
If Your Version Control System Could Talk ...

Thomas Ball Jung-Min Kim Adam A. Porter Harvey P. Siy

Bell Laboratories Dept. of Computer Sciences Bell Laboratories

Lucent Technologies University of Maryland Lucent Technologies

tball@research.bell-labs.com aporter@cs.umd.edu hpsiy@research.bell-labs.com

Abstract

Version control systems (VCSs) are used to store and

reconstruct past versions of program source code. As a

by-product they also capture a great deal of contextual

information about each change. We will illustrate some

ways to use this information to better understand a

program's development history.

1 Introduction

There are many software-based metrics that one may

use to assess the state of a software system. For ex-

ample, the McCabe[7] and Halstead[4] software com-

plexity metrics measure aspects of the structure of a

static snapshot of source code to estimate its complex-

ity. By measuring how these metrics change over time,

the hope is that one can identify \decaying" compo-

nents of a software system that, if restructured, may

reduce the development e�ort needed to maintain and

extend the system.

Such analyses depend on the ability to recreate snap-

shots of the software at di�erent points in time. A ver-

sion control system (VCS) tracks each change a devel-

oper makes to the system and, as a result, can recreate

a consistent snapshot at any point in time. Examples

of VCSs include RCS[10] and SCCS[9]. While this basic

functionality of VCSs is essential for version control and

measuring the evolution of metrics over time, there is

much data in a VCS that is ignored when simply using

it to extract snapshots of source code.

In this paper, we will examine some of the rich struc-

ture in version control data and show how analysis of

version control data can illuminate the software devel-

opment process in new ways. A VCS tags each change

with a substantial amount of additional contextual in-

formation. Knowing what code was changed, when it

was changed, who made the change, and so on, can

yield valuable insights into what actually went on in

the course of code development, sometimes better than

Requirements

Software
Process

Implementation
 Technology

Developers

Version
Control
History

Figure 1: Version control history captures interactions

between various aspects of software development.

developers' memories. VCS data is amenable to com-

pletely automated analysis, just as a snapshot of source

code is amenable to metric analysis. Most software

development organizations employ some form of VCS.

Thus the methods we will outline here have wide appli-

cability to many software projects.

Our framework is to use the data in a VCS (referred

to as the version control history), in addition to the

source code itself, to explore the relationships between

various aspects of software development. For example,

the requirements of the software, the implementation

technology used, development process followed, and the

organization of the developers have some e�ect on how

the software evolved. Figure 1 illustrates the idea.

Each of these characteristics is a particular view of

software development, with its own constraints and im-

pact. Our thesis is that interactions between these

views can impact the e�cient production of software

and that the version history data captured in a VCS

provides a good starting point for exploring many of

these relationships. In our particular example, we will

examine some interesting relationships between the re-

quirements of an optimizing compiler, the implementa-

tion technology of C++, and the desire to have devel-

opers work in parallel. We will examine these relation-

ships using visualizations automatically generated from

the VCS data.

2 Version Control Data

We present a very simpli�ed description of some ba-

sic data collected by a VCS. Most VCSs operate over

a set of �les containing the text lines of source code.

An atomic change to the program text is captured by

recording the lines that were deleted and those that

were added in order to make the change. This informa-

tion is usually computed by a �le di�erencing algorithm

(such as Unix di�), which compares the previous ver-

sion of a �le with the current version. Each change has

associated with it the �le that was changed, the time

the change was recorded by the VCS, and the name and

login id of the programmer who made it, at a minimum.

In order to make a change to a software system, a

developer may have to modify many program entities

in many �les. Most VCSs have the ability to track a

group of related changes via amodi�cation record (MR),

which captures the fact that these changes were made

for a speci�c purpose and are thus semantically related.

An MR may have an English abstract associated with

it that the developer provides, describing the purpose

of the change. An MR also may have other data, such

as it's opening time, closing time, and other status in-

formation (approved, rejected).

An MR is a set of atomic changes and every atomic

change has some MR associated with it. Thus, every

line of text in any source code snapshot has associated

with it: time of change, developer name and login, MR

and related data. By analyzing the source code to iden-

tify functions, classes or other program entities, we can

then associate the VCS data with these entities as well

as with source lines.

3 The Project Under Study

We present a brief overview of the project under study.

More details may be found in Ladd and Ramming[6].

The 5ESS
TM

is Lucent Technologies' agship local/toll

switching system, containing an estimated 10 million

lines of code in product and support tools. At the

heart of the 5ESS software is a distributed relational

database with information about hardware connections,

software con�guration, and customers. For the switch

to function properly, this data must conform to cer-

tain integrity constraints. Some of these are logical

constraints; for example, \call waiting and call forward-

ing/busy should never be active on the same line." Other

constraints exist to document data design choices (re-

dundancy, functional dependencies, distribution rules)

that support e�cient 5ESS operation and call process-

ing.

PRL5[5] is a declarative SQL-like language, created

to specify these data integrity constraints. PRL5 spec-

i�cations are translated automatically into data audits

and transaction guards in C, which is then compiled

on multiple platforms. Due to the constantly changing

integrity constraints to be provided to di�erent commu-

nication service providers worldwide, compilation speed

was crucial. The generated C code also had to be opti-

mized to make as few disk accesses as possible.

A compiler for PRL5 called P5CC (PRL5 to C Com-

piler) was developed in C++. The compiler follows

traditional compiler structure and includes lexing, pars-

ing, semantic and type checking, optimization, and code

generation phases. The lexing and parsing phases pro-

duce an abstract syntax tree (AST) over which the other

phases operate.

For this compiler project, we have chosen to study

the following views:

� Requirements. Build an optimizing compiler for a

declarative SQL-like language

� Developers. Team of 6 developers who have to

coordinate with each other

� Implementation technology. The C++ language

� Software process. Many, but not all components

built in parallel.

4 Insights Into Compiler Development

The P5CC compiler is written in C++, using approxi-

mately 275 classes. Multiple inheritance is not used, so

the class inheritance relationship is tree structured. Ap-

proximately, 120 of these classes are small stub classes

generated via macros. We partitioned the classes into 5

basic groups (excluding miscellaneous support classes):

� Top: the top level classes. That is, the classes not

directly related to any language entity, but used

primarily as base classes;

� SymTab: symbol table classes representing a PRL5

language construct or type;

� AST: abstract syntax tree (AST) classes;

� Optim: classes that apply optimization transfor-

mations to the abstract syntax tree;

� Quads: code generation classes;

Each modi�cation to the P5CC compiler is recorded

in a VCS known as ECMS (the Extended Change Man-

agement System). Our analysis is based on 750 MR's.

For each class, we computed howmanyMRs modi�ed it.

Figure 2 shows the inheritance hierarchy of the P5CC

classes. The area of a node is proportional to the log

of the number of MRs that modi�ed the corresponding

class. A node is only shown if there was an MR touching

TreeNode

PrimaryExprNode

StatementNode

Quad

TreeFunc

DescriptorRep

Indirect

Figure 2: The class inheritance hierarchy of the P5CC com-

piler, where the size of a node is proportional to the log of the

number of MRs that touch the class. The shape of the node

represents its class group as follow: Top { diamonds, SymTab {

un�lled square, AST { �lled circle, Optim { un�lled circle, Quads

{ �lled squares.

it; this is the reason that the number of Quads classes

is so small{most of the classes are generated by macros

and are never modi�ed by hand.

It is clear from this �gure that most of the change

activity was related to the AST. Keep in mind that the

AST code does much more than simply maintain a tree

data structure. Member functions of the AST classes

are responsible for many compilation phases, such as

type checking, code generation, etc. In an imperative

language such as C, one might encapsulate type check-

ing in a module that takes an AST as input and tra-

verses it to perform the type checking. However, in an

object-oriented language such as C++, the function of

type checking is more naturally expressed as a method

of the AST classes.

In the P5CC compiler, the member functions of the

AST classes are divided among �les according to their

functionality. For example, all the member functions

for type checking can be found in a particular set of

�les, while member functions for code generation can

be found in another �le set. The left panel in Fig-

ure 3 makes this clear, using the SeeSoft code visualiza-

tion [1]. Each rectangle represents a �le from the com-

piler. Only �les containing code from the AST classes

are shown. Each class is given a level of gray from

the gray scale spectrum on the left, and each line of

a �le is colored to show which class it belongs to. As

is clear from the picture, each �le contains code from

many classes. Note, for example, the �les containing a

gray scale spectrum. These �les group members func-

tions from many di�erent classes in the AST that con-

stitute a particular phase of the compiler (such as type

checking or code generation).

There is a very good reason to divide classes into �les

by functionality. Centralizing too much functionality in

one set of classes can impede concurrent development.

By splitting member functions of the same class across

di�erent �les, di�erent programmers can work on di�er-

ent aspects of the compiler. The right panel in Figure 3

shows which programmers worked on which �les. This

data is derived from ECMS: every MR is owned by ex-

actly one programmer, so the code for that MR can be

traced to an individual. It is clear that certain program-

mers had ownership of particular aspects of the compiler

and AST classes, although most �les have accumulated

modi�cations by several programmers.

This partitioning illustrates the complex relation-

ships among the views we are examining. For example,

compiler literature[8] suggests that when prototyping

a new programming language, it is useful to implement

compiler phases as member functions of each AST class.

To add new language constructs, one simply adds new

classes to the set of AST classes. On the other hand, for

a mature language, it is useful to implement compiler

phases as modules that transform or operate over an

abstract data type representing an AST. This makes it

easier to add new optimizing passes to the compiler.

Since PRL5 was changing during the compiler's de-

velopment, an OO approach would appear to make sense

(the inheritance hierarchy acts as a built-in switch state-

ment and virtual functions help avoid writing identical

functions in all classes within a inheritance hierarchy).

However, the developers' work assignments mimic'd the

second approach. That is, each developer implemented

a speci�c compiler phase for all AST classes. In the end,

the compiler phases were incorporated into the mem-

ber functions of the AST classes, but, during develop-

ment, member functions with similar functionality were

grouped together into separate �les.

One goal of our research is to better understand the

e�ect that development decisions, such as these, have on

the evolution of software systems. In the next section

we discuss some preliminary approaches for analyzing

the relationship between development approaches and

a system's change history.

umberChanges
MR

Date
NestingLevel

Subject
Inspect

Class ReturnNode

values 93/93/93

lines 29482/29482/29482

files 45/45/45

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

umberChanges
MR

Date
NestingLevel

Subject Subject 4
Inspect

Class

values 6/6/6

lines 29482/29482/29482

files 45/45/45

Figure 3: Two SeeSoft views of the �les comprising the abstract syntax tree classes of the P5CC compiler. In the view to the left,

each class maps to a level of gray in the gray scale spectrum on the left and each line of a �le is colored with the class it belongs to. The

view on the right shows the same set of �les, where each line of a �le is colored by programmer (there are six programmers).

TreeNode

Quad

DescriptorRep

Figure 4: Cluster analysis of classes based on MR relationships.

Each node representing a class is colored by the group of the class

(same color and shape as in Figure 2). Nodes closer together are

joined by links of higher probability. The clustering analysis has

de�ned the �ve class groups.

5 Cluster Analysis of Classes by Modi�ca-

tion

One way to help understand the e�ects of a develop-

ment decision on system evolution is to examine the

system's change history. In this example we describe

initial explorations of how the class structure of this

system encapsulated changes to it.

For each class C, let Cmr be the number of MRs that

touch class C. If C and D are two unique classes, let

CDmr be the number of MRs that touch both classes

C and D. CDmr de�nes a relationship between the two

classes, which translates to a link in a graph where the

nodes are classes. A probability measure can also be

associated with the link:

CDmr=
p
CmrDmr

If the classes C and D are always modi�ed together, the

link probability will be 1, since Cmr = Dmr = CDmr
in this case. However, if C and D are rarely modi�ed

together in comparison to the total number of modi-

�cations to C or D, then the link probability will be

low.

We generated this data for the current version of

the P5CC compiler and ran it through a graph cluster-

ing algorithm which places nodes connected by links of

higher weight closer together. We used the probabil-

ity measure described above for the link weighting. For

details on this algorithm, see [3].

Figure 4 shows the resulting graph. Each node rep-

resents a class. The shape of a node denotes the group

that the class belongs to, as in Figure 2. Note that

the clustering algorithm has identi�ed clusters of se-

mantically related classes. In fact, it identi�ed the �ve

basic partitions described earlier! The cluster of round

�lled nodes on the lower left are the AST classes, while

the cluster of white square nodes on the right are the

SymTab classes. The cluster on the upper left is the

Optim group. The group of �lled square nodes above

the symbol table cluster represents the Quads group.

In this example, all links between classes of di�erent

groups had probabilities less than 40the same group had

higher probability.

This �gure shows that changes to the AST classes

often involved other changes to the Optim and SymTab

groups. However, as expected, there are very few links

between the Optim and SymTab groups.

Based on this initial analysis, we are currently ex-

amining the types of changes that are made between

classes within the same hierarchy. If they are mainly

changes involving the same member function across dif-

ferent classes, then it argues that the class partitioning

was not e�ective. In addition, we are examining similar

views for �le partitioning.

6 Summary

The thesis of this research is that version control sys-

tems contain signi�cant amounts of data that could be

exploited in the study of system evolution. We have il-

lustrated some ways to use this information. In partic-

ular we have derived VCS-related metrics, like connec-

tion strength based on the probability that two classes

are modi�ed together. We used this metric to assess

the e�ect of implementation decisions on the evolution

of the resulting software.

Clearly, this work is in its initial stages. We are

currently exploring several extensions to it.

� Time-series analysis. Most metric work is based

on a single snapshot of a system. Little work has

explored metrics to capture how structure changes

over long periods of time.

� Improved analysis models. This work implicitly

treats aspects of the change history as dependent

variables and aspects of development history as in-

dependent variables. Our initial work has looked

at only a few variables. For example, we have

looked at number of changes per class as a de-

pendent variable. In our ongoing work we will re-

�ne this variable, looking at the type of changes,

change e�ort, and whether the change was actu-

ally approved or had to be reworked. We will also

examine complex changes, i.e., those that involve

multiple developers, multiple classes, and multiple

functions.

� Examining development processes. We can also

examine issues related to the development process.

For example, are defects discovered during inspec-

tion di�erent in nature than those discovered dur-

ing testing? We can also look at the e�ect of devel-

opment decisions on criteria such as development

interval.

� Improved visualization techniques. The visualiza-

tions we show in this paper are obviously static.

Since we are inherently interested in system behav-

ior over time we expect that visualizations must

improve to capture this. Some possibilities include

Trellis displays[2] and animation.

� Static program analysis. The change history pro-

vides information about how di�erent parts of a

system are related. This information may be use-

ful for automatic restructuring.

References

[1] T. Ball and S. G. Eick. Software visualization in the large. IEEE

Computer, 29(4):33{43, April 1996.

[2] William S. Cleveland. Visualizing Data. Hobart Press, 1993.

[3] Stephen G. Eick and Graham J. Wills. Navigating large networks

with hierarchies. In Visualization '93 Conference Proceedings,

pages 204{210, San Jose, California, Oct. 1993.

[4] Maurice H. Halstead. Elements of Software Science. Elsevier {

North Holland, 1979.

[5] David A. Ladd and J. Christopher Ramming. Software research

and switch software. In International Conference on Commu-

nications Technology, Beijing, China, 1992.

[6] David A. Ladd and J. Christopher Ramming. Two application

languages in software production. In USENIX Symposium on

Very-High-Level Languages, Oct. 1994.

[7] Thomas J. McCabe. A complexity measure. IEEE Trans. on

Software Engineering, 2(4):308{320, Dec. 1976.

[8] Martin Odersky and Philip Wadler. Pizza into Java: Translat-

ing theory into practice. In Conference Record of 1997 ACM

Symposium on Principles of Programming Languages, pages

146{159, Paris, France, Jan. 1997.

[9] Marc J. Rochkind. The Source Code Control System. IEEE

Trans. on Software Engineering, SE-1(4):364{370, December

1975.

[10] Walter Tichy. Design, implementation and evaluation of a revi-

sion control system. In Proceedings of the 6th International

Conference on Software Engineering, pages 58{67, Tokyo,

Japan, Sept. 1982.

