
Applying Neural Networks to Character Recognition

Eric W. Brown
feneric@ccs.neu.edu
Copyright © 1992

Abstract

This paper explores the application of neural networks to the problem of identifying machine
printed characters in an automated manner. In particular, a backpropagation net is trained on an
eighty-four character font and tested on two other fonts. Its results are compared against results
obtained on the same data by a more traditional approach.

Keywords

Text recognition, Optical character recognition (OCR), Neural networks, backpropagation,
Connectionist nets, Feature extraction, Feature point, Off-line character recognition, machine
printed character recognition.

The need for some form of automated or semi-automated optical character recognition (OCR) has
been recognized for decades. Today there are numerous algorithms that perform this task, each
with its own strengths and weaknesses. This paper explores the differences between two
different OCR algorithms: a feature extraction method using traditional artificial intelligence
techniques for classification, and a neural network approach with virtually no preprocessing.

The basic idea of the experiment was essentially to run the identical data through the two
different algorithms and note the differences in each run along the way. The feature extraction

method was actually performed by the author at an earlier date1 while the neural net method was
implemented specifically for this paper utilizing the exact same character data and following a
similar procedure. Thus comparisons between the two methods were not influenced by unfair
differences in the data or unbalanced procedures that would favor one method over the other.

The data used consists of three eighty-four character fonts. The character resolution for all three
fonts is 8X8. The sets contain both upper and lower case letters as well as numbers and a handful
of miscellaneous punctuation marks. The sets are all used as actual display characters on an old

CBM C128 computer2 so they represent real-world data; they were not designed for this
experiment. In particular, the sets include a few examples of allowable alternate forms of symbols
(i.e. the zero with the slash versus the zero without the slash, the open four versus the closed
four, etc.) and no real attempt was made to statistically deal with this fact. Thus the overall
results are somewhat lower than they should be; a fair treatment would be to eliminate these
alternate forms as they would probably have to be implemented as special cases in a commercial
OCR program.

It is not the purpose of this paper to cover the original feature extraction algorithm in great detail.
A general summary of its design and operation is included here for convenience. The idea of the
feature point extraction algorithm is to identify characters based on features that are somewhat
similar to the features humans use to identify characters. The rationale is that when the algorithm
does misclassify a character (as every algorithm does) it should pick a character that a human
would consider to be a reasonable guess, because it is easier for humans to correct mistakes that
are typical of humans (i.e. it is easier to get "Save" out of "5ave" than "Mave"). To implement
this notion, the algorithm would scan through the entire 8X8 character matrix and analyze each
non-empty pixel. The immediate neighborhood of the pixel would be examined and pixels that
seemed to be worthy of notice were marked as such (see Figure 1, "Character Display"). The
original C128 ROM character set was processed in this manner and used as a gold standard;
characters could then be identified by comparison against the different entries in this
"dictionary". Comparisons were executed by computing the sum of the minimum distances
between the feature points of the character to be identified and the feature points of the
dictionary character. The guess was the dictionary character with the smallest sum within a
certain threshold. Note that this algorithm made no attempt to consider different types of feature
points, and although it penalized missing or extra feature points, it did not do so highly. It was
never optimized to provide the best possible results; it was merely an attempt to test the general
concept of the algorithm. Since the neural net was also not optimized, the overall comparison
between the two methods of OCR is still on even ground. The results of the feature point

extraction algorithm are outlined in Table 2, "Character Recognition Results -- Feature Extraction
Method".

Figure 1: Character Display

(D)isplay char, (R)un new set, or (Q)uit: d

Character number: 68
Character name: K

 XX *X
 ** **

 **X

 ** **
 XX *X

The neural net approach utilized three separate steps. The first step simply translated the binary
character data into a friendlier form. The second step took the output of the first and trained a
backpropagation network on it, outputting all the resulting weights and general network
information. The third step took the output of the second and created a network. It then ran a full
character set through the network and output identification information for all the characters the
set contained. The reasons for implementing theh neural net OCR as three programs were all
practical. By keeping the first step separate, the preprocessing code from the feature extraction
OCR program could be used, eliminating this one area of difference between the two algorithms.
The second step was separated just because learning was such a slow process. Several machines
could thus be dedicated to nothing but learning while a different machine was used to analyze the
results.

The network consisted of sixty-four inputs, ninety-six hidden nodes, and seven outputs. It was
essentially a flat feedforward network that was fully connected without self-inputs or biases (see
Figure 2, "Network Topography"). It was made to train on the same character set that the feature
extraction algorithm had used as its dictionary (see Figure 3, "The CBM Character Set &
Extracted Feature Points"). Learning was achieved through backpropagation without

momentum3, 4.

Each of the sixty-four inputs was wired to one of the pixels in the 8X8 character. An input was
taken to be zero if the pixel was empty, or a one otherwise. The seven outputs were simply used
to make a seven bit numerical label (unique labels for eighty-four characters require seven bits)
that coincided with the ordering of the character set. The labels ran from zero to eighty-three.

Figure 2: Network Topography

Training the net was troublesome and fraught with difficulties. Small changes in the step size
used in the update of the weights resulted in large changes in the behavior of learning overall. In
particular, most step sizes resulted in a complete failure to converge within a reasonable number
of sweeps through the data set (the learning program was set to consider the number 100,000 to
be reasonable). There seemed to be no was a priori to determine a good step size (or the number
of hidden nodes to use) form the outset. The learning program required several hundred computer
hours on a dedicated Sun SPARCstation to run, making it practically impossible to really try and
obtain optimal results. It is almost guaranteed that ninety-six is not the optimal number of hidden
nodes; this number was produced by multiplying the number of inputs by 1.5. Quite possibly

the use of momentum3 or Newton's method5 could partially alleviate the learning problems.
Currently this learning problem stands as an undesirable property that the feature extraction
method lacks; it makes it extremely difficult to optimize the neural net classifier within any sort
of time constraints.

With all this difficulty stated, the network was made to learn properly by using a step size of
1.05. Not only did it manage to converge with this particular step size, it converged fairly quickly
and only required one-hundred thirty-six sweeps through the data set.

Once a properly trained net had been obtained, it produced reasonable results for an unoptimized

algorithm (see Table 1, "Character Recognition Results -- Neural Net Method"). It also produced
these decidedly faster than the feature extraction method did. This difference was partially due to
the fact that while the feature extraction method had to carry around its dictionary and do a
character by character comparison for each symbol to be identified at runtime, the neural net
method learned everything it needed to know about the gold standard character set during its
training phase and could get results for a symbol with a single feedforward pass.

Table 1: Character Recognition Results -- Neural Net Method

Total Combined Results

Results for the 'Ult' Character Set

Results for the 'Alt' Character Set

41% 69Total Wrong Or Unknown

38%64Total Wrong Guesses

3%5Total Unknowns

16%27Total Correct (without counting identical characters)

54%99Total Correct

61%51Total Wrong Or Unknown

57%48Total Wrong Guesses

4%3Total Unknowns

14%12Total Correct (without counting identical characters)

39%33Total Correct

21%18Total Wrong Or Unknown

19%16Total Wrong Guesses

2%2Total Unknowns

18%15Total Correct (without counting identical characters)

79%66Total Correct

Its accuracy is significantly worse than that of the feature extraction method (see Table 2,
"Character Recognition Results -- Feature Extraction Method"), and it did not do as good of a job
at making typical human guesses. Still, its speed improvement makes it an algorithm that should
not be immediately dismissed.

Table 2: Character Recognition Results -- Feature Extraction Method

Total Combined Results

Results for the 'Ult' Character Set

Results for the 'Alt' Character Set

28%47Total Wrong Or Unknown

18%30Total Wrong Guesses

10%17Total Unknowns

29%49Total Correct (without counting identical characters)

72%121Total Correct

42%35Total Wrong Or Unknown

27%23Total Wrong Guesses

14%12Total Unknowns

33%28Total Correct (without counting identical characters)

58%49Total Correct

14%12Total Wrong Or Unknown

8%7Total Wrong Guesses

6%5Total Unknowns

25%21Total Correct (without counting identical characters)

86%72Total Correct

Perhaps the best method would be something that combined both approaches. Although the
current network was trained on the full character data, it would be relatively easy to train a set on
just the extracted feature data. The modification has been made, but after several thousand
minutes of computer time on numerous different machines no such net has yet been made to
settle. It is expected that such a combined approach would maintain the desirable feature of the
feature extraction method of generally making human-like mistakes while keeping the neural net
method's identification speed. Careful adjustments to both the network's topography and the
feature extraction process could radically improve the accuracy.

Overall the results of the experiment were promising but far from good in their present form. If
one method had to be chosen over the other, the results here would indicate that the feature
extraction method using standard AI techniques for classification would be the better choice. The
possiblility of a hybrid algorithm makes other options possible, and quite possibly the most
potential lies down this path.

References

1. E. W. Brown, "Character Recognition by Feature Point Extraction", Northeastern University
internal paper, 1992

2. The Commodore 128 Computer, Commodore Business Machines, 1984

3. Stephen I. Gallant, Chapters 11 & 12; Neural Network Learning and Expert Systems, 1993,
The MIT Press, Cambridge, MA

4. D. S. Levine, pp. 58-62; Introduction to Neural & Cognitive Modeling, 1991, Lawrence
Erlbaum Associates, Publishers; Hillsdale, NJ

5. Patrick K. Simpson, pp. 112-123, Artificial Neural Systems, 1990, Pergamon Press, New
York, NY

Figure 3: The CBM Character Set & Extracted Feature Points

Figure 4: The 'Ult' Character Set & Extracted Feature Points

Figure 5: The 'Alt' Character Set & Extracted Feature Points

