Does the VCS influence the frequency with which
developers commit?

We found that developers’ behavior is influenced by the
VCS type. When using DVCS, developers make commits
32% smaller and they organize their changes in several com-
mits. Depending on the VCS type, the reasons why devel-
opers find the commit process more natural are different.

Theme 2: How does the team size affect VCS usage?

RQ 6: Does team size affect the choice of VOS?

RQ 7: Are larger teams more likely to use Issue Tracking
Systems (ITS)?

RQ 8: Does team size influence commit squashing?

Teams of all sizes prefer using DVCS. The team size does
not influence the size of commits. Most teams include issue

tracking labels in their commits.

Theme 3: How does the VCS type affect the development
process?

RQ 10: Does the type of VCS influence the presence and
the number of issue tracking labels (ITL)?

RQ 11: Is there a correlation between the number of issue
tracking labels (ITL) in the commit message and the commat
size?

RQ 12: How does the size of commits vary in time?

We found that developers using DVCS include issue track-
ing labels more often in commit messages. Also, the commit
size decreases as the project matures.

Based on these findings, we propose several actionable im-
plications for four audiences. Researchers can better align
their research questions with the type of repositories they

mine. For example, for questions that rely on a discrete/precise

software changes (e.g., bug prediction, inferring high-level
meaning for code changes, etc.) they should mine distributed
repositories. Dewvelopers can give more precise meaning to
their changes when they use distributed version control sys-
tems. Tool builders can further build up on the strengths
provided by DVCS such as the ability to better group changes
and express their intent. Managers can make more informed
decisions when choosing tools for their projects.

This paper makes the following contributions:

1. Research Questions. We designed and answered 12
novel research questions to understand the extent in
which DVCS help developers manage software changes.

2. Survey. We designed and launched a survey to pro-
vide insights into the practice of using DVCS. We re-
cruited 820 participants.

3. Mining repositories. We developed a set of tools to
collect metrics and analyze centralized and distributed
repositories. We applied these tools on a corpus of 132
repositories.

4. Implications. We present implications of our find-
ings from the perspective of four different audiences:
researchers, developers, tool builders, and team man-
agers.

The tools, summary of survey responses, and corpus are

publicly available at: http://tiny.cc/VCStudy

2. EXPERIMENTAL SETUP

In this section we describe the two sources of data we used
to answer our research questions.

2.1 Survey

We conducted a survey where we asked 20 questions about
developer commit practices. 820 respondents answered our
survey. The participants are developers recruited by pro-
moting the survey on social media channels specific to the
development community, i.e., Twitter and Google+ feeds
that are mainly read by developers.

Table 2 shows the demographics of the respondents. Most
are experienced developers working on industrial projects.
The data shows that Git is widely used by developers (52%),
followed by SVN (20%).

2.1.1 Classification of open-ended questions

The survey contained both multiple choice and open-ended
questions !. We hand-coded the answers to the open-ended

!Survey contents can be accessed at http://goo.gl/9eSHAW

Table 2: Demographics of survey respondents

(a) Programming experience (years)

<2 2-5 5-10
1.83% 11.10% 30.49%

10 - 15
30.61%

15- 20 > 20
13.90% 12.07%

(b) Project type

Proprietary Open source Research Personal

software software project project L
85.09% 6.97% 4.64% 3.06% 0.24%
(c) Team size
1 2-5 6-10 11-25 26-100 > 100
5.87% 42.30% 23.72% 15.65% 8.19% 4.28%
(d) Project age
<6mo 6mo-lyr lyr-2yrs > 2yrs
13.33% 18.58% 21.27% 46.82%
(e) VCS used predominantly
Git SVN Hg Ml;r;;o“ CVS Other
52.68% 20.37% 12.07% 8.54% 1.10% 5.24%

questions using qualitative thematic coding [18]. We de-
veloped a set of codes that we validated by achieving an
inter-rater agreement of over 80% for 20% of the data. Two
coders, the first and the third authors, developed the cat-
egories which were not known apriori. For measuring the
agreement we used the Jaccard coefficient.

The categories that emerged from coding can be seen as
rows in Tables 12, 9, and 11.

Tables 3, 4, 5 show more details (i.e., criteria, definitions,
and examples) that we used for classifying the open ended
questions regarding commit splitting, squashing and VCS
usability, respectively.

2.2 Repository

To provide further insights into how DVCS affects devel-
oper practices we collected and analyzed 132 software repos-
itories.

2.2.1 Repository Corpus

In order to answer our research questions we needed to
collect repositories that are representative of the centralized
and distributed paradigms. We also collected hybrid repos-
itories that started in a centralized paradigm and switched
to the distributed paradigm. Our assumption is that differ-
ences in metrics taken from these three kinds of repositories
provide valuable insights on how they influence source code
management.

We collected SVN repositories from SOURCEFORGE as rep-
resenting the centralized paradigm, and Git repositories from
GITHUB as representing the distributed paradigm. These
repositories span several programming languages: Java, C,
C++4, and JavaScript.

For GITHUB we selected the top ranked repositories, i.e.,

Demographic

Q1. What is the type of project that you spend most of your time on?
Q2. What is the extent of your programming experience?
Q3. How old is the project that you typically work on?

Q4. What type of VCS paradigm do you prefer?

Q5. What is the VCS tool that you use most often?
Q6. What is the size of your software development team?

Commit practice

Q7. How often do you commit your changes?

Q8. If you chose “It depends”, what does it depend upon? *
Q9. When you commit, how do you group your changes?

Q10. If applicable, what criteria do you use to split your commits? *

Q11. If applicable, do you squash your commits?

Q12. If you squash your commits, what are your reasons for squashing? *

Q13. Which of the following VCS do you find the most natural to commit changes?
Q14. Why do you find it most natural? *

Issue tracking

Q15. Does the project where you sped most of your time have a commit policy?
Q16. Do you use an issue tracking system?

Q17. If yes, do you work on more than one issue at a time?

Q18. If yes, are the issues related?

Q19. If you work on several issues at once, do you commit each issue separately?
Q20. How often do you share changes with other members?

Table 1: Survey questions. Open-ended answers are marked with an asterisk.

Code

Definition

Example

Fine-grain scope

Course-grain
scope

Policy

Other

Splitting changes by having a finer grained scope
in mind (e.g. changes at method level, refactor-
ings, small fixes)

Splitting changes by having a coarser scope in
mind (e.g. larger functionality, bug-fixes)

A criteria that is imposed from the outside (man-
agement, development process etc.)

Reasons that do not fit in the above criteria

“Small, logical chunks, complete thoughts”

“The changes and working tests around a specific
piece of functionality.”

“The commits are designed to be easy to review
individually, and to allow individual reversion of
semantically discrete change-sets.”

“No criterion. It’s just random.”

Table 3: Classification of reasons for splitting commits

repositories that have been marked as favorites by develop-
ers and/or have been forked the most. For SOURCEFORGE
we used its own internal ranking metric to select the top
ranked repositories. We queried the SourceForge projects
through the Notre Dame Sourceforge Research Archive [8],
which serves as a mirror designed specifically for researchers.
By choosing the top repositories we ensure that we collect
mature projects with a rich history.

To select hybrid repositories, we searched for internet posts
about migrating repositories from SVN to Git. In addition,
while collecting Git repositories, some of them proved to
have actually started in SVN. Thus we classified them as
hybrid. We distinguish the two stages of hybrid repositories
as Hybridsv nstage and Hybridgitstage-

We took extra care to ensure the integrity of repositories,
i.e., Git repositories did not originate in SVN, by searching
for keywords in commit messages.

Table 6 shows the corpus of repositories. For each repos-
itory kind, we tabulate the number of individual reposito-

Table 6: Repository corpus.

Total

Repo. Type Repositories Commits Authors LOC
changed

SVN 52 95571 451 270M

Hybrid 29 151004 2249 89M

Git 51 111725 3190 50M

Total 132 358300 5890 409M

ries, commits, and authors that contributed. The last col-
umn shows the total number of lines of code that have been
changed by all commits.

2.2.2 Repository Analysis

We have built an analysis platform to gather several com-
mit metrics. We used Git as the canonical representation for
all repositories. This is possible since the Git object storage

Code

Definition

Example

Group Similar
Changes
Removing irrele-
vant intermediate
steps
Removing mis-
takes

Keeping history
clean

Squashing with the intent of having only one com-
mit per logical change (feature, bug-fix etc)

Removing commits after a feature was done, be-
cause they are no longer relevant

Merging two or more commits: one that intro-
duced an error and the others that fix it.

Reducing the clutter in the main branch or repos-
itory
Requirement coming from the outside (manage-

“Usually to combine a number of incremental work
in progress commits into one coherent one.”

“Get rid of intermediate commits that don’t repre-
sent logical application development.”

“Fizing mistakes or oversights from a previ-
ous commit that hasn’t been pushed yet; adding
changes that should logically be part of that com-
mit”

“It keeps our master repo clean, as there is a large
number of contributors.”

“I push as one commit to the projects development

Policy ment, development process etc) branch. This approach is imposed”
Other Answers that do not fit in any of the above criteria “It’s applicable.”

Table 4: Classification of reasons for squashing commits
Code Definition Example

Killer feature

Old habit

Easy to use

Personal
ence
Other

prefer-

Presence of a certain feature that makes life easier

The only one they have used or just simple habit

Integration with other tools, perceived simplicity
compared to other tools

They just prefer one over the other

Answers that do not fit in the above buckets

“The merging, branching, and rebasing function-
ality are extremely fast and convenient.”
“The only one I've used”

“Very easy and few steps / commands. Easy to
understand what’s going on.”

“Just seemed to make sense”

“Can’t specify, just feels natural.”

Table 5: Classification of reasons why developers find a VCS natural to use

model is a superset of the centralized model. For example,
the linear history of CVCS can be easily represented in Git’s
directed acyclic graph branching model. Thus, we converted
all SVN repositories to Git, using the SVN2GIT tool [10].

Our analysis platform builds on top of GITECTIVE [3], a
framework capable of traversing history trees, one commit
at a time.

In order to explore the statistical significance of various
sample differences, we applied the Wilcoxon rank-sum test.
We chose this test since none of the data fit a normal distri-
bution.

We used the Pearson correlation coefficient in order to
establish linear dependence between two sets of randomly
distributed values.

Filtering changes.

In our initial manual investigation of commits we have
discovered that many commits do not represent actual pro-
gramming changes carried out by a developer (e.g., adding
features, bug fixing, refactoring, etc.), but are the result of
applying tools such as code formatters. Such commits are
extremely large, i.e., they affect thousands of LOC. Since
these commits would bias our analysis, we decided to filter
them out. Our analysis filters out any commit that:

e consists only of either added, deleted or renamed files.
Most of the times these commits represent large scale
project file structure modifications.

e is a merge commit. These commits usually represent
decisions on conflict resolution and contain changes
from several lines of development.

e updates only copyright notes, code documentation (e.g.,
JavaDoc comments) or reorganize code dependences
(e.g., import statements).

e is artificially manufactured by repository migration tools.

In addition, inside each commit, our analysis discards lines
of code that (i) introduce or modify code comments, and (ii)
only modify white space (e.g., code formatting).

Commit metrics.

For each commit we collect the following metrics.

Commit id, useful for identifying commits.

Commit date, useful for sorting commits chronologi-
cally.

The author of the commit, useful in grouping data by
authors.

Number of LOC changed by the commit, useful for
determining the size of commits. For each commit we com-
pute LOC added, deleted, or modified as reported by the
standard DIFF tool.

Number of files impacted by the commit, useful
for determining the commit size. While LOC tells us how
much software editing has been performed in a commit, the
number of impacted files tells us how spread the change is
within the system.

Number of issues referenced in the commit mes-
sage, useful to determine the cohesiveness of changes. The
issues refer to programming tasks, such as features or bugs,
managed with external systems such as BUGZILLA, JIRA [26],
etc. In order to detect them, we used an approach similar to
the one described by Bird at al. [15], which employs search-
ing for specific text patterns in the commit message.

3. RESULTS
3.1 How does the VCS type affect developers’
behavior?

RQ 1: Does the type of VCS affect the size of com-
mits?

Table 7 shows the commit size, both in lines of code and
in number of files, made by individual authors. This data is
grouped by VCS type.

Table 7: Commit size across different VCS

Mean Median StdDev
LOC files LOC files LOC files
Git 2720 3.08 13.46 1.96 32.72 2.7
Svn 40.06 5.65 18.44 3.19 49.62 6.72

HybridGit 23.02 240 11.52 1.70 27.57 1.74
HybridSVN 25.72 2.82 12.61 196 31.24 2.15

In terms of LOC, the commits from Git repositories tend
to be smaller than those made in SVN repositories (p <
0.01). The mean and median lines of code changed per com-
mit in Git repositories is 27.20 and 13.46, respectively, while
for SVN repositories these values are 40 and 18.44 respec-
tively. The standard deviation of changed lines of code also
differs, with 32.72 lines of code for Git and 49.62 lines of
code for SVN.

In terms of the number of files that are affected by a com-
mit, the same trend of a smaller commit size can be seen as
with the commit lines of code, although at a lower signifi-
cance level (p = 0.2). Commits from Git repositories tend
to affect fewer files than commits from SVN repositories.

On the other hand, hybrid repositories do not show a
smaller commit size after they transition to Git (p>0.5).

(" Observation 1: DVCS repositories have a smaller com-)

mit size than CVCS repositories, both in terms of lines

\of code and impacted files.)

(Observation 2: Hybrid repositories do not show any\

difference between the size of commits performed before
\and after the switch to the distributed paradigm.

J

Interpretation:

One possible explanation for Git commits being smaller
than SVN commits is the fact that Git enables its users to
select finer grained changes to commit. In Git the atomic
unit of change that can be committed is the line while in
SVN it is the file.

Another possible cause that enables small commits in Git
is that each developer commits to his own local repository
without the need to synchronize with everybody else. This

means that there is no risk of conflicts upon every local
commit. One participant stated that “Git promotes the idea
that your commit space is not inflicting pain on anyone else,
so frequent commit and experimentation is encouraged. By
design it promotes small, frequent commits that serve a spe-
cific purpose rather than the “5pm commit™. Also, resolving
conflicts becomes a task that is consciously entered into by
the user only when she synchronizes her changes with other
team members. It is not something that happens haphaz-
ardly with every local commit.

Hybrid repositories on the other hand do not seem to ex-
perience smaller commits after switching to Git, as observa-
tion 2 shows. Our assumption is that in such cases a certain
commit policy is formed within the team while the project is
under the SVN version control stage. This commit policy is
then intuitively carried over in the Git version control stage,
leading to the same manner of composing software change
as before.

The culture of the project takes a longer time to change
when a new tool is introduced. Thus, in long lasting projects,
it seems that old habits die hard.

RQ 2: Do developers split their commits into logical
units of change? How do they do it?

The changes that a developer makes during an extended
coding session might belong to one or more logical units of
change. Do developers bother to split these changes and
commit separately? Or do they just group their changes by
committing everything that was modified in one large com-
mit? The answers in the survey give us the picture depicted
in Table 8.

Table 8: Developers splitting their commits (%)

Practice DVCS CVCS Overall

Split their changes 81.25 67.89 75.99
Group their changes 12.50 26.61 18.05
Other 6.25 5.50 5.96

Observation 3: 76% of the developers split their com-
mits. The percentage is higher for distributed version
control systems (81.25%), compared to centralized ones
(67.89%).

One explanation for this fact is that in DVCS, the commit
process is easier and cheaper than in centralized ones. There
is no risk of conflict with each new local commit. Moreover,
the smallest atomic unit of change in DVCS is the line, not
the file (as it is in CVCS). All these make committing easier,
so developers are willing to take the time to split and commit
each logical change separately.

A question of great interest is the criteria on how they
split their changes. We chose four categories to capture the
respondents’ answers:

Implementation details refer to how was a change carried
out (e.g., change field type, add new branch to a switch
statement, modify loop termination condition, etc). Intent
of change splits changes by expressing the what part of the
change carried out (e.g., add a feature, fix a bug). Policy
splits changes based on a criteria that is externally imposed
(management practices, development process, etc). Other
represent reasons that do not fit in the above criteria.

Table 9: Reasons for splitting commits (%)

Technique DVCS CVCS Overall
Implementation details 37.01 21.85 32.03
Intent of change 45.13 62.251 50.76
Policy 6.17 5.30 5.88
Other 11.69 10.60 11.33

Table 9 tabulates the reasons for splitting commits.

We observe that in the case of DVCS, developers chose
to split their changes based on implementation details more
frequently than they do in CVCS. As is the case with obser-
vation 3, we can attribute this to an easier commit process.
Splitting commits by implementation details will inevitably
result in more commits. Being easier and cheaper to commit
may make this process more attractive to developers.

Observation 4: Overall, developers choose to split
their commits using the intent of change.

Observation 5: More DVCS users split changes based
on implementation details than CVCS users.

As we have seen in observations 3 and 5, DVCS users
split their changes in several commits more often and they
do it with a finer-grained scope in mind. One participant
reported: “Fach commit is one cohesive change that might
fix a bug, add new functionality, alter existing functionality
([...] like “sphere class can now calculate its own volume” -
user level features usually take many commits)”. This cor-
roborates with the findings in the repositories about the in-
fluence of Version Control Systems on commit size (RQ 1).
Being able to more easily split the commits and the commit
process being simpler as well, will result in smaller commit
size.

RQ 3: How often and why do developers squash
their commits?

Squashing refers to the operation of merging two or more
commits into a single one.

Results from the survey show that only 30% of the devel-
opers squash their commits. If we separate the data into two
bins, one for distributed and one for centralized repositories
we get the results in Table 10.

Table 10: Developers squashing their commits (%)

Response DVCS CVCS Overall
Yes 36.59 18.12 30.21
No 54.79 44.57 51.31

Not applicable 8.62 37.32 18.48

Table 10 shows that squashing happens twice more often
in distributed repositories than in centralized ones?. This
probably has to do with the fact that it is easier to manipu-
late commits in DVCS. Developers who practice squashing
mention two main reasons (Table 11): (i) they do so to group
several changes together and; (ii) they do not care about the
path they took to a solution as long as it’s finished and it
works.

2See Internal Threats to Validity (Section 4)

Table 11: Reasons why developers squash their commits (%)

Reason DVCS CVCS Overall

Group similar changes 25.63 45.16 28.80
Intermediate steps are

. 20 0 16.75
irrelevant
Remove mistakes 15 0 12.57
Keep history clean 26.88 6.45 23.56
Policy requirement 5.63 9.68 6.28
Other 6.88 38.71 12.04

Observation 6: Squashing does not occur often in
practice. If it does occur, it’s a practice mainly asso-
ciated with DVCS

RQ 4: Why do developers prefer one Version Con-
trol System over another?

According to the survey we have found two main reasons
why developers find a commit process more natural. The
first is the presence of a killer feature. It usually helps de-
velopers achieve higher productivity by allowing a workflow
that is more comfortable for them. The second is habit.
Developers become accustomed to a certain tool. There-
fore, they will find the tool natural to use from the habits
they have acquired while using it on a daily basis. Table 12
summarizes the complete results.

Table 12: Reasons for considering a VCS more “natural” to
commit (%)

Reason DVCS CVCS Overall
Killer feature 46.02 10.89 30.41
Old habit 22.88 41.58 30.41
Easy to use 19.79 41.58 27.14
Personal preference 2.06 0.99 2.04
Other 9.25 4.95 10

In 46% of the cases developers prefer DVCS because of
a killer feature. By looking at individual replies we have
found that one of the features mentioned is the possibility
to commit to the local copy of the repository. Also, we can
see that the main reason for preferring CVCS is the ease of
use. While the distributed model has its advantages, that
comes at the cost of a more complex model. This could
explain why so many developers (almost 42%) think that
the centralized model is easier to use.

Also, many prefer CVCS simply because of habit. Having
used a system for a very long time, one becomes accustomed
with the command interface and paradigm. It is interesting
to note that CVCS are used not for their capabilities in
managing change, but for old habits and a faster learning
curve.

(Observation 7: The commit process of DVCS is per—\

ceived by developers to be more natural because of the
(_Presence of killer features.)

("Observation 8: The commit process of CVCS is per—\

ceived to be more natural because of familiarity and a
\faster learning curve, not their feature set.)

RQ 5: Does the VCS influence the frequency with
which developers commit?

Table 13 shows results we obtained from the survey. De-
velopers commit times a day regardless of the version control
they use. The data for each VCS type shows a slightly differ-
ent picture. Developers using DVCS commit once an hour
more often (19.66%) than developers using CVCS (4.10%).
Also, when using CVCS developers are more likely to com-
mit once a day (14.75%) than when using DVCS (7.19%).

Observation 9: Most developers have similar habits
independent of what VCS they use.

Table 13: How often do developers commit? (%)

DVCS CVCS Overall

Once a minute 3.38 0.82 2.51
Once an hour 19.66 4.10 14.37
Several times a day 65.96 66.80 66.25
Once a day 7.19 14.75 9.76
Several times a week 1.90 9.43 4.46
Once a week 1.48 3.32 2.09
Once a month 0.42 0.82 0.56

Interpretation: The fact that developers commit once
an hour more often when using DVCS than when using
CVCS suggests that they find it easier to commit. Results
from the previous research questions also lead to this con-
clusion. One interesting results is that 14.75% of developers
using CVCS commit once a day. This suggest a pattern of
committing once the work day is over.

Implications.

For developers:

Smaller commits make code reviews easier. Having a tool
that enables small, fine grained commits allows users to sep-
arate and document each change individually. One par-
ticipant mentioned that they split their commits because
“[changes] should be logically separated, to easily allow [the]
commit message to drive [the] review”. Consider reviewing a
new feature that has dbeen added. Instead of going through
thousands of changes, the reviewer can go through a natural
progression of well defined changes that slowly introduce the
new functionality, one discrete change at a time.

Also, smaller commits enables easier bisecting. This en-
ables techniques such as Delta Debugging [36] to be em-
ployed to find the root cause of bugs.

The concurrent programming model that is enabled by
the distributed VCS also brings new overhead in managing
and synchronizing with remote repositories. This makes Git
harder to learn and master. Thus, Git has a more steeper
learning curve.

Switching to the new systems and paradigms can help
developers structure and understand source code changes
better. Using a DVCS can offer developers more power when
it comes to choosing what to commit. DVCS tools like Git
allow the splitting of commits at line level, which helps when
changes with multiple intents are interleaved in a single file.
This kind of separation is not possible when using SVN. A
participant mentioned that he preferred Git because “it gives
useful tools for splitting or merging commits”.

By splitting changes into multiple and smaller commits
developers can cherry-pick changes. Cherry-picking refers
to the operation of selecting one commit from a branch and
applying it to another one. This way, developers can migrate
changes from one branch to the other without the need to
merge all changes. This has maximum benefits when com-
mits carry only one intent, as noted by one respondent who
splits his commits because of “the ability to easily cherry
pick or revert [commits]”.

Developers can remove mistakes and clean a project’s his-
tory by squashing their commits. This way, they can make
it very likely for a random commit to build and run or pass
the tests. Several respondents mentioned that they squash
to “To correct a previous commit” or “To make it easier for
people reading the log to understand what’s been changed”.
However, we see in observation 6 that it is not widely used.
This is because, sometimes, squashing leads to a loss of his-
torical data. This information might be useful in the future
when debugging or trying to understand where some changes
come from.

From observation 7 we learn that developers like DVCS
because of some of their killer features. One that was men-
tioned often was the ability to commit locally: “You get to
commit to a local repository and make your changes public
only when they are ready”. Learning how to use these fea-
tures takes time and effort. Using the same tools allows de-
velopers to keep their level of productivity in the short run.
However, the initial effort and loss of productivity caused by
learning a new version control system or paradigm may pay
off in the long run. One participant reported that he “tried
Git but its too similar yet just different enough to confuse
the hell out of me and slow us all down”. Another “[...] was
not happy about this [using Git] to start off with, and it took
me about two years to learn and love Git”. The advantages
of switching would be overall increased productivity, com-
pared to using a CVCS and better history and management
of software changes.

For researchers: Researchers mining software reposito-
ries and studying discrete changes should focus on DVCS
because they allow smaller atomic units of change. For
refactoring researchers, the smaller Git commits could better
contour individual changes. For researchers who tie differ-
ent software artifacts to code, such as bugs, Git commits
are much more surgical therefore they may have fewer false
mappings.

Researchers must be careful when collecting software repos-
itory related metrics. We have found that old repositories
that migrated through several VCS tools present a different
behavior than pure repositories. It may be the case that the
culture formed in the era of the first VCS shadows the sub-
sequent ones. There might other phenomena that influence
a repository’s structure. The type of issue tracking system,
the width and height of the forking tree or the branching
model could be some of them. By not paying attention to
different phenomena that affect repositories researchers risk
biasing or confounding their results.

There is a lot of noise when studying different types of
software changes introduced by commits. As seen in sec-
tion 2.2.2, there are many types of commits and individual
changes that do not constitute acts of development. Re-
searchers should clearly define what types of changes they
are studying and then take the appropriate actions to fil-
ter undesired commits. By not paying attention to different

types of commits, researchers risk biasing or confounding
their results.

DVCS allow users to change history before they make
it public or available to other. One participant stated he
squashed commits because he “committed more often locally
while working. That need not be seen in the final push, be-
cause it usually only adds noise”. This poses a threat when
mining repositories. The repository that is publicly avail-
able might not be the one that developers had when they
committed their changes. Squashing is just one of the ways
in which developers can change history. When conducting
research on such repositories, this threat must be taken into
account.

For tool builders: Although Git enables finer grained
changes, it still falls upon the developers’ shoulders to dis-
entangle these changes. This is a manual, tedious, and time
consuming task. VCS tools could keep track of different
change intents and then offer to commit them separately.
Herzig et al. [23] show a technique by which this can be
achieved. They devised a heuristic untangling algorithm
that splits tangled changes according to different source code
criteria (e.g., the distance between two changed AST nodes).

We envision a new generation of tools that can use the av-
erage value of commit size as a quality metric. When a devel-
oper has uncommitted code larger than a quality threshold,
the tool could suggest that it’s time to split changes and
commit.

Continuing on the idea of metrics, the field of software
design flaws can be applied to repositories as well. Re-
searchers have identified many software design flaws [27].
Marinescu [28] presents detection strategies for these flaws,
allowing tools to identify, report and offer suggestions for
improvement. By following this approach researchers can
devise design flaws for repositories and then metric based
detection strategies for these flaws would allow tools to mea-
sure the health of a repository.

Squashing is a process by which history can be altered
and / or completely lost. In order to prevent history loss,
VCS tools could support features such as hierarchical com-
mits: the ability to create a virtual commit that holds other

real commits. Thus, instead of loosing history through squash-

ing, developers could group commits into larger, composite
commits.

Our finding that developers from hybrid repositories use
the same habits after switching to DVCS as when they used
CVCS suggests the need for tools to help educate developers
on how to effectively change their habits.

Respondents identified features as an important factor for
using DVCS. Some mentioned that certain features were an
integral part of their workflow. Paying attention to these
workflows and creating the tools to support them will pay
off in the future. The payoff will increase productivity on
the developers side, and bring a larger user base on the tool
builder’s side, since developers will prefer a tool that best
fits their work style.

For team management: As Observation 2 states, hy-
brid repositories do not show the same trends as non hybrid
ones. Adopting new tools and new technology is only part
of the change and by no means enough or complete. Tools
that bring a new vision to how software is developed should
be followed by a shift in policy and project culture as well.
One cannot hope to improve the development process by
only improving the tools.

3.2 How does the team size affect VCS usage?

RQ 6: Does team size affect the choice of VCS?

Table 14: VCS choice by team size (%)

VeS 2-5 6-10 11-25 26-100 > 100
type

DVCS 82.22 72.07 62.30 65.22 60.00 70.97
CVCS 17.78 27.93 37.70 34.78 40.00 29.03

Table 14 shows that most teams use the distributed model,
regardless of the team size. However, the presence of the
centralized version control systems increases once the team
size increases.

Interpretation: Since 53% of the survey projects started
less than two years ago, it is likely that they were developed
during the rising popularity of the DVCS. As for the pop-
ularity of CVCS at larger teams, this can be interpreted
as inertia of larger teams to use new paradigms and tools.
However, once the team size crosses 100, the overhead of
merging changes pushes the team against their inertia.

Observation 10: Teams of all sizes predominantly pre-
fer DVCS

RQ 7: Are larger teams more likely to use Issue
Tracking Systems (ITS)?

We are answering this question using two data sources,
the survey and the analysis of the repositories.

Table 15 summarizes results collected from the survey.

Table 15: Issue Tracking System (ITS) usage based on team
size (%)

Team size Use an ITS Don’t use an ITS

1 63.04 36.96
2-5 97.88 2.12
6-10 92.23 777
10 - 25 95.24 4.76
26 - 100 97.01 2.99
Over 100 100.00 0.00
Overall 93.87 6.13

Overall, 93.87% of the participants reported using an ITS.
While the value is lower for one-person projects (63%), it is
over 90% in all other cases. More interestingly, all partic-
ipants working in projects with over 100 developers report
using an ITS.

The analysis of the repositories shows that 91.6% of the
projects contain commit messages that refer to issues in an
ITS. This correlates very closely with the data we have ob-
tained from the survey.

Observation 11: Most projects use an Issue Tracking
System.

RQ 8: Does team size influence commit squashing?

Another question that we ask is whether developers work-
ing in larger team squash more frequently than developers
working in smaller teams. Table 16 shows that this could be

Table 16: Squashing in relation to the team size (%)

Team size Squash Don’t squash Not Applicable

1 17.39 56.52 26.09
2-5 27.27 54.55 18.18
6-10 42.25 29.50 28.06
11-25 30.16 50.79 19.05
26-100 40.00 46.15 13.85
Over 100 57.14 34.29 8.57

the case. While teams of two to five developers squash only
27% of the time, teams with over 100 developers squash 57%
of the time. This is more than double the rate compared to
smaller teams. The reasons for this are twofold:

1. According to Observation 10, larger teams tend to use
CVCS more often.

2. Developers might do this in order to keep the upstream
history clean. Working in a larger team means that
if every developer were to push their full history, the
main repository could get too messy. So squashing
would be a way to mitigate an explosion in the number
of commits and branches.

[Observation 12: Large teams squash commits more]
often.

RQ 9: Does team size affect the size of commits?

We measured the correlation coefficient between team size
and commit size (measured in lines of code and number of
changed files). Table 17 shows that there is no linear relation
between team size and the size of commits. This holds for
both LOC and number of files. The fact that all but one
coefficient are negative could indicate a weak downhill trend
for commit size as team size increases.

Table 17: Correlation coefficients between team size and
commit size

Repository type LOC # of files
Git -0.11 -0.09
SVN -0.07 -0.16

Hybridgitstage -0.01 0.16
Hybridsvnstage -0.06 -0.35

Observation 13: There is no discernible relationship
between the team size and the size of commits other
than a weak tendency for commit size to decrease as
team size increases.

Interpretation: We initially expected to see that com-
mit size decreases as team size increases. Small teams can be
very agile and quickly grow the code base because everybody
knows what everybody else is doing. As team size increases
developers have less knowledge of the overall task distribu-
tion, and they must exercise more care when accepting and
integrating changes from many sources. Therefore, we as-
sumed that large teams should perform smaller commits to
better express changes.

The need for extra care about management of software
changes would require more clear commits that address co-
hesive and understandable changes. This is achieved by

splitting large commits into smaller commits that tackle only
one intent of change.

However, data shows that developers tend to use the same
intuition for splitting changes, regardless of team size. The
lack of a clear relationship between team size and commit
size suggests that teams do not use the size of commits as
an implicit way of simplifying understanding and manage-
ment of software changes. This hints that large teams must
use other mechanisms to control the complexity of software
changes.

Such mechanisms could be more complex branching and
merging models. Philips et al. [31] show that as projects
grow in size and activity, the complexity of the branching
model increases.

3.2.1 Implications

For researchers: Best quality data about issue tracking
systems is obtained from projects developed by large teams.

On the other hand, large teams tend to squash more often
which would results in bigger commits with more entangled
changes. Therefore, researchers may have to trade off some
traits over other ones when choosing to study repositories
from small or large teams.

For tool builders: Practically all large teams use Issue
Tracking Systems in order to track work items. However, in
the current state of practice developers track code and issues
by inserting issue references inside commit messages. This
is tedious and imprecise since developers have to manually
group changes by issue.

Therefore, tool builders should create tools that (i) keep
track of code written for a particular task, (ii) automati-
cally group code changes by issue, and (iii) incorporate issue
tracking inside Version Control Systems.

Tool builders should abstract away low level VCS concepts
such as branches or revisions in order to ease the learning
curve of Version Control Systems. For example, a developer
could tell the ITS that he wants to work on a particular
task. The ITS would then silently create a branch in the
background for that particular task. When the developer
tells the ITS that he wants to work on another feature, the
VCS would invisibly switch branches. When the developer
finishes a task, he could mark it as ready. This would silently
trigger a pull request to the gatekeeper. If the gatekeeper is
happy with the feature implementation, he tells the I'TS to
accept the feature. This would silently trigger a merge. In
this manner, developers work with high level development
process entities such as features rather than with low level
tool implementation details such as branches.

For team management: Very large teams that strug-
gle with aggregating changes should consider investing the
extra effort and switch to distributed tools (Git, Hg, etc)
and more involved branching models (specialized branches,
deeper forking tree, etc) [31].

3.3 How does the VCS type affect the devel-
opment process?

RQ 10: Does the type of VCS influence the presence
and the number of issue tracking labels (ITL)?
From the survey, we found that the majority of developers
(69%) commit only one issue at a time. The figure is slightly
smaller for CVCS than it is for DVCS. As survey results
show, the percentage of developers who commit more than

Table 18: Survey: How do developers commit if they work
on more than one issue (%)

1issue >1issue Not applicable
Distributed 68.71 8.59 22.7
Centralized 66.67 17.03 16.03
Overall 69.25 11.13 19.13

one issue at a time is 17% if they use CVCS and 9% if they
use DVCS. Data from analysed repositories show that 9.2
% of CVCS commits with ITL and 4.4% of DVCS commits
with ITL contain more than one issue tracking label.

Table 19: Repository Analysis: Distribution of commits
with one ITL and with many I'TLs

1 issue >1 issues
SVN 96.13 3.87
Git 98.04 1.96
Hybrid 97.04 2.96
Overall 97.37 2.63

Repository analysis data shows that 13.13% of commits to
CVCS, 43.42% of commits to DVCS and 33.12% of commits
to Hybrid repositories contain ITL. Overall percentage of
commits with ITL without regard to VCS type is 30.95%.

Observation 14: A small number of commits are la-
belled with ITL. Nevertheless, issue labels appear more
frequently in DVCS commit messages than in CVCS
commit messages.

The fact that we see a larger number of developers com-
mitting changes belonging to two or more issues per commit
for CVCS might be an indication of a higher difficulty in
selecting the changes to be committed. As mentioned be-
fore, in most DVCS (such as Git and Mercurial) the user
is able to commit at the line level. This difference to the
granularity of change selection could explain the results.

From analysing the repositories, we found that only 30.95%
of commits have an ITL in their commit message. This mir-
rors similar findings by Bird et al. [15]. The number is
higher for Git repositories at 43.42%. For hybrid reposito-
ries the number is at 33.12% compared to SVN at 13.13%.

These higher values in Git repositories, compared to SVN
repositories, show that developers assign issue references to
commits in Git more frequently than they do in SVN. This
supports the claim that developers find it easier to assign
issue labels in DVCS.

The low overall number of commits with ITL references
can be attributed to a relaxed committing policy. As we
mentioned in section 2, the repositories are gathered from
open source projects. It may be difficult to enforce a strict
commit policy for such repositories.

RQ 11: Is there a correlation between the number
of issue tracking labels (ITL) in the commit message
and the commit size?

Table 20 shows a strong correlation for SVN and Hybrid
repositories (0.68 and 0.81 correspondingly), and a weak
negative correlation for Git repositories. The overall corre-

10

lation was computed by taking into consideration all repos-
itories, regardless of their VCS type.

We can see that commits to SVN and Hybrid repositories
tend to be larger when more issues appear in the commit
message. For Git repositories this trend does not hold. Even
more, there is a slight tendency for commit size to decrease
when the number of issue tracking labels increases.

Table 20: Average LOC for issue references by VCS type

VCS .
number of issue references COrT.
type
1 2 3 4 5
SVN 33.04 35.69 54.56 31 80 0.68
Git 25.27 36.46 38.05 23 23 -0.38
Hybrid 27.67 31.66 37.74 83.2 62.14 0.81
All 28.59 34.72 39.91 57.78 60.08 0.97

Observation 15: In SVN and hybrid repositories com-
mit size is positively correlated with the number of ref-
erenced issues.

Observation 16: In Git repositories there is a weak
trend for commit size to decrease when the number of
referenced issues increases.

Interpretation: The strong correlations for SVN and hy-
brid repositories reinforce the idea that in these repositories
developers tend to group different change intents (issues)
together.

In Git, the trend seems to be opposite. This suggests that
Git commits do not get larger in size when they reference
several ITL. Rather, the commit could contain a common
piece of code that addresses all referenced issues.

Observations 3 and 5 show that developers using DVCS
split their commits more often and their commits contain
finer scoped changes. This hints to the idea that they might
carve out the common piece of code that contributes to solv-
ing both issues. By doing so, developers treat feature inter-
action more elegantly and also send out a cleaner message
of their intent.

RQ 12: How does the size of commits vary in time?

In order to investigate how commit size varies in time, we
averaged the commit size for monthly intervals. We then
calculated correlation coefficients for the monthly values of
average commit size.

Table 21 shows that commit size tends to become smaller
as projects get older. The average age of a typical repository
(time between first and last commit) is 55 months. For
SVN repositories it is 54 months, for Git repositories it is 30
months and for hybrid ones it is 94 months.

The average commit size usually decreases by approxi-
mately 15-20% during the lifetime of a repository. Overall
correlation between commit size and time of commit for all
types of repository is usually negligible (-0.11) and in most
cases appears to be negative.

Commit size tends to decrease more in Git then it does in
SVN. 71% of the analysed Git repositories show decreasing
trends in average commit size over time. For SVN only 60%
showed this trend, while for hybrid repositories this number
constitutes only 57%.

Table 21: Correlation between commit size and commit time

VCS average number of number of percent of
correla- positive negative negative
tion correla- correla- correla-

tions tions tions

SVN -0.06 21 31 60%

GIT -0.17 13 25 66%

Hybrid -0.11 12 16 57%

ALL -0.11 46 72 61%

Observation 17: Commit size tends to become smaller
as projects get older.

This decreasing trend can be explained by different types
of changes that happen during projects’ life. In the early
stages of development, commits tend to be larger because
developers are adding features from scratch. As the project
matures, development switches from adding new features
to performing corrective changes, like bug fixes. Corrective
changes are usually smaller in size.

3.3.1 Implications

For researchers: We found that average commit size
slightly decreases over time. This could be explained by
different development practices applied during different soft-

ware development stages (development, testing, support, etc).

Our recommendation for researchers is to further investigate
how different software development stages shape develop-
ment practices.

DVCS repositories have more ITL in their commits. This
fact suggests that DVCS repositories are better candidates
for research projects studying links between commits and
issue tracking systems.

For tool builders: As long as changes tend to become
smaller as project matures, it is easier and faster to rebuild
part of applications that were changed instead of rebuild-
ing whole application. Thus, we encourage tool builders to
provide more support for incremental builds (compiling and
rebuilding only parts of the application that were changed)
in IDEs and build management tools.

Changes are more granular in DVCSs and usually have
only one issue reference. Therefore, for DVCS we expect
implementation of such feature as cherry-picking by issues
(instead of cherry-picking by commits) to be more reliable
than for CVCS.

One of the reasons why developers do not put issue num-
bers into commits could be the extra work it involves. It
usually means switching from the commit interface and look-
ing into the ITS to see what the issue number is. This is a
distraction developers might want to avoid. Better integra-
tion between Version Control Systems and ITS can mitigate
this problem. It will allow developers to find the reference
they are looking for more easily. Also, tools suggesting the
issue to reference could be useful.

For team management: As long as commit size tends
to become smaller as projects get older, it is reasonable to
assume that at later stages in the project developers tend
to spend more time thinking about the source code instead
of adding more lines of code. Therefore, developers produc-
tivity should be measured not only by the amount of code
they produce, but also by the complexity and importance of

11

their changes.

If the company policy requires mandatory ITL in a com-
mit message, switch to DVCS might help developers with
assigning issue tracking labels more easily and consistently.

4. THREATS TO VALIDITY

Construct: Are we asking the right questions? We are
interested in assessing the state of the practice for version
control systems usage. Thus, we think that our research
questions have high potential to provide a unique insight
and value for different stakeholders: developers, researchers,
tool builders and team management.

Internal: Is there something inherent to how we collect
and analyze the VCS usage that could skew the accuracy of
our results?

One of the main threats is the practice of squashing com-
mits. As we have shown in RQ 3, squashing is a used practice
among software developers. For DVCS, roughly 36% of de-
velopers squash their commits. Because squashing rewrites
history, it is impossible to detect squashing activity. The
main effect is that commits gets larger, because squashing
combines two or more commits into a single commit. The
result is an increased commit size. Thus, the average com-
mit size for DVCS might be even smaller than the ones we
report. Observation 1 would still stand even in the case of
heavy squashing practices.

Another threat is that our results may be biased by the
development culture. As Rigby et al. [33] mention, commits
done to Open Source Software (OSS) tend to be smaller
than the ones done in proprietary software. However, both
our SVN and Git repositories are originating from the open-
source community, so the OSS culture would affect both in
similar ways.

Also, there is a chance that one developer might use dif-
ferent name aliases when committing in the same repository.
This could affect metrics that rely on team size for reposi-
tories analysis. Even though we have encountered few cases
of aliases usage while analyzing repository data, we also no-
ticed that it is a very rare and exceptional practice.

While designing our survey we aimed at keeping it short.
However, in doing so, some of the participants may have
misunderstood our questions. For example, when we asked
the question “Do you squash your commits?” we were aiming
to find if developers are using the squash command from Git
or similar tools. This command collapses together commits
after they were committed. However, respondents might
have interpreted the question as squashing multiple changes
before committing. This can explain why 18% of developers
using CVCS reported that they use squashing, even though
this is not possible in CVCS tools. While we did run a
pilot [18] of our survey, there is always the possibility that
we have miscommunicated our intent.

One other threat is the possibility of age bias in our repos-
itories. Since SVN has been available for a longer period of
time, SVN repositories might contain older, more mature
projects than Git repositories.

External: Are our results generalizable for the general
version control usage practice?

While we analyzed 132 repositories from the open source
community, we cannot guarantee that these results will be
the same for proprietary (closed source) software. However,
given the overall agreement between the survey, which was
filled in mostly by developers working with proprietary soft-

ware, and the data we acquired by analyzing the repositories,
we can assume that the general trends that we found will be
true for proprietary software as well.

In our corpus of open-source repositories, 80% of the pro-
jects were developed in Java, and the remaining 10% used
C/C++ and Javascript. While we have no reasons to believe
that programming language affects the culture of commit-
ting changes, in the future we pan to diversify our corpus.

The sources for our repositories are GITHUB and SOURCE-
FORrRGE. This means that we only looked at projects that
used Git or SVN. Thus, we did not study several other VCS
tools for the distributed or the centralized paradigm. How-
ever, as the data from our survey indicates, Git and SVN
are the predominant systems used today. They are the most
widely used in their class, thus we think they are represen-
tative.

Reliability: Can others replicate our results? The list of
repositories we used for our analysis is available online [11].
Also, the infrastructure we used for the analysis is available
open source as a GitHub repository [5].

S. RELATED WORK

To the best of our knowledge, our paper is the first study
to compare the impact of CVCS and DVCS on the practice
of committing changes.

Several researchers [12,13,19,22, 24, 25,29, 32, 32] studied
the practice of commits but only in the CVCS paradigm.
Purushothaman et al. [32] and German et al. [19] and Hin-
dle et al. [24] studied the properties of typical small commits
or typical large commits. Hattori et al. [22] study the size of
commits with the purpose of classifying changes. Arafat et
al. [13] studied the distribution of commit size. Hofmann et
al. [25] predict commit size based on commit history. Herzig
et al. [23] propose an algorithm for untangling changes in
CVCS. However, ours is the first study to compare the com-
mit size in CVCS and DVCS.

Related with our study about the impact and the presence
of issue tracking systems (ITS), several researchers [14, 16,
21, 30, 35] studied ITS. Tian et al. [35] and Bird et al. [16]
aim to link source code with ITS. Meneely et al. [30] makes
suggestions on improving issue tracking labeling in commit
messages. Bachmann et al. [14] mine bug tracking databases
and with the purpose of linking ITS with the software de-
velopment process. Hassan et al. [21] provide an overview of
repository and I'TS mining practices. However, none of these
studies compared CVCS and DVCS based on ITS practices.

Recently, researchers started mining DVCS repositories
for collaboration between developers [34], processes [17,20]
for mining DVCS repositories

6. CONCLUSIONS

DVCS have taken the software development world by storm.
On the other hand, the traditional, centralized VCS are still
used. We need to understand if this shift in paradigm is
evolutionary or revolutionary.

In this study we used two data sources: a survey of 820
participants and a corpus of 132 repositories. Our compar-
ison of CVCS and DVCS reveals that they have observable
effects on developers, teams, and processes. The most sur-
prising findings are that (i) the size of commits in DVCS
was 32% smaller than in CVCS, (ii) developers split com-
mits more often in DVCS, and (iii) DVCS commits are more

12

likely to have references to issue tracking labels.

We hope that our work inspires future research into the
impact that centralized and distributed VCS tools have on
software development.

7. ACKNOWLEDGEMENTS

We would like to thank Cosmin Radoi, Alexandru Gyori,
David Hartveld, Alex Groce, Michael Rosulek, Will Jerni-
gan, Faezah Bahmani, Iftakar Ahmed, Michael Hilton, Irwin
Kwan, Charles Hill, Amber Horvath and Paul McKenney for
feedback on earlier drafts of this paper.

Also, we would like to thank Joel Spolsky, Robert Martin
and Steve Berczuk for helping us promote the survey.

This research is partly funded through a grant from the
National Science Foundation, CCF-1213091.

8. REFERENCES

[1] Cvs. http://cvs.nongnu.org/. Accessed September
13, 2013.

[2] Git. http://git-scm.com/. Accessed September 13,

2013.

[3] gitective: Git repository analysis tool.

https://github.com/kevinsawicki/gitective.

Accessed September 6, 2013.

Github. http://www.github.com/. Accessed

September 13, 2013.

http: /www.github.com/caiusb/gitsvn.

Mercurial. Accessed September 13, 2013.

Sourceforge. http://wuw.sourceforge.net/. Accessed

September 13, 2013.

Sourceforge research data archive (srda): A repository

of floss research data. http://srda.cse.nd.edu/

mediawiki/index.php?title=Main_Page. Accessed

September 6, 2013.

Svn. http://subversion.tigris.org/. Accessed

September 13, 2013.

svn2git: Svn to git repository conversion tool.

https://github.com/nirvdrum/svn2git. Accessed

September 6, 2013.

Vcs usage study companion.

http://tiny.cc/VCStudy.

A. Alali, H. Kagdi, and J. I. Maletic. What’s a typical

commit? a characterization of open source software

repositories. In Program Comprehension, 2008. ICPC

2008. The 16th IEEE International Conference on,

pages 182-191. IEEE, 2008.

O. Arafat and D. Riehle. The commit size distribution

of open source software. In System Sciences, 2009.

HICSS’09. 42nd Hawaii International Conference on,

pages 1-8. IEEE, 2009.

A. Bachmann and A. Bernstein. Data retrieval,

processing and linking for software process data

analysis. University of Zurich, Technical Report, 2009.

C. Bird, A. Bachmann, E. Aune, J. Duffy,

A. Bernstein, V. Filkov, and P. Devanbu. Fair and

balanced?: bias in bug-fix datasets. In Proceedings of

the the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT

symposium on The foundations of software

engineering, pages 121-130. ACM, 2009.

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein.
Linkster: enabling efficient manual inspection and
annotation of mined data. In Proceedings of the
eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, pages
369-370. ACM, 2010.

[17] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton,

D. M. German, and P. Devanbu. The promises and
perils of mining git. In Mining Software Repositories,
2009. MSR’09. 6th IEEE International Working
Conference on, pages 1-10. IEEE, 2009.

[18] D. S. Cruzes and T. Dyba. Recommended steps for
thematic synthesis in software engineering. In
Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on, pages
275-284. IEEE, 2011.

[19] D. M. German. An empirical study of fine-grained
software modifications. Empirical Software
Engineering, 11(3):369-393, 2006.

[20] G. Gousios and D. Spinellis. Ghtorrent: Github’s data
from a firehose. In Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on, pages
12-21. IEEE, 2012.

[21] A. E. Hassan. The road ahead for mining software
repositories. In Frontiers of Software Maintenance,
2008. FoSM 2008., pages 48-57. IEEE, 2008.

[22] L. P. Hattori and M. Lanza. On the nature of commits.
In Automated Software Engineering- Workshops, 2008.
ASE Workshops 2008. 23rd IEEE/ACM International
Conference on, pages 63—71, 2008.

[23] K. Herzig and A. Zeller. The impact of tangled code
changes. In Proceedings of the Tenth International
Workshop on Mining Software Repositories, pages
121-130. IEEE Press, 2013.

[24] A. Hindle, D. M. German, and R. Holt. What do large
commits tell us?: a taxonomical study of large
commits. In Proceedings of the 2008 international
working conference on Mining software repositories,
pages 99-108. ACM, 2008.

[25] P. Hofmann and D. Riehle. Estimating commit sizes
efficiently. In Open Source Ecosystems: Diverse
Communities Interacting, pages 105—115. Springer,
2009.

[26] J. Jandk. Issue tracking systems. Brno, spring, 2009.

[27] M. Lanza and R. Marinescu. Object-oriented metrics
in practice: using software metrics to characterize,
evaluate, and improve the design of object-oriented
systems. Springer-Verlag New York Inc, 2006.

[28] R. Marinescu. Detection strategies: Metrics-based
rules for detecting design flaws. In Software
Maintenance, 2004. Proceedings. 20th IEEE
International Conference on, pages 350-359. IEEE,
2004.

[29] M. Marzban, Z. Khoshmanesh, and A. Sami. Cohesion
between size of commit and type of commit. In
Computer Science and Convergence, pages 231-239.
Springer, 2012.

[30] A. Meneely, M. Corcoran, and L. Williams. Improving
developer activity metrics with issue tracking
annotations. In Proceedings of the 2010 ICSE
Workshop on Emerging Trends in Software Metrics,
pages 75-80. ACM, 2010.

[31] S. Phillips, J. Sillito, and R. Walker. Branching and
merging: an investigation into current version control
practices. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE ’11, pages 9-15, New
York, NY, USA, 2011. ACM.

[32] R. Purushothaman and D. E. Perry. Toward
understanding the rhetoric of small source code
changes. Software Engineering, IEEE Transactions on,
31(6):511-526, 2005.

[33] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and
D. German. Contemporary peer review in action:
Lessons from open source development. Software,
IEEE, 29(6):56 —61, nov.-dec. 2012.

[34] P. C. Rigby, E. T. Barr, C. Bird, P. Devanbu, and
D. M. German. What effect does distributed version
control have on oss project organization?

[35] Y. Tian, J. Lawall, and D. Lo. Identifying linux bug
fixing patches. In Software Engineering (ICSE), 2012
84th International Conference on, pages 386—396.
IEEE, 2012.

[36] A. Zeller. Yesterday, my program worked. today, it
does not. why? In Software
Engineering-ESEC/FSE’99, pages 253-267. Springer,
1999.

