
Why Are Software Projects Moving From Centralized to
Decentralized Version Control Systems?

Brian de Alwis
Dept of Computer Science

University of Saskatchewan
Saskatoon, SK, Canada

brian.de.alwis@usask.ca

Jonathan Sillito
Dept of Computer Science

University of Calgary
Calgary, AB, Canada
sillito@ucalgary.ca

Abstract

Version control systems are essential for co-ordinating
work on a software project. A number of open- and closed-
source projects are proposing to move, or have already
moved, their source code repositories from a centralized
version control system (CVCS) to a decentralized version
control system (DVCS). In this paper we summarize the
differences between a CVCS and a DVCS, and describe
some of the rationales and perceived benefits offered by
projects to justify the transition.

1. Introduction

For many projects, their version control system (VCS),
along with other tools such as the issue tracking system,
is central to how development work is organized. The
central challenge in managing software development is
scaling the change process up to large numbers of possibly
geographically-distributed software developers without
sacrificing quality or introducing undue overhead. To a
large extent these tools determine how easily people can
contribute to a project, how new feature development is
co-ordinated, how often separate development lines are
merged, how code is reviewed and how the support of al-
ready released code is organized. Despite their importance,
the impact these tools can have on the development work
and the trade-offs involved is not yet well studied.

A new generation of VCS, called decentralized VCSs
(DVCS), have emerged that address some of the limitations
of current centralized VCSs (CVCS), such as CVS [1, 5] and
Subversion [4], to better support decentralized workflows.
Some of these new DVCSs, such as GIT,1 MERCURIAL,2

1git-scm.com; retrieved 2009/01/20
2www.selenic.com/mercurial/; retrieved 2009/01/20

BZR,3 and BITKEEPER,4 have become sufficiently mature
that many open- and closed-source projects are propos-
ing to move, or have already moved, their source code
repositories to a DVCS.

As part of a larger research project to explore practices
and tool support around version management, we have
begun a qualitative study to answer two research questions.
First, what do these projects see as the benefits of a
DVCS? Transitioning a source code repository to a new
VCS requires significant effort,5 and so we suppose that
there must be compelling reasons for switching. Second,
what changes have these projects made to their develop-
ment processes in making the switch? To answer these
questions, we examined publicly-available documents and
mailing list discussions for four open-source projects (Perl,
OpenOffice, NetBSD, Python) that have moved or are
contemplating moving to a DVCS to identify rationales and
perceived benefits offered by projects to justify such a tran-
sition. In this paper we present some initial observations
from our ongoing analysis.

This paper is structured as follows. In Section 2, we
provide some background, summarizing the uses of VCSs
and a brief explanation of what makes a DVCS different
from a CVCS. In Section 3 we summarize the anticipated
benefits, and possible issues reported by several open-
source projects that have made or are considering making
a transition. We finally conclude in Section 4.

2. Background

In this section we provide a brief description of both
centralized and decentralized VCSs, and highlight the
open-source projects examined. Note that as the various

3bazaar-vcs.org; retrieved 2009/01/20
4bitkeeper.com; retrieved 2009/01/20
5For example, the Perl Foundation reported that their transition to GIT

took approximately 21 months, and involved significant manual work [9].

git-scm.com
www.selenic.com/mercurial/
bazaar-vcs.org
bitkeeper.com


DVCS implementations are still undergoing rapid evolution,
a detailed feature-by-feature comparison of the current
tools would be quickly obsolete. Rather we compare the
conceptual differences between CVCSs and DVCSs, and
instead refer interested readers to Raymond’s draft survey
of VCSs for detailed comparisons [8].

2.1. Centralized VCSs

The most commonly-used version control system (VCS)
used today are centralized VCSs, as typified by CVS [1, 5]
and Subversion [4]. These VCSs are centralized as they have
a single canonical source repository. All developers work
against this repository through a checkout taken from the
repository, essentially a snapshot at some moment in time.

Write-access to a group’s repository is generally re-
stricted to a set of known developers, or committers. In
open-source situations, committers generally earn and
maintain write-access through the submission of high-
quality patches to demonstrate programming prowess and
understanding of the project development conventions.
Teams generally establish coding conventions and practices
to control how changes are made to the repository to
preserve the quality of the source code.

Modern VCSs support parallel evolution of a repository’s
contents through the use of branches. One wide-spread
practice is to maintain a mainline branch to represent the
current development efforts, and creating new branches of
the mainline to represent released versions of the product
and track bug fixes to the released product [11]. Branches
are also often used for undertaking a substantial change of
some long duration, with the goal of being merged back
into the mainline.

2.2. Decentralized VCSs

DVCSs relax the requirement of CVCSs to have a central,
master repository. With a DVCS, each checkout is itself a
first-class repository in its own right, a copy containing the
complete commit history. Write-access is no longer an issue
as each developer is a first-class committer to their personal
repository, regardless of whether they are an accepted com-
mitter to the project.

DVCSs maintain sufficient information to support easy
branching and easy, repeated merging of branches The
ease of branching has encouraged a practice called feature
branches, where every prospective change is done within a
branch and then merged into the mainline, rather than being
directly developed against the mainline.

Because each DVCS repository is a full-fledged repos-
itory, there are no enforced master branches. Instead
a canonical branch is identified by convention within a
development group or community, and some projects may

have several principal branches. For example, the Linux
kernel’s authoritative branch is Linus Torvalds’ branch,6

but there are also several other important branches, such
as Andrew Morton’s -mm branch, that are used for staging
and evaluating proposed changes to the kernel. Once the
patches in these intermediate branches have been stabilized
and proved their value, Torvalds will select the result to
merge to his master tree.

Since the DVCS repositories contain all the revision
history, they lend themselves very well to distributed and
disconnected development. Indeed this was the original
motivation for the first recorded DVCS, Reliable Software’s
Code Co-op, introduced in 1997 [7]. Reliable Software
needed to cater to teams developing across distributed loca-
tions, where the latency to access a central repository was
prohibitive [7]. Using a DVCS naturally leads to the source
code repository being replicated to a number of places, a
side-benefit that reduces the risk of some disaster scenarios.

2.3. The Projects

We are in the process of analyzing public documents
and mailing-lists from four open source projects.

Perl: The Perl Foundation recently completed switching
their code repository to GIT. The Perl source code was
previously maintained using the Perforce VCS, hosted by a
company named ActiveState, who also provided free Per-
force licenses to Perl committers. We collected data from
several wiki pages dedicated to planning the transition and
several archived discussion threads. Despite this, it is not
yet clear to us how the decision to switch to GIT was made.

OpenOffice: OpenOffice is a large open-source project
co-ordinated by Sun Microsystems. The OpenOffice source
code was previously maintained using CVS, and the project
had been actively planning to move to a new VCS to address
accumulated problems arising from their use of CVS. The
project was prematurely forced to switch to Subversion as
“the [OpenOffice CVS repository] is crumbling under the
heavy weight of 8 years worth of OOo coding,” a side-effect
of the 3000 branches resulting from their development
process’ heavy use of branching. Branching and tagging
is a heavyweight and non-atomic operation in CVS that
modifies every file in the repository to insert a reference
to the branch or tag. The project plans to re-evaluate their
choice of VCS in 2009. We collected data from several
archived discussion threads, and wiki pages describing the
current development processes, empirical assessments of
candidate VCSs, and transition planning.

Python: The Python Software Foundation is considering
switching their code repository from Subversion to a DVCS.
The data we collected about the Python team’s decision

6git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git


making process came from one extensive document, a
Python Enhancement Request (PEP), and several archived
discussion threads. The PEP is central to the foundation’s
decision making process and revolves around an explo-
ration of how effectively various tools support a series of
project relevant “usage scenarios.” The usage scenarios and
tools to consider were discussed on the development team’s
mailing list. No decision has yet been made and the PEP is
currently under active development [2].

NetBSD: The NetBSD Project has maintained its source
code in a CVS repository since its inception in 1993. Some
NetBSD developers have suggested that as an increasing
number of other open-source projects are switching from
CVS, the project should also consider switching to using a
new VCS. A switch would also provide an opportunity to
address frustrations arising from use of CVS, particularly
the difficulties in managing branches in CVS. Ongoing
discussions the potential transition are being carried out on
a public mailing list. The project is very concerned that any
switch must preserve the full history of the project.

3. Findings

3.1. Anticipated Benefits

To provide first-class access to all developers: A key
reason given for many projects for moving to a DVCS was to
improve support for non-committers. Contributors without
commit access can not get benefit from the CVCS for their
work, and often resort to creating parallel repositories to
manage larger changes. In the Python discussion this issue
was highlighted as the most important limitation of CVCSs
as “anyone writing a patch for Python or creating a custom
version, [does] not have direct tool support for revisions.”
The Perl Foundation placed particular emphasis on using
an open-source DVCS to ensure that the tools were available
to all members of the community. The OpenOffice devel-
opment process, based on using CVS branches, requires the
developers to have write access to the repository.

In a DVCS, each contributor has their own repository and
so they can “incrementally save their progress to make their
development lives easier.” Torvalds (the original author of
GIT) argues that this feature of distributed systems removes
much of the politics projects face around granting (and
revoking) commit access to the central repository [10].
This support appears to be particularly important when
contributors are making significant changes or when there
is a review process that requires contributors to make
repeated revisions to their submissions.

To support atomic changes: The NetBSD and OpenOf-
fice projects most pressing requirement of a new VCS was
to have repository-wide atomic commits. Both groups

have encountered repository corruption from using CVS
branches, which may go undetected.

Simple automatic merging: DVCSs maintain sufficient in-
formation to support automatic and repeated merges, as of-
ten occurs with long-lived branches. The Python project
saw this as an important feature of a DVCS for two reasons.
First, improved support for merges encourages developers
to keep their branches up-to-date with the mainline develop-
ment, and reduces the risk of their branch becoming stale or
out-of-date. Second, improved support for merging reduces
the burden on committers, also mentioned as important by
the Perl project. Exchanging plain patches risks suffering
from version mismatches should the patch originator’s ver-
sion of the repository differ from that of the patch exam-
iners. Patches generated by a DVCS include sufficient de-
pendency information to identify whether the patch depends
on other unsubmitted revisions, thus reducing the work re-
quired for diagnosing badly submitted patches. This depen-
dency information is also useful to identify common ances-
tors, which leads to improved merging of patches.

Improved support for experimental changes: The Perl
and OpenOffice projects sought to enhance the ability for
non-committers to work on experimental changes before
submitting changes for incorporation. With cheap branches,
developers can make local commits to snapshot a work-
in-progress, which is often desirable before embarking on
some experimental work with an uncertain outcome.

Support disconnected operation: The Python project
in particular sought to support disconnected operation, a
feature that is useful for developers while travelling by air.
The CVCS tools require that the developer be able to con-
nect to the server to access or query against the repository.
This disconnected nature provides for separating the act
of committing a change, such as to make a snapshot, from
publishing a change for others to view [3].

3.2. Transition and Challenges

During the the Perl team’s discussion, the work required
for transitioning to their new VCS was discussed. For
example, one contributor joked that if they did not revise
their development tutorial documentation with the new
workflows then “all committing is going to stop.” The work
involved in transitioning is significant and so we suppose
that the reasons for switching must be compelling.

One of the challenges in making this transition is the
possibility of changing the teams’ development processes.
Some teams were more open to this than others. When eval-
uating different VCSs, the OpenOffice team, for example,
considered easy integration into their current (extensive)
development processes and tools as very desirable. On the
other hand the Python team specifically documented what



they expected to be their new development approach once
the transition has been made. We are interested in seeing
how these development processes will change with the new
possibilities opened by a new VCS.

The NetBSD and Perl developers were concerned that
metadata from their previous VCS be somehow transferred
to a new VCS. This metadata, such as file version numbers,
are embedded and referenced from commits and other
documents. In switching to GIT, Perl prefixed each commit
with a special header containing the corresponding Per-
force version number of the form “p4raw-id:NNNN”.
Additional effort was dedicated to managing authorship
attributions as this is used for calculating developer metrics
by sites such as ohloh.net.

Several NetBSD developers expressed a deep pref-
erence for human-meaningful commit identifiers (e.g.,
monotonically increasing version numbers), a property
that the SHA1-based commit identifiers used by some
DVCSs cannot satisfy. These identifiers are often used
in e-mails sent to notify interested parties of particular
bug fixes. This problem may be partially addressable
through the support for tagging a particular revision with
a symbolic name. Tags may not always be suitable in a
DVCS, however. In a DVCS, a tag only becomes visible to
other repositories as those repositories are updated from
the tagged repository; thus for a tag to serve as a stable,
global reference to a revision, the tag must be accepted by
the canonical repositories. Indiscriminate tagging may also
lead to pollution of the available tag space, although it is
not clear to what degree this is considered a problem.

That each DVCS repository is a complete copy has some
ramifications. The settlement of a set of lawsuits from 1992
between the UNIX System Laboratories vs. The Regents of
the University of California and Berkeley Software Design
Inc. required that certain source code files be expunged
from the NetBSD repository [6]. Complying with such a
settlement would be impossible with a DVCS: once a change
has been published to a publicly available repository, the
change may have been duplicated to a number of locations.

Finally, DVCSs involve a significant change to most
developers’ models of managing repositories. The various
projects have a significant challenge in selling the rationale
of a transition to their developers, and creating tutorials and
transition documents to address the learning curve.

4. Summary and Future Work

DVCSs have captured a large mindshare, and many
projects are at least debating the merits of transitioning their
code repositories to a DVCS. Our study has provided some
insights into the limitations of CVCSs and the consequences
those limitations have for development teams. Although
DVCSs address some of the problems of CVCSs, particularly

the difficulty in repeated merges of branches, our findings
suggest that DVCS may also introduce new issues.

So far we have only explored what team members
believe the impact of transitioning to a DVCS will be.
These beliefs have lead us to form several hypotheses (e.g.,
non-committers will make more significant contributions
in a project with a DVCS) that we would like to explore
further. Our next step in this research will be to conduct a
survey of developers that have experience with both DVCSs
and CVCSs. We are interested in asking questions such as:
Has changing to a DVCS truly reduced barriers to partic-
ipation? How have their development processes changed
as a result of the DVCS? What new complications have
been introduced by using a DVCS? What recommendations
would they make to other projects considering switching
to a DVCS? Under what circumstances would they advise
against making such a change? Are there differences in
DVCS use between open- and closed-source development?

References

[1] B. Berliner. CVS II: Parallelizing software development.
In Proc. USENIX Winter 1990 Technical Conference, pages
341–352, Berkeley, USA, 1990. USENIX Association.

[2] B. Cannon, B. Warsaw, S. J. Turnbull, and A. Vassalotti.
Migrating from Subversion to a distributed VCS.
PEP 0374, Python Foundation, draft. URL http://www.
python.org/dev/peps/pep-0374/. Retrieved 2009/01/16.

[3] I. C. Clatworthy. Distributed version control: Why and how.
In Proc. Open Source Development Conf. (OSDC), 2007.

[4] B. Collins-Sussman,
B. W. Fitzpatrick, and C. M. Pilato. Version Control with
Subversion (for Subversion 1.5). O’Reilly, 2 edition, 2008.

[5] D. Grune. Concurrent
Versions Systems: A method for independent cooperation.
Technical Report IR 113, Vrije Universiteit, 1986.

[6] P. Jones. The 1994 USL–Regents of UCal settlement
agreement. Groklaw, Nov. 2004. URL http://www.
groklaw.net/articlebasic.php?story=20041126130302760.

[7] B. Milewski. Distributed
source control system. In Proc. ICSE Worksh. on System
Configuration Management (SCM-7), pages 98–107, 1997.

[8] E. S. Raymond. Understanding
version-control systems. Retrieved 2009/01/17 from
http://www.catb.org/∼esr/writings/version-control/, draft.

[9] The Perl Foundation.
Perl 5 now uses git for version control, Dec. 2008.
URL http://use.perl.org/articles/08/12/22/0830205.shtml.

[10] L. Torvalds. Linus torvalds
on git. Transcript from Google Tech Talk, May 2007.
URL http://git.or.cz/gitwiki/LinusTalk200705Transcript.

[11] L. Wingerd and C. Seiwald. High-level
SCM best practices. In System Configuration Management,
volume 1439 of LNCS, pages 57–66. Springer, 1998.

ohloh.net
http://www.python.org/dev/peps/pep-0374/
http://www.python.org/dev/peps/pep-0374/
http://www.groklaw.net/articlebasic.php?story=20041126130302760
http://www.groklaw.net/articlebasic.php?story=20041126130302760
http://www.catb.org/~esr/writings/version-control/
http://use.perl.org/articles/08/12/22/0830205.shtml
http://git.or.cz/gitwiki/LinusTalk200705Transcript

	1 Introduction
	2 Background
	2.1 Centralized VCSs
	2.2 Decentralized VCSs
	2.3 The Projects

	3 Findings
	3.1 Anticipated Benefits
	3.2 Transition and Challenges

	4 Summary and Future Work

