Назад в библиотеку

УДК 621.74

Исследование механизмов абразивного и ударно-абразивного изнашивания высокомарганцевой стали

Авторы: Колокольцев В.М., Вдовин К.Н., Чернов В.П., Феоктистов H.A., Горленко Д.А., Дубровин В.К.

Магнитогорский государственный технический университет им. Г.И.Носова, Магнитогорск, Россия

Южно-Уральский государственный университет, Челябинск, Россия

Аннотация


Актуальность работы: в процессе эксплуатации деталей в механизмах и агрегатах происходит их изнашивание, что определяет срок службы всего узла. Интенсивность изнашивания будет зависеть от нескольких факторов, таких как химический состав сплава, параметры микроструктуры, механические свойства, а также условий, в которых осуществляется износ, – скольжение, удар, нагрев и т.д. Действие этих факторов будет определять механизм изнашивания деталей из различных износостойких сплавов, в том числе и высокомарганцевой стали. Детальное исследование механизмов износа позволит, во-первых, уточнить роль микроструктуры сплава в процессе изнашивания, во-вторых, сформировать уточнённое представление о механизмах изнашивания высокомарганцевой стали в различных условиях и определить роль некоторых легирующих элементов в этих механизмах. Цель работы – изучение металлографическим путём механизмов абразивного и ударно-абразивного изнашивания высокомарганцевой стали, а также оценка превращений структуры сплава, протекающих в очаге износа. Используемые методы: для решения поставленных задач в условиях лаборатории проводили эксперименты по изнашиванию опытных образцов из высокомарганцевой стали в различных условиях. Поверхности, полученные после износа в различных условиях, исследовали на металлографическом оборудовании. Полученные результаты: установлены закономерности изменения структуры высокомарганцевой стали в условиях абразивного и ударно-абразивнош изнашивания; определены количественные параметры структурных составляющих сплава, формирующихся в условиях различных видов изнашивания; рассмотрена роль вторичной фазы в механизме изнашивания высокомарганцевой стали при реализации различных видов износа. Полученные данные расширяют современное представление о процессах, протекающих при эксплуатации деталей из высокомарганцевой стали в условиях абразивного и ударно-абразивнош износа, а также могут быть полезны при выборе химического состава стали с целью увеличения её износостойкости.


Ключевые слова: высокомарганцевая сталь, аустенит, вторичная фаза, упрочнённый слой, мартенсит, деформационные двойники.

Введение


Сменные детали некоторых узлов и механизмов, эксплуатирующиеся в промышленности, контактируют с различными абразивными материалами: руда, гравий, кокс и др. Результатом такого взаимодействия является износ этих деталей, что обуславливает применение износостойких сплавов в качестве материала для их изготовления. Одним из таких материалов является высокомарганцевая сталь, в том числе сталь марки 110Г13Л [1-3].

Колокольцев В.М., Вдовин К.Н., Чернов В.П., Феоктистов H.A., Горленко Д.А., Дубровин В.К., 2017

Износостойкость этой стали обеспечивается уникальным комплексом механических свойств, а также её аустенитной структурой. Аустенит имеет способность упрочняться после деформации, образуя при этом более прочный слой. В результате этих превращений износостойкость высокомарганцевой стали увеличивается. Кроме того, при определённом внешнем воздействии – условиях износа, протекание деформационных процессов по тем или иным механизмам определяет непосредственно механизм изнашивания стали в целом.

В настоящее время механизмы протекания деформационных процессов в аустенитных сталях в условиях внешнего физического воздей-


ствия довольно подробно рассмотрены в работах отечественных и зарубежных исследователей [47]. Авторы статей [4-6] рассматривают механизм деформационного двойникования, реализующийся при высокой интенсивности внешнего физического воздействия на высокомарганцевую сталь. При этом они подтверждают, что при таких условиях механизм дислокационного скольжения в аустените не реализуется. При незначительном физическом воздействии деформационные двойники образуют тонкую сетку. По мере увеличения нагрузки реализуются процессы дислокационного скольжения, что приводит к разрушению сетки двойников, резкому упрочнению высокомарганцевой стали и повышению её твёрдости [5]. Управлять деформационными процессами авторы предлагают посредством легирования и модифицирования расплава стали химическими элементами.


Процесс абразивного изнашивания литой высокомарганцевой стали и протекающие при этом структурные превращения описаны в работах [8-10]. В работе [8] рассмотрено изменение коэффициента износостойкости в зависимости от концентрации марганца в составе сплава. Авторами этих работ установлено, что присутствие в структуре сплава большого количества в-мартенсита (более 30 %) снижает сопротивление высокомарганцевой стали абразивному изнашиванию, что обусловлено низким сопротивлением этой фазы процессам микрорезания. Кроме того, рассмотрена кинетика упрочнения стали марки 110Г13Л [9-10]. В начальный момент внешнего воздействия происходит резкий рост микротвёрдости аустенита с 2500 до 7500-8000 МПа, а при дальнейшем нагружении – плавное увеличения микротвёрдости структурных составляющих до 9500-10500 МПа. Также авторы этих работ рассматривают тонкий упрочнённый слой толщиной от 1 до 5 мкм, образующийся в процессе изнашивания высокомарганцевой стали. Они считают, что этот слой обладает сверхпластичностью, в результате чего в нем гасится значительная часть энергии от воздействия абразива в процессе изнашивания.

Эксплуатация деталей из высокомарганцевой стали в промышленности происходит при реализации двух основных видов изнашивания: скольжение по абразиву и абразивное изнашивание при ударе [3].


В условиях скольжения изнашиваемой детали по абразивному материалу элементарной со-

ставляющей механизма изнашивания остаётся микрорежущее и деформирующее действие единичной абразивной частицы [3].


Ударно-абразивное изнашивание деталей из высокомарганцевой стали протекает в более тяжелых условиях, чем просто абразивный износ. В результат такого вида изнашивания формируется характерный рельеф поверхности, а также протекают деформационные процессы в металле, приводящие к образованию микротрещин в нем, его срезанию и выкрашиванию [12, 13].

При практической реализации обоих видов износа ключевую роль будет играть структура сплава. Наличие вторичных фаз различной морфологии вносит коррективы в механизм изнашивания деталей из высокомарганцевой стали.

Целью проводимой работы является изучение металлографическим путём механизмов абразивного и ударно-абразивного изнашивания изделий из высокомарганцевой стали, а также оценка превращений структуры сплава, протекающих в очаге износа.


Материалы и методы исследования

Экспериментальные сплавы для изучения структуры и свойств выплавляли в индукционной печи ИСТ-006 с основной футеровкой.

Термическую обработку образцов осуществляли в окислительной среде.

Исследования проводили на стандартных образцах с размерами 35x35x10 мм.

Базовый химический состав стали, из которой были изготовлены образцы при реализации различных скоростей охлаждения, представлен в таблице. Для проведения исследований также были изготовлены образцы из стали, легированной хромом в количестве от 1,0 до 3,15 мае. %.

Базовый химический состав высокомарганцевой стали

с Si Мп S Р Сг Ni А1

1,2 0,9 12,3 0,024 0,033 0,8 0,12 0,06

Для реализации различных скоростей охлаждения сплав заливали в разные типы форм: сухую и сырую песчано-глинистую, кокиль. Регистрацию изменения температуры металла проводили с помощью заформованной вольфрам-рениевой термопары, запись результатов осуществляли на приборе LA-50USB с частотой 50 Гц на каждый канал.

Химический состав образцов определяли на спектрометре SPECTROMAXx.

Испытание на износостойкость в условиях абразивного и ударно-абразивного изнашивания проводили на лабораторных установках в соответствии с ГОСТ 23.208-79 (абразивная износостойкость) и ГОСТ 23.207-79 (ударно-абразивная износостойкость).


Для металлографического анализа из образцов, прошедших испытание на различные виды изнашивания, отрезали микротемплеты. Из них по стандартной методике были приготовлены микрошлифы путём запрессовки образцов в смолу «Тгапворйс» на автоматическом прессе 8ипрНте1 1000 на линии пробоподготовки фирмы ВиесЫег. Для выявления микроструктуры поверхность шлифов подвергали травлению в смеси концентрированных кислот (65% НГЧОз и 35% НС1) методом погружения полированной поверхности в ванну с реактивом.

Исследование изношенной поверхности проводили на сканирующем электронном микроскопе ШОЬ 18М-6490 ЬУ при ускоряющем напряжении 20 кВ, в режимах вторичных электронов при увеличениях от 1500 до 20000 крат (исследования выполнены в ЦКП НИИ Наноста-лей ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова»).

Результаты исследований и их обсуждение


Формирование свойств отливок из высокомарганцевой стали, в том числе износостойкости, при прочих равных условиях, осуществляется на стадии кристаллизации расплава в литейной форме, а также в процессе термической обработки. Если процесс термической обработки легко поддаётся контролю, а его основные параметры (температура в печи, время выдержки) довольно просто зафиксировать на одном и том же уровне, то процесс кристаллизации расплава в литейной форме является сложным и плохо контролируемым. В то же время закономерности формирования литой структуры стали и кинетика выделения твёрдой фазы во взаимосвязи с изменением температуры и составом образующихся фаз определяют уровень свойств отливок, в частности износостойкость в различных условиях.


В ходе проведения лабораторных экспериментов были получены образцы из высокомарганцевой стали, закристаллизовавшиеся в литейной форме с разными скоростями охлаждения. Химический состав сплава образцов указан в таблице. Полученные образцы в литом и термо-обработанном состояниях испытали на износо-

стойкость в среде незакрепленных абразивных частиц. Результаты проведённого эксперимента представлены графически в виде зависимости коэффициента износостойкости от скорости охлаждения сплава в интервале выделения избыточных фаз (рис. 1).

Следует отметить, что от величины ЭДУ зависит механизм деформации аустенита при внешнем воздействии - деформационное двойникование, либо дислокационное скольжение [14]. При реализации каждого из этих механизмов деформации образуются упрочнённые слои с разными характеристиками, од-

• Литои О Терм о обработанный

= 0.9253

IV = 0.9289

Скорость охлаждения в температурном

интервале выделения избыточной фазы, °С/с


ной из которых является его средняя толщина. Согласно работам [15-16] деформационное двойникование реализуется в случае, если значение ЭДУ менее 48 МДж/м2, что характерно для структуры высокомарганцевой стали, охладившейся со скорость менее 1°С/с и более 4°С/с в температурном интервале выделения избыточных фаз. Механизм дислокационного скольжения, для которого характерно образование тонкого и менее износостойкого упрочнённого слоя, реализуется в тех структурах, которые охлаждались со скоростями от 1,8 до 4°С/с в температурном интервале выделения карбидов. Влияние скорости охлаждения сплава на ЭДУ проявляется в перераспределении химических элементов между аустенитом и карбидной фазой, а также в изменении степени легированности аустенита при этом.


В литом состоянии влияние ЭДУ аустенита на формирование упрочнённого слоя осуществляется при дополнительном воздействии карбидной фазы на этот процесс. Для микроструктуры высокомарганцевой стали, сформировавшейся при скоростях охлаждения менее 1°С/с, выделяется большое количество карбидов – 14,8%, имеющих более высокое сопротивление изнашиванию, чем аустенит. При этом коэффициент износостойкости равен 1,2 ед. Согласно графику, представленному на рис. 2, значение ЭДУ аустенита для этих условий менее 48 МДж/м2, следовательно, в данном случае реализуется механизм деформационного двойникования.

При увеличении скорости охлаждения сплава в рассматриваемом температурном интервале до значений, находящихся в диапазоне от 1,8 до 4,0 °С/с, коэффициент износостойкости высокомарганцевой стали снижается до 0,9 ед. В литом состоянии это прежде всего связано с уменьшением карбидной фазы до 2,8% [17-18], а также с повышением значения ЭДУ свыше 48 МДж/м2 (см. рис. 2). При этом происходит качественная смена механизма деформационного двойникования аустенита на дислокационное скольжение.


Повышение скорости охлаждения сплава в температурном интервале выделения избыточных фаз до значений более 4°С/с способствует увеличению коэффициента износостойкости в среднем до 1,1 ед. Увеличение значения коэффициента износостойкости можно объяснить повышением степени легированности аустенита марганцем, что приводит к увеличению микротвёрдости аустенита [19]. При этом происходит снижение ЭДУ до значений менее 45 МДж/м2, что способствует реализации механизма деформационного двойникования аустенита при наличии внешнего воздействия.

Следует отметить, что наличие карбидной фазы в структуре сплава высокомарганцевой стали дополнительно стимулирует формирование упрочнённого слоя. В процессе абразивного изнашивания карбиды воспринимают на себя основную внешнюю нагрузку, выступая своего рода рычагом, через который передаётся усилие с поверхности контакта абразива с металлом в более глубокие слои аустенита.


После термической обработки микроструктура высокомарганцевой стали представлена аустенитом. Карбидная фаза отсутствует за исключением некоторых отдельно взятых карбидов, не успевших раствориться в процессе термической обработки. При этом значение ЭДУ существенно меньше 48 МДж/м2, что обеспечивает протекание процессов деформационного двойникования в результате абразивного износа. Следует отметить, чем меньше значение ЭДУ, тем более легче протекают процессы деформационного двойникования, обеспечивая при этом более высокий коэффициент износостойкости отливок из высокомарганцевой стали. 

Выводы

1. Энергия дефекта упаковки влияет на износостойкость высокомарганцевой стали. Чем меньше значение ЭДУ, тем выше коэффициент износостойкости стали Гадфильда.

2. Карбиды марганца, присутствующие в структуре высокомарганцевой стали, в процессе абразивного и ударно-абразивного изнашивания разрушаются, оставляя после себя лунки, которые деформируется. Карбиды хрома в результате реализации различных условий изнашивания сохраняют свою целостность вплоть до непосредственного контакта с абразивом, после чего их вырывает с посадочных мест.

3. В процессе абразивного изнашивания упрочнённый слой преимущественно состоит из деформационных двойников аустенита. При воздействии ударных нагрузок упрочнённый слой имеет сложную слоистую структуру, состоящую из области ультрамелкого зерна, областей переуплотнённых деформационных двойников и с нормальным уплотнением, а также мартенсита.



Список литературы


1. Давыдов Н.Г., Благих Б.М., Бигеев A.M. К вопросу повышения качества отливок из высокомарганцевой стали 110Г13Л. Томск: Изд-во Томск, ун-та, 1972.139 с.

11. Виноградов В.Н., Сорокин Г.М., Колокольников М.Г. Абразивное изнашивание. М.: Машиностроение, 1990. 224 с.

12. Виноградов В.Н., Сорокин Г.М. Износостойкость сталей и сплавов. М.: Нефть и газ, 1994. 417 с.

13. Виноградов В.Н., Сорокин Г.М., Албагачиев А.Ю. Изнашивание при ударе. М.: Машиностроение, 1982.192 с.

14. Вдовин К.Н., Горленко ДА., Феоктистов Н.А. Исследование энергии дефекта упаковки на абразивную износостойкость отливок из стали Fe-12Mn-1,2C, охлаждённую с различными скоростями II Изв. вузов. Черная металлургия. 2016. № 9. Т. 59. С. 603-609.

15. Wen Y.H., Peng Н.В., Si Н.Т., Xiong R.L., Raabe D. A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel II Materials and design. 2014. V. 55. P. 798-804.

16. Zambrano O.A., Yesid Aguilar, Jairo Valdes, Rodriguez S.A., Coronado J.J. Effect of normal load on abrasive wear resistance and wear micromechanisms in FeMnAIC alloy and other austenitic steels II Wear. 2016. V. 348-349. P. 61-68.

17. Вдовин K.H., Горленко Д.А., Феоктистов Н.А. Исследование влияния скорости охлаждения в интервале выделения избыточных фаз на литую микроструктуру стали Гадфильда II Металлургия: технологии, инновации, качество / под общ. ред. Е.В. Протопопова. М., 2015. С. 125-129.

18. Вдовин, К.Н., Горленко Д.А., Феоктистов Н.А. Исследование закономерностей формирования, морфологии и химического состава избыточной фазы в литой высокомарганцовистой стали II Изв. вузов. Черная металлургия. 2016. № 7. Т. 59. С. 491-497.

19. Исследование механических и эксплуатационных свойств высокомарганцевой стали, легированной азотированным феррохомом / Колокольцев В.М., Вдовин К.Н., Чернов В.П., Феоктистов Н.А., Горленко Д.А. II Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2016. Т. 14. №3. С. 46-54.