
Fault Diagnosis of Three Phase Induction Motor 

Using Neural Network Techniques

Abstract-- Fault diagnosis of induction motor is gaining 

importance in industry because of the need to increase 

reliability and to decrease possible loss of production due to 

machine breakdown. Due to environmental stress and many 

others reasons different faults occur in induction motor. 

Many researchers proposed different techniques for fault 

detection and diagnosis. However, many techniques 

available presently require a good deal of expertise to apply 

them successfully. Simpler approaches are needed which 

allow relatively unskilled operators to make reliable 

decisions without a diagnosis specialist to examine data and 

diagnose problems. In this paper simple, reliable and 

economical Neural Network (NN) based fault classifier is 

proposed, in which stator current is used as input signal 

from motor. Thirteen statistical parameters are extracted 

from the stator current and PCA is used to select proper 

input. Data is generated from the experimentation on 

specially designed 2 Hp, 4 pole 50 Hz. three phase induction 

motor. For classification, NNs like MLP, SVM and 

statistical classifiers based on CART and Discriminant 

Analysis are verified. Robustness of classifier to noise is also 

verified on unseen data by introducing controlled Gaussian 

and Uniform noise in input and output.

Index Terms-- Induction motor, Fault diagnosis, MLP, 

SVM, CART, Discriminant Analysis, PCA

I.  INTRODUCTION

NDUCTION motors play an important role as prime movers 

in manufacturing, process industry and transportation due to 

their reliability and simplicity in construction. In spite of their 

robustness and reliability, they do occasionally fail, and 

unpredicted downtime is obviously costly [1], [2] hence they

required constant attention. The faults of induction motors may 

not only cause the interruption of product operation but also 

increase costs, decrease product quality and affect the safety of 

operators. If the lifetime of induction machines was extended, 

and efficiency of manufacturing lines was improved, it would 

lead to smaller production expenses and lower prices for the 

end user. In order to keep machines in good condition, some 

techniques i.e., fault monitoring, fault detection, and fault 

diagnosis have become increasingly essential [5]. The most 

common faults of induction motors are bearing failures, stator 

phase winding failures, broken rotor bar or cracked rotor end-

rings and air-gap irregularities [6]. Different approaches for 

motors incipient fault detection and diagnosis have been 

successfully proposed [7]-[14]. Most of these techniques 

involve vibration analysis and stator current analysis because 

they are easy to measure and highly reliable. With the 

development of AI systems, expert systems based on NN, fuzzy 

logic, fuzzy NN, have been employed in order to assist the fault 

detection task for correctly interpreting the fault data [15]-[19]. 

The application of artificial intelligence methods, like neural 

networks are rather easy to develop and to perform [20]-[23]. 

Neural networks can be applied when the information about the 

process is obtained by measurements, which later can be used 

in the training procedures of neural nets [24]. The main 

advantage of such solution is to obtain on-line information 

about the kind and the “size” of a fault without developing very 

complicated mathematical models. Neural detectors can be 

designed using the data acquired from simulation or 

experimental tests [25]-[36]. 

The objective of this research is to develop an alternative 

neural network based incipient fault-detection scheme that 

overcome the limitations of the present schemes in the sense 

that,  they are costly, applicable for large motors, furthermore 

many design parameters are requested and especially 

concerning to long time operating machines, these parameters 

cannot be available easily. As compared to existing schemes, 

proposed scheme is simple, accurate, reliable and economical. 

This research work is based on real time data and so proposed 

neural network based classifier demonstrates the actual 

feasibility in a real industrial situation. Four different neural 

network structures are presented in this paper with all kinds of 

performances and about 100% classification accuracy is 

achieved.

II.  FAULT CLASSIFICATION USING NN

The proposed fault detection and diagnosis scheme consists of 

four procedures as shown in Fig. 1:

• Data collection & acquisition 

• Feature extraction 

• Feature selection 

• Fault classification

A.  Data Collection and Data acquisition 

In this paper the most common faults namely stator winding 

interturn short (I), rotor dynamic eccentricity (E) and both of 

them (B) are considered.  
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Fig. 1. General Block Diagram of proposed classifier 

For experimentation and data generation the specially 

designed 2 HP, three phase, 4 pole, 415V, 50 Hz induction 

motor is selected. Experimental set up is as shown in Fig. 2 

 
Fig. 2. Experimental Setup 

The load of the motor was changed by adjusting the spring 

balance and belt. Three AC current probes were used to 

measure the stator current signals for testing the fault diagnosis 

system. The maximum frequency of used signal was 5 kHz and 

the number of sampled data was 2500.  From the time 

waveforms of stator currents as shown in Fig.3, no conspicuous 

difference exists among the different conditions. 

 
Fig. 3. Experimental Waveforms of Stator current 

B.  Feature Extraction  

There is a need to come up with a feature extraction method 

to classify faults. In order to classify the different faults, the 

statistical parameters are used.  To be precise, ‘sample’ 

statistics will be calculated for current data. Overall thirteen 

parameters are calculated as input feature space. Minimum set 

of statistics to be examined includes the root mean square 

(RMS) of the zero mean signal (which is the standard 

deviation), the maximum, and minimum values the skewness 

coefficient and kurtosis coefficient. Pearson’s coefficient of 

skewness, 2g  defined by:  

                                        (1)  

Where x  denotes mean, x  denotes median and xS  denotes 
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m2 denotes spread about the center, m3 refers to skewness about 

the center; m4 denotes how much data is massed at the center. 

Second, third and fourth moments are used to define the sample 

coefficient of skewness, 
3

g  and the sample coefficient of 

kurtosis, 
4

g as follows.  
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The sample covariance between dimensions j and k is 

defined as;  
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The ordinary correlation coefficient for dimensions j and k, rjk 

is defined as;  
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C.  Feature Selection  

Before a feature set is fed into a classifier, most superior 

features providing dominant fault-related information should be 

selected from the feature set, and irrelevant or redundant 

features must be discarded to improve the classifier 
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performance and avoid the curse of dimensionality. Here 

Principal Component Analysis (PCA) technique is used to 

select the most superior features from the original feature set. It 

is a technique of multivariate statistical analysis that can 

linearly or nonlinearly transform an original set of variables 

into a significantly smaller set of variables. It can be viewed as 

a classical method of multivariate statistical analysis for 

dimensionality reduction. Due to the fact that a small set of 

uncorrelated or independent variables is much easier to 

understand and use in further analysis than a larger set of 

correlated or dependent variables, this technique has been 

widely applied to virtually every substantive area including 

cluster analysis, visualization of high dimensionality data, 

regression, data compression and pattern recognition. In this 

paper, component analysis is used to extract the optimal feature 

and to reduce the dimension of original features. Principal 

Components (PCs) are computed by Pearson rule. The Fig.4 is 

related to a mathematical object, the eigenvalues, which reflect 

the quality of the projection from the 13-dimensional to a lower 

number of dimensions. 

Fig. 4. Principal Component, Eigenvalues and percent variability 

D.  Fault Classifier 

(1)  MLP NN Based Classifier 

Simple Multilayer Perceptron (MLP) Neural Network is 

proposed as a fault classifier. Four Processing Elements are 

used in output layer for four conditions of motor namely 

Healthy, Inter turn fault, Eccentricity and Both faults. Number 

of input Processing Elements (PEs) must be equal to that of 

number of inputs. To decide the number of inputs, number of 

PCs are given and on each input set, average minimum MSE 

and average classification accuracy are checked. From results 

as shown in Fig. 5, five PCAs are selected as inputs; hence 

number of PEs in input layer is five. 

Fig. 5(a). Variation of Average MSE on training and CV with number 

of PCs as input 

Fig. 5(b). Variation of Average Classification Accuracy on Testing on Test 

data, Training data and CV data with number of PCs as input

The randomized data is fed to the neural network and is 

retrained five times with different random weight initialization 

so as to remove biasing and to ensure true learning and 

generalization for different hidden layers. This also removes 

any affinity or dependence of choice of initial connection 

weights on the performance of NN. It is observed that MLP 

with a single hidden layer gives better performance. The 

number of Processing Elements (PEs) in the hidden layer is 

varied. The network is trained and minimum MSE is obtained 

when 5 PEs are used in hidden layer as indicated in Fig. 6. 

X-No. of PEs in Hidden layer                 Y-No. of Epochs 

Fig. 6. Variation of Average MSE with number of PEs in Hidden Layer 

Various Transfer functions, namely, Tanh, Sigmoid, Liner-

tanh, Linear-sigmoid, Softmax, Bias axon, Linear axon and 

learning rules, namely, Momentum, Conjugate-Gradient, Quick 

Propagation, Delta Bar Delta, and Step are verified for training, 

cross validation and testing. Minimum MSE and average 

classification accuracy on training and CV data set are 

compared. It is found that Tanh transfer function and 

momentum learning rule give the optimum results. Stepsize and 

momentum of hidden layer and output layer is also varied for 

optimum average minimum MSE and average classification 

accuracy.  Time elapsed per epoch per exemplar for each 

learning rule and transfer functions are calculated. For 

experimentation, desktop computer with Pentium-R-4, 3.0 

GHz, 1GB RAM configuration is used. With above 

experimentations finally, the MLP NN classifier is designed 

with following specifications, 

Number of Inputs: 5;  Number of Hidden Layers:  01; 

Number of PEs in Hidden Layer: 04; 

Hidden Layer:  

Transfer function: tanh   Learning Rule: Momentum 

Step size: 0.6      Momentum: 0.5 

Output Layer:  

Transfer function: tanh   Learning Rule: Momentum 

Step size: 0.1      Momentum: 0.5 

Number of connection weights: 44 
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Training time required per epoch per exemplar: 0.0063 ms 

Different datasets are formed using variable split ratios and 

leave-N-out cross validation technique. Leave-N-Out training is 

a technique that allows one to evaluate how well the model 

generalizes. It also is very useful for small data sets, since it 

allows one to use the entire data set for training and testing. The 

algorithm trains the network multiple times, each time omitting 

a different subset of the data and using that subset for testing. 

Proposed NN is trained and tested five times on various 

datasets and later validated carefully so as to ensure that its 

performance does not depend on specific data partitioning 

scheme. The performance of the NN should be consistently 

optimal over all the datasets with respect to MSE and 

classification accuracy. To check the learning ability and 

classification accuracy, the total data is divided in four groups. 

First two groups (50% data) are tagged as Training data and 

third and forth group (each 25%) is tagged for Cross Validation 

and Testing (1234:1,2-TR, 3-CV, 4-Test). Similar 18 

combinations are prepared and network is trained and tested for 

each group. Results are shown in Fig. 7 and Fig. 8.

Fig. 7. Variation of Average Minimum MSE on Testing on Test data, CV 

data and Training data with number of rows shifted (n)

Fig. 8. Variation of Average Minimum MSE on Training and CV with 

various groups

(2)  SVM  NN Based Classifier 

The support vector machine (SVM) is a new kind of 

classifier that is motivated by two concepts. First, transforming 

data into a high-dimensional space can transform complex 

problems (with complex decision surfaces) into simpler 

problems that can use linear discriminant functions. Second, 

SVMs are motivated by the concept of training and using only 

those inputs that are near the decision surface since they 

provide the most information about the classification. It is a 

kind of learning machine based on statistical learning theory. 

The basic idea of applying SVM to pattern classification can be 

stated as follows: first map the input vectors into one features 

space, possible in higher space, either linearly or nonlinearly, 

which is relevant with the kernel function. Then, within the 

feature space from the first step, seek an optimized linear 

division, that is, construct a hyperplane which separates two 

classes. It can be extended to multi-class. SVMs training always 

seek a global optimized solution and avoid over fitting, so it has 

ability to deal with a large number of feature.  

Generalized Algorithm for the classifier: 

For N dimensional space data ( 1 ... )=ix i N  this algorithm 

can be easily extended to network by substituting the inner 

product of patterns in the input space by the kernel function, 

leading to the following quadratic optimization problem: 

2
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where G(x, ²) represents a Gaussian function, N is the number 

of samples, i are a set of multipliers (one for each sample), 
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and choose a common starting multiplier iα , learning rate η ,

and a small threshold. Then, while M > t, we choose a pattern 

ix and calculate an update (1 ( ))∆ = −i ig xα η  and perform 

the update 

If ( ) 0+ ∆ >i inα α

( 1) ( ) ( )+ = + ∆i i in n nα α α

( 1) ( )+ = + ∆i ib n b n d α                  (12) 

And if ( ) 0+ ∆ ≤i inα α

( 1) ( )+ =i in nα α

( 1) ( )+ =b n b n                      (13) 

After adaptation only some of the iα are different from zero 

(called the support vectors). They correspond to the samples 

that are closest to the boundary between classes. This algorithm 

can be considered the "on-line" version of the quadratic 

optimization approach utilized for SVMs, and it can find the 

same solutions as Vapnik's original algorithm for SVMs. It is 

easy to implement the kernel Adatron algorithm since 

( )ig x can be computed locally to each multiplier, provided that 

the desired response is available in the input file. In fact, the 

expression for ( )ig x resembles the multiplication of an error 

with an activation, so it can be included in the framework of 

neural network learning. The Adatron algorithm essentially 

prunes the RBF network so that its output for testing is given 

by, 

2( ) sgn( ( ,2 ) )
∈
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N
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And cost function in error criterion is  
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Number of PCs as input and step size is selected by checking 

the average minimum MSE and average classification accuracy; 

results are shown in Fig 9.  

X-No. of PCs as input                 Y-No. of Epochs 

Fig. 9(a). Variation of Average MSE on training and CV with number 

of PCs as input 

Fig. 9(b). Variation of Average Classification Accuracy on Testing on Test 

data, Training data and CV data with number of PCs as input

Finaly the SVM based classifier is designed with following 

specifications, 

Number of Inputs: 5;   Step Size: 0.7 

Time required per epoch per exemplar: 0.693 ms 

Number of connection weights: 264 

Designed classifier is trained and tested using the similar 

datasets and results are as shown in Fig. 10 and Fig. 11 

Fig. 10. Variation of Average Minimum MSE on Testing on Test data,CV 

data and Training data with number of rows shifted (n)

Fig. 11. Variation of Average Minimum MSE on Training and CV with 

various groups 

(3)  Classification and Regression Trees (CART) 

CART induces strictly binary trees through a process of 

binary recursively partitioning of feature space of a data set. 

The trees produced by CART also consist of internal nodes 

(with two children) and terminal nodes or leaf nodes (without 

children). Each internal node is associated with a decision 

function to indicate which node to visit next, whilst each 

terminal node shows the output of a given input vector that 

leads the visit to this node. CART extensively builds the tree by 

using the data set of already classified instances which is called 

training set, and then prunes the tree back based on a minimum 

cost-complexity principle. The first phase is called tree 

building, and the other is tree pruning. Classification tree is 

developed using XLSTAT-2009. Various methods, measures 

and maximum tree depth are checked and results are shown in 

Fig. 12. It is observed that optimum average classification 

accuracy on testing on test data and CV data is found to be 

90.91 and 80 percent, respectively.  

1: Chaid-Pearson    2: Chaid-Likelihood  

3: ExChaid-Pearson   4: ExChaid-Likelihood 

5: C&RT-Gini     6: C&RT-Twoing  7: Quest 

Fig. 12(a). Variation of Average Classification Accuracy on Testing on 

Test data and CV data with Method and Measure of Trees

Fig. 12(b). Variation of Average Classification Accuracy on Testing on 

Test data and CV data with Depth of Trees

(4)  Discriminant Analysis 

Discriminant analysis is a technique for classifying a set of 

observations into predefined classes. The purpose is to 

determine the class of an observation based on a set of 

variables known as predictors or input variables. The model is 

built based on a set of observations for which the classes are 

known. This set of observations is sometimes referred to as the 

training set. Based on the training set , the technique constructs 

a set of linear functions of the predictors, known as 

discriminant functions, such that  L = b1x1 + b2x2 + … + bnxn + 

c , where the b's are discriminant coefficients, the x's are the 

input variables or predictors and c is a constant. These 

discriminant functions are used to predict the class of a new 

observation with unknown class. For a k class problem k

discriminant functions are constructed. Given a new 

observation, all the k discriminant functions are evaluated and 

the observation is assigned to class i if the i
th

 discriminant 

function has the highest value. Discriminant analysis is done 

using XLSTAT-2009. Various models are checked and results 
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are shown in Fig. 13. It is observed that optimum average 

classification accuracy on testing on test data and CV data is 

found to be 91.77 and 80 percent, respectively.  

1: Stepwise-forward     2: Stepwise Backward  

3: Forward        4: Backward  

Fig. 13. Variation of Average Classification Accuracy on Testing on Test 

data and CV data with Model of DA

III.  NOISE SUSTAINABILITY OF CLASSIFIER

Since the proposed classifier is to be used in real time, where 

measurement noise is anticipated, it is necessary to check the 

robustness of classifier to noise. To check the robustness, 

Uniform and Gaussian noise with mean value zero and variance 

varies from 1 to 20 % is introduced in input and output and 

average classification accuracy on testing data i.e. unseen data 

is checked. It is seen that SVM based classifier is the most 

robust classifier in the sense that it can sustain both uniform 

and Gaussian noise with 14% and 20% variance in input and 

output, respectively. Results are as shown in Table I  

G - Gaussian Noise 

U - Uniform Noise 

TABLE I 

EFFECT OF NOISE ON AVERAGE CLASSIFICATION ACCURACY 

WHEN CLASSIFIER TESTED ON TESTING DATA

NN-

Model MLP SVM 

Noise in  Input Output Input Output 

%

Varianc

e

Average Classification Accuracy on Testing on Testing Data i.e. 

unseen Data 

Type of 

Noise G U G U G U G U 

1 100 100 100 100 100 100 100 100 

2 100 100 100 100 100 100 100 100 

3 100 100 100 100 100 100 66 100 

4 100 100 100 100 66.7 100 100 100 

5 100 100 100 100 66.7 66.7 100 100 

6 100 100 100 100 100 100 100 100 

7 100 100 100 100 100 100 100 100 

8 100 100 100 100 100 100 100 100 

9 100 100 100 100 100 100 100 100 

10 100 100 100 100 100 66.7 100 100 

11 75 100 100 100 100 100 100 100 

12 100 100 100 100 100 100 100 100 

13 100 100 100 100 66.7 66.7 100 100 

14 100 100 100 100 100 100 100 100 

15 100 75 100 100 66.7 66.7 100 100 

16 75 100 50 50 66.7 66.7 100 100 

17 75 75 75 75 66.7 66.7 100 66.7 

18 100 100 75 50 33.3 33.3 100 100 

19 100 100 75 75 100 100 100 66.7 

20 100 62 75 50 33.3 33.3 100 100

IV.  RESULTS AND DISCUSSION

In this paper, the authors evaluated the performance of the 

developed ANN based classifiers for detection of four fault 

conditions of three phase induction motor and examined the 

results. MLP NN, and SVM are optimally designed and after

completion of the training, the learned network is tested to 

detect different types of faults. For MLP NN various learning 

rules and transfer functions are investigated for different 

number of hidden layers and processing elements in hidden 

layer. It is observed that Momentum learning rule and Tanh 

transfer function gives the optimal results in hidden and output 

layer. Similarly step size is varied in SVM and 0.7 step size is 

found to be optimum. From the analysis, it is seen that  support 

vector machine ( SVM) based classifier works as an elegant 

classifier for fault diagnosis of three phase induction motor, in 

the sense that, average MSE on testing and cross validation 

samples is consistently observed as reasonably low such as 

0.0591 and 0.0619, respectively. In addition, average 

classification accuracy on testing as well as cross validation 

instances is obtained as 99.61% and 98.72%, respectively 

indicating a reasonable classification. This might suggest that 

some of the features selected randomly contain too much fault 

unrelated information and there is a high degree of overlap 

between the values of these features of these four classes. These 

features would confuse the classifier and therefore, might cause 

significant performance degradation. These confirm our idea 

that the proposed feature selection method based on the PCA 

can select the most superior features from the original feature 

set, and therefore, is a powerful feature selection method. Also 

proposed classifier is enough robust to the noise, in the sense 

that classifier gives satisfactory results for Uniform and 

Gaussian noise with 14% variance in input and with 20% 

variance in output. Comparative results are shown in Fig.14 and 

Table II. 

Fig. 14. Comparative analysis of various classifier w.r.t. Average 

classification accuracy. 
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TABLE II 

COMPARATIVE RESULTS OF NN BASED CLASSIFIERS 

T - Time required per epoch per exemplar in ms    W- Number of connection weights

N
-N

M
o

d
el

Performance 

Testing on Test Data Testing on CV Data 

T W Max. 

Observed 

Min.

Observed 
Average SD 

Max. 

 Observed 

Min.

Observed 
Average SD 

M
L

P
  

MSE 0.207157 0.001773 0.046353 0.0655 0.126737 0.001135 0.02961 0.0413 

0.0063
44

Percent 

Correctness 
100 83.33333 98.25 4.8423 100 83.33333 96.2222 6.0484 

Percent 

Correctness 
100 75 97.25 5.8690 100 83.33333 96.55 6.3382 

S
V

M
 MSE 0.09926 0.05086 0.05915 0.011 0.094134 0.05454 0.06192 0.007 

0.693 264 Percent 

Correctness 
100 88.88 99.611 1.944 100 88.88 98.722 3.514 
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