ПОЛУКОКСОВАНИЕ ВЫСОКОСЕРНИСТЫХ СПЕКАЮЩИХСЯ УГЛЕЙ В ПРИСУТСТВИИ ДОБАВОК

Л. Ф. Бутузова, В.А. Сафин. Донецкий национальный технический университет. Институт физико-органической химии и углехимии.

Раціональне використання вугілля з високим вмістом сірки — дуже актуальна проблема для Донецького регіону. Результати, наведені у роботі, показують вплив сірки на процеси напівкоксування, а також можливості інтенсифікації процесів спікання та знесірчування шляхом використання хімічної обробки вугілля.

Полукоксование является одним из наиболее перспективных методов термической переработки твердого топлива. В условиях этого процесса образуются продукты, сходные с продуктами коксования, а именно: бездымное твердое топливо, смола полукоксования и высококалорийный полукоксовый газ. При этом последние два продукта, представляющие собой ценное сырье для органического синтеза, получаются в количестве, гораздо большем, чем при коксовании.

Важно отметить, что протекающие на стадии полукоксования превращения лежат в основе большинства других процессов промышленной переработки ТГИ. Поэтому полукоксование интересно не только как технологический процесс, но и как высокоинформативный метод исследования поведения углей при термической деструкции.

Донецкий регион богат коксующимися углями, однако большая их часть имеет высокое содержание серы и золы, т.е. относится к восстановленному ТИПУ **-6**, сравнении малосернистыми cизометаморфными **УГЛЯМИ** слабовосстановленного типа Принадлежность углей разным К генетическим типам ПО восстановленности (ГТВ) при равной степени метаморфизма отражает условия их формирования на стадии диагенеза [1] и влияет на технологические свойства, такие как: коксуемость, активность к Широкое гидрированию окислению, И др. использование высокосернистых углей типа -в в энергетике и коксовании сопряжено целым рядом проблем, так как приводит отравлению К

катализаторов, снижению качества кокса, коррозии оборудования и загрязнению атмосферы.

Целью настоящей работы является исследование поведения углей марки Ж разных типов по восстановленности в процессе полукоксования, а также установление влияния предварительной химической обработки на выход и состав полученных продуктов. Обработку использовали для интенсификации процессов синтеза при термическом воздействии [2].

В качестве объектов исследования использовали изометаморфные пары жирных углей Донецкого бассейна, отличающихся генетическим типом по восстановленности.

Термическую деструкцию проводили классическим методом полукоксования в реторте Фишера (ГОСТ 3168 – 93). Состав полукоксового газа определяли в аппарате ВТИ (Всесоюзного теплотехнического института).

Предварительную химическую обработку углей осуществляли непосредственно перед пиролизом 1%-ным раствором инициатора радикальной полимеризации ДАК (динитрил азобисизомасляной кислоты) или продукта дистилляции каменноугольной смолы — поглотительного масла. Добавки растворяли в диэтиловом эфире и высушивали при комнатной температуре до постоянной массы.

Таблица 1. Характеристика исходных углей Донецкого бассейна, мас.%

№	Шахта, пласт	Марка	Тип	A^d	$V^{ m daf}$	Ү, мм	Cdaf	$\mathrm{H}^{\mathrm{daf}}$	O^{daf}	S_t^d
1	Гагарина, m ³	Ж	a	3,7	28,7	22	87,4	5,1	5,4	0,7
2	Засядько, 14	Ж	а	2,6	31,7	23	87,8	5,16	5,09	1,09
1	Γ агарина, m_4^0	Ж	в	12,2	35,6	32	83,6	4,9	8,41	3,75
2	Засядько, k ₈	Ж	в	2,7	31,7	27	87,3	5,23	5,99	2,81

Элементный и технический анализы образцов представлены в таблице 1. Как видно из таблицы, угли типа — в отличаются повышенным содержанием водорода, серы, большим выходом летучих веществ и зольностью. Толщина пластического слоя для спекающихся восстановленных углей больше, чем для слабовосстановленных.

Материальный баланс полукоксования представлен в таблице 2. Из таблицы следует, что образцы восстановленного типа дают меньший выход полукокса и воды, но больший выход парогазовых продуктов (смолы и газа) по сравнению со слабовосстановленными, что прекрасно согласуется с данными определения выхода летучих продуктов.

Добавка поглотительного масла однозначно приводит увеличению выхода полукокса, снижению выхода воды и парогазовых продуктов для всех исследуемых углей, а добавка ДАК по-разному влияет на ход процесса полукоксования углей разных ГТВ. Для образцов типа в это действие аналогично действию поглотительного масла, а для образцов типа а, напротив, наблюдается снижение выхода полукокса и резкое увеличение выхода газа. Это происходит, по-видимому, из-за изменения направления радикальных реакций, активнее осуществляются в газовой фазе. которые подтверждается данными по увеличению общего количества газа и содержания в нем углеводородов и водорода (таблица 3).

Таблица 2. Выход продуктов полукоксования, мас.%

№	Шахта, пласт, способ обработки	Тип	m _{пк} , %	m _{воды} ,	m _{cm} , %	m _Γ , %
1	Гагарина, m ³	а	84,4	2,3	5,3	8
2.1	Засядько, 14	а	82.7	3,2	5,9	8,2
2.2	Засядько, l ₄ (ДАК)	а	79,4	2,1	5,9	12,6
2.3	Засядько, 14 (масло)	а	85,6	2,1	6,4	5,9
1	Γ агарина, m_4^0	в	71,8	1,0	4,7	22,5
2.1	Засядько, k ₈	в	71,7	1,5	6,1	20,7
2.2	Засядько, k_8 (ДАК)	в	76,0	0,8	4,3	18,9
2.3	Засядько, k_8 (масло)	в	77,1	0,5	5,1	17,3

Увеличение выхода полукокса для углей разных типов в присутствии поглотительного масла, свидетельствует о том, что эта добавка способствует увеличению толщины пластического слоя.

Полукоксы, полученные из углей типа ϵ , более пористые и менее прочные, чем из углей слабовосстановленного типа, что связано, прежде всего, с большим выходом газа.

Основным компонентом газа полукоксования углей марки Ж является метан, содержание которого достигает 53,9% для углей типа - \boldsymbol{a} и 44,9% для углей типа - \boldsymbol{a} . Газ, выделяющийся из жирного угля восстановленного типа, содержит значительно больше метана, водорода и сероводорода в сравнении с газом, полученным из углей типа \boldsymbol{a} .

Таблица 3. Количественный анализ полукоксового газа, мл/ Γ^{daf}

№	Шахта, пласт	Тип	H ₂ S, мл/г	CO ₂ ,	С _m H _{n,} мл/г	CO, MJI/F	Н ₂ , мл/г	СН ₄ , мл/г
2.1	Засядько, 14	a	1,99	15,46	3,17	6,54	46,02	59,52
2.2	Засядько, І ₄ (ДАК)	a	2,34	12,60	4,02	6,52	47,14	57,30
2.3	Засядько, 14(масло)	a	2,73	13,26	3,47	5,20	38,76	55,95
2.1	Засядько, k ₈	в	19,76	3,89	5,61	6,54	55,39	106,42
2.2	Засядько, k ₈ (ДАК)	в	21,16	6,49	7,75	9,59	72,63	112,42
2.3	Засядько, к ₈ (масло)	в	19,32	9,77	2,55	6,54	79,60	101,76

Использование предварительной химической обработки увеличивает содержание в газе ценных горючих компонентов, т.е. дает возможность получить газ с большей теплотой сгорания. Кроме того, добавки позволяют перевести в газ большее количество серы в виде сероводорода.

Таким образом, в работе показана возможность химической модификации углей с целью интенсификации процессов спекания и обессеривания при полукоксовании.

Литература:

- 1. Маценко Г.П. Микрокристаллические включения пирита как петрографический показатель типов по восстановленности донецких углей // Химия твердого топлива, 1983. № 1. С.13 19.
- 2. Турчанина О. Н., Бутузова Л. Ф., Сафин В. А., Исаева Л. Н. Использование химической модификации в процессах термической переработки бурых углей // Вопросы химии и химической технологии. 2002. №6. С. 119 121.