
SSD: Single Shot MultiBox Detector

Wei Liu1, Dragomir Anguelov2, Dumitru Erhan2, Christian Szegedy2, Scott Reed3

1UNC Chapel Hill 2Google Inc. 3University of Michigan, Ann-Arbor
1wliu@cs.unc.edu, 2{dragomir,dumitru,szegedy}@google.com, 3reedscot@umich.edu

Abstract

We present a method for detecting objects in images us-
ing a single deep neural network. Our approach, named
SSD, discretizes the output space of bounding boxes into
a set of bounding box priors over different aspect ratios
and scales per feature map location. At prediction time,
the network generates confidences that each prior corre-
sponds to objects of interest and produces adjustments to
the prior to better match the object shape. Additionally, the
network combines predictions from multiple feature maps
with different resolutions to naturally handle objects of var-
ious sizes. Our SSD model is simple relative to methods
that requires object proposals, such as R-CNN and Multi-
Box, because it completely discards the proposal generation
step and encapsulates all the computation in a single net-
work. This makes SSD easy to train and straightforward to
integrate into systems that require a detection component.
Experimental results on ILSVRC DET and PASCAL VOC
dataset confirm that SSD has comparable performance with
methods that utilize an additional object proposal step and
yet is 100-1000× faster. Compared to other single stage
methods, SSD has similar or better performance, while pro-
viding a unified framework for both training and inference.

1. Introduction
Deep convolutional neural networks [12, 20, 19] have

recently demonstrated impressive levels of performance on
the image classification task. However, object detection is
a more difficult problem, because in addition to classifying
objects it also requires localizing all object instances in an
image. Region-based Convolutional Neural Networks (R-
CNN) [6] or its faster variants [8, 5, 16] approach detection
as a classification problem over object proposals, followed
by (optional) regression of the bounding box coordinates.
Alternatively, YOLO [15] directly predicts bounding boxes
and confidences for all categories over a fixed grid using
the whole topmost feature map; OverFeat [18] regresses a
bounding box per feature map location after knowing the
category of the underlying object. However these single
shot methods do not perform as well as R-CNN type meth-

(a) Input image (b) 8 × 8 feature map (c) 4 × 4 feature map

loc

∆(x1, y1, x2, y2)

conf

(c1, c2, · · · , cp)

Figure 1. SSD framework. (a) SSD only needs an input image
(and ground truth boxes for each object during training). At each
location for several feature maps (e.g. 8 × 8 and 4 × 4 in (b)
and (c)), we impose a small set of (e.g. 4) designated (normal-
ized) convolutional priors of different aspect ratios and scales. For
each prior, we use the underlying (1 × 1) feature to predict both
the offsets (∆(x1, y1, x2, y2)) and the confidences for all object
categories ((c1, c2, · · · , cp)). During training time, we first match
these priors to the ground truth. For example, we have matched
two priors with the cat and one with the dog, which are treated as
positives and the rest negatives. Then we compute the loss with a
weighted sum between localization loss (e.g. L2 loss) and confi-
dence loss (e.g. multi-class logistic), and backpropagate the error.

ods. So is the R-CNN framework the only method for
achieving high quality object detections?

In this paper, as shown in Figure 1, we present Single
Shot MultiBox Detector (SSD). Given a set of fixed bound-
ing box priors of different aspect ratios and scales, we train
a network to select which priors contain objects of interest
and to adjust their coordinates to better match the object’s
shape. The set of bounding box priors we define is in the
same spirit as the anchor boxes used in Faster R-CNN [16].
Unlike Faster R-CNN, our network can detect multiple ob-
ject categories without the need to share convolution layers
with Fast R-CNN [5]. Furthermore, the SSD architecture
combines predictions from multiple feature maps at differ-
ent resolutions in the network, which naturally handles ob-
jects of different sizes and improves detection quality.

Overall, SSD shares insights with many concurrent
works [18, 2, 8, 5, 15, 16]. However, it is the first one to
combine the most effective single shot detection ideas in a
unified framework and to achieve performance competitive

1

ar
X

iv
:1

51
2.

02
32

5v
1

 [
cs

.C
V

]
 8

 D
ec

 2
01

5

with object proposal based methods yet 100-1000× faster
on the ILSVRC DET [17] and PASCAL VOC [3] detection
benchmarks. We summarize our contributions as follows:

• SSD removes the object proposal step, which is typi-
cally expensive and reliant on low-level region group-
ing cues, as opposed to [8, 2, 5, 16]. The method is
based on a single neural network that is capable of di-
rectly generating object bounding boxes and their con-
fidences for a large number of object categories.

• SSD is the first work to combine the idea of convolu-
tional bounding box priors with the ability to predict
multiple object categories. In our method, the offset
adjustment and confidences for multiple categories of
each prior are predicted from the underlying 1× 1 fea-
ture at each location on a feature map, as opposed to
the whole feature map as done in MultiBox [2] and
YOLO [15]. This results in a more compact network,
which is crucial for efficient detection of a large num-
ber of object categories. Additionally, this adds trans-
lational invariance in the model output layers, and re-
duces overfitting and improves detection performance.

• The SSD priors are of different aspect ratios and scales,
densely spread out on all locations from a feature map,
and thus can cover various object shapes as opposed to
YOLO [15] or OverFeat [18], which use a more rigid
grid-based tiling.

• SSD is the first method to associate bounding box pri-
ors with features maps of different spatial resolution in
the network. This naturally handles objects of different
scales and improves detection accuracy with negligible
computation overhead, as opposed to OverFeat [18]
and SPPnet [8], which requires resizing images to dif-
ferent resolutions and individual processing.

• The overall SSD design is very efficient (100-1000×
faster than the best region proposal detector) and pro-
vides a unified framework for both training and infer-
ence, even for hundreds of object categories.

The rest of the paper is organized as follows. In sec. 2 we
review the related work. Sec. 3 describes the details of the
SSD model and Sec. 4 reports the object detection results on
the ILSVRC DET and PASCAL VOC dataset. We conclude
our work in Sec. 5.

2. Related Work
There are two established classes of methods for object

detection in images, one based on sliding windows and the
other based on region proposal classification. Before the ad-
vent of convolutional neural networks, the state of the art for
those two approaches – Deformable Part Model (DPM) [4]
and Selective Search [23] – had comparable performance.

However, after the dramatic improvement brought on by R-
CNN [6], which combines selective search region proposals
and convolutional network based post-classification, region
proposal object detection methods became prevalent.

The original R-CNN approach has been improved in a
variety of ways. The first set of approaches improve the
quality and speed of post-classification, since it requires the
classification of thousands of image crops, which is expen-
sive and time-consuming. SPPnet [8] speeds up the origi-
nal R-CNN approach significantly. It introduces a spatial
pyramid pooling layer that is more robust to region size
and scale and allows the classification layers to reuse fea-
tures computed over feature maps generated at several im-
age resolutions. Fast R-CNN [5] extends SPPnet so that it
can fine-tune all layers end-to-end by minimizing a loss for
both confidences and bounding box regression, which was
first introduced in MultiBox [2] for learning objectness.

The second set of approaches improve the quality of pro-
posal generation using deep neural network. In the most re-
cent works like MultiBox [2, 21], the selective search region
proposals, which are based on low-level image features, are
replaced by proposals generated directly from a separate
deep neural network. This further improves the detection
accuracy but results in a somewhat complex setup, requir-
ing the training of two neural networks with a dependency
between them. Faster R-CNN [16] replaces selective search
proposals by ones learned from a region proposal network
(RPN), and introduces a method to integrate the RPN with
Fast R-CNN by alternating between fine-tuning shared con-
volutional layers and prediction layers for these two net-
works. Our SSD is very similar to Faster R-CNN in that we
also use the convolutional priors (or anchor boxes). How-
ever, we directly learn to predict both the offsets over these
priors and the confidences for multiple categories, instead
of treating all categories as class-agnostic object (same as
MultiBox). Thus, our approach avoids the complication of
merging RPN with Fast R-CNN and is much easier to train
and straightforward to integrate in other tasks.

Another set of methods, which are directly related to
our approach, skip the proposal step altogether and predict
bounding boxes and confidences for multiple categories di-
rectly. OverFeat [18], a deep version of the sliding window
method, predicts bounding box directly from each location
of the topmost feature map after knowing the confidences
of the underlying object categories. YOLO [15] uses the
whole topmost feature map to predict both confidences for
multiple categories and bounding boxes (which are shared
for these categories). Our SSD method falls in this category
because we do not have the proposal step but use the desig-
nated priors instead. However, our approach is more flexi-
ble than the existing methods because we can impose priors
of different aspect ratios and scales on each feature location
from multiple feature maps. If we only use one prior per

location from the topmost feature map, our SSD has similar
architecture as OverFeat [18]; if we use the whole topmost
feature map for predictions instead of using the convolu-
tional priors, we can approximately reproduce YOLO [15].

3. SSD

SSD is inspired by MultiBox [2, 21] and shares a similar
training objective, yet has many differences and improve-
ments. While MultiBox is very successful at generating
object proposals by training an objectness detector, it still
requires post-classification over the generated proposals for
full object detection. However, our SSD can detect multiple
categories with a single shot evaluation of an input image.
We will now describe the key differences of our method.

3.1. Training method

Suppose we have n priors in total, denoted as bi where
i ∈ [0, n). Each prior is associated with a bounding box
shape and a set of object category confidences, correspond-
ing to the probability that a specific category is present at
the location specified by the prior. Specifically, let cpi be
the confidence for category p of the i-th prior, li ∈ R4 be
the i-th predicted box coordinates, and gpj ∈ R4 be the j-th
ground truth box coordinates of category p. Note that the
predicted box coordinates are computed by adding the off-
sets output by the network to the corresponding priors, and
that both the priors and ground truth boxes are in normal-
ized coordinates, relative to the full image. This normaliza-
tion ensures the whole image region is the unit box so that
we can safely compare coordinates without worrying about
different input image sizes.

3.1.1 Matching strategy

Just like the Multibox method, at training time we need
to establish the correspondence between the ground truth
boxes and the priors. We can either use the prior coordi-
nates directly or use the adjusted prior coordinates after ap-
plying the offsets predicted by the network. For simplicity,
we refer to the prior-derived coordinates as source boxes.
The source boxes that are matched to ground truth become
the positive examples and the rest are treated as negatives.

We consider two possible matching approaches. The first
is bipartite matching, where each ground truth box is greed-
ily matched to the source box with the best jaccard overlap.
This is the matching approach used by the original Multi-
box and it ensures that each ground truth box has exactly
one matched source box. We also experimented with per-
prediction matching, which first performs bipartite match-
ing so that each ground truth box has one corresponding
source box. It then matches the remaining source boxes
to the most overlapped ground truth boxes if the jaccard

overlap is higher than a threshold (e.g. 0.5). Unlike bipar-
tite matching, per-prediction matching can generate several
positive prior matches for each ground truth. This allows
the network to predict high confidences for multiple over-
lapping priors rather than requiring it to always pick the best
possible prior – a slightly simplified task.

Note that SSD aims to detect multiple categories, as op-
posed to MultiBox which only detects class-agnostic ”ob-
jectness” boxes, which are then used in a post-classification
step to determine the object category. To detect multiple
(hundreds or more) categories, for each prior, SSD predicts
a single bounding box adjustment that is shared across all
object categories. In other words, the source boxes are
treated as class-agnostic during the matching step. How-
ever, after the matching, we keep the matched ground truth
label as it will be used when computing the confidence loss.

3.1.2 Training objective

The SSD training objective is derived from the Multibox
objective [2, 21] but is extended to handle multiple object
categories. Let’s denote xpij = 1 to indicate that the i-th
source box is matched to the j-th ground truth box of cat-
egory p, and xpij = 0 otherwise. As described above, for
bipartite matching, we have

∑
i x

p
ij = 1. If we use per-

prediction matching,
∑

i x
p
ij ≥ 1, meaning there can be

more than one source box matched to the j-th ground truth
box. The overall objective loss function is a weighted sum
of the localization loss (loc) and the confidence loss (conf):

L(x, c, l, g) = Lconf (x, c) + αLloc(x, l, g), (1)

where the localization loss is L2 loss between predicted box
(not prior) and ground truth box:

Lloc(x, l, g) =
1

2

∑
i,j

xpij ||li − gpj ||22 (2)

and the confidence loss can be either multi-class logistic or
softmax loss. We use multi-class logistic loss1:

Lconf (x, c) = −
∑
i,j,p

xpij log(c
p
i)−

∑
i,p

(1−
∑
j,q=p

xqij) log(1−cpi)

(3)
and the weight term α is set to 0.06 by cross validation.

3.2. Fully convolutional priors

A key ingredient of the MultiBox method is that it uses
the k-means centroids of the training set bounding box coor-
dinates as priors. In the original design, the whole topmost
feature map is used to predict the offsets for all of the priors.
A better strategy might be to use the fully convolutional pri-
ors, where we impose a small set of priors per location on
1 One can also choose softmax loss, we have not compared the multi-class

logistic loss with softmax loss at this time.

a feature map as shown in Figure 1. Not only is this more
computationally efficient, but it also reduces the number of
parameters and thus reduces the risk of over-fitting.

These fully convolutional priors are very similar to the
anchor boxes used in RPN [16]. We further simplify the
model, by replacing the 3×3 convolution kernels with 1×1
kernels to predict the offsets and confidences and we do not
require an intermediate layer. More importantly, RPN is
still used to learn objectness and generate proposals which
are used to merge with Fast R-CNN. Instead, SSD can be
directly trained to detect multiple categories with shared
bounding boxes among them. Specifically, suppose we have
a m ×m feature map, k priors (encoded with top-left and
bottom-right corners) per location on the feature map, and
c categories in total. We will have 4k offsets outputs for
the k priors and ck confidences outputs for the c categories,
resulting in (4 + c)k outputs per feature map location. By
accumulating predictions across all locations on the feature
map, it has (4+c)km2 outputs in total, but only has (4+c)k
parameters to learn. If we do not share locations for dif-
ferent categories, the total output will be 5ckm2 and has
5ck parameters. Obviously, these numbers can grow much
rapidly when we have many categories (c� 1) to detect.

3.3. Combining predictions from multiple feature
maps

Most convolutional networks reduce the size of feature
maps at the deeper layers. Not only does this reduce compu-
tation and memory cost but it also provides some degree of
translation and scale invariance. To handle different object
scales, some methods [18, 8] suggest converting the image
to different sizes, then processing each size individually and
combining the results afterwards. However, by utilizing fea-
ture maps from several different layers in a single network
we can mimic the same effect. [14, 7] have shown that using
feature maps from the lower layers can improve semantic
segmentation quality because the lower layers capture more
fine details of the input objects. Similarly, [13] showed
that adding global context pooled from the topmost feature
map can help smooth the segmentation results. Motivated
by these methods, we use both the lower and upper feature
maps for making detection predictions. Figure 1 shows two
exemplar feature maps (8× 8 and 4× 4) which are used in
the framework, of course in practice we can use many more
with negligible computation overhead.

Feature maps from different levels within a network
are known to have different (empirical) receptive field
sizes [24]. Fortunately, within the SSD framework, the con-
volutional priors do not necessary need to correspond to the
actual receptive fields of each layer. We can design the tiling
so that specific feature map locations learn to be responsive
to specific areas of the image and particular scales of the
objects. Suppose we want to use m (square) feature maps

to do the predictions. For simplicity, we annotate fk where
k ∈ [1,m] as the size for the k-th feature map in decreas-
ing order. The scale of the priors for each feature map is
computed as:

sk = smin +
smax − smin

m− 1
(k − 1), (4)

where smin is 0.1, smax is 0.7, and sm+1 is 1, meaning
the lowest layer has a scale of 0.1 and the highest layer
has a scale of 0.7, and all layers in between are regularly
spaced. We impose different aspect ratios for the prior
bounding boxes, and denote them as ar ∈ {1, 2, 3, 12 , 13}.
We can compute the width (wa

k = sk
√
ar) and height (hak =

sk/
√
ar) for each prior. For the aspect ratio of 1, we also

add an additional prior whose scale is s′k =
√
sksk+1, thus

resulting in 6 priors per feature map location. We set the
center of each prior to (i+0.5

fk
, j+0.5

fk
) where i, j ∈ [0, fk)

and we truncate the coordinates of the priors such that they
are always within [0, 1]. In practice, one can also design
his/her own priors for the different detection tasks.

By combining predictions for all priors with different
scales and aspect ratios from all locations of many feature
maps, we have a diverse set of predictions, covering various
input object sizes and shapes. For example, in Figure 1, the
dog is matched to a prior in the 4 × 4 feature map, but not
to any priors in the 8× 8 feature map. This is because those
priors are within different scales and do not match the dog
box and thus are considered as negatives during training.

3.4. Hard negative mining

After the matching step, most of the source boxes are
negatives, especially when the number of priors is large.
This introduces a significant imbalance between the posi-
tive and negative training examples. Instead of using all the
negative examples, we sort them using the highest confi-
dence across all categories for a source box and pick the top
ones so that the ratio between the negatives and positives is
at most 3:1. We found that this leads to faster optimization
and a more stable training process.

3.5. Image processing

In order to make the model more robust to various input
object sizes and shapes, each training image is randomly
sampled by one of the following options:

• Use the entire original input image.
• Sample a patch so that the minimum jaccard overlap

with the objects is 0.1, 0.3, 0.5, or 0.7.
• Sample a patch so that the maximum jaccard overlap

with the objects is 0.5.

After the aforementioned sampling step, each sampled
patch is horizontally flipped with probability of 0.5, in ad-
dition to applying some photometric distortions similar to
those described in [10].

4. Experimental Results
We report results on two datasets: ILSVRC DET [17]

and PASCAL VOC [3], and compare against other related
methods. Our experiments start from a specific earlier vari-
ant2 of Inception [22], which has 76.4% top-1 accuracy on
the ILSVRC CLS-LOC val dataset, and fine-tune it for
SSD using batch-normalization [11] and Adagrad [1] with
initial learning rate 0.4.

4.1. ILSVRC 2014 DET results

We compare SSD to a top performing two-stage detec-
tor [21]. Both detectors start from the exactly same pre-
trained Inception network for fair comparison, and are fine-
tuned with the ILSVRC2014 DET train dataset and eval-
uated on the val2 dataset [6].

4.1.1 Baseline two-stage detector

The details of the baseline detector is described in [21].
Specifically, the MultiBox network is used to generate ob-
jectness proposals, which are then post-classified for the
200 DET categories using a separate network. The Multi-
Box model uses the same underlying network structure and
convolutional priors as SSD except that it treats all objects
as class-agnostic object. The input image size for Multi-
Box is 299 × 299, and each proposal is also resized to
299 × 299 for post-classification. Compared to the win-
ning entry in ILSVRC2014 [20], which has 38.0 mAP with
single model and 43.9 mAP with 6 ensemble models on the
test set, the latest two-stage detector has 44.7 mAP with
single model on the val2 set. This large improvement is
due to a better proposal network (MultiBox), an improved
post-classification network (Inception), and bigger network
input size (299 vs. 224).

4.1.2 SSD vs. Baseline detector

SSD shares a similar objective as MultiBox, however, it has
the ability to detect multiple categories in a single shot eval-
uation instead of using the two-stage method. Table 1 shows
how SSD performance changes as we increase the number
of categories. To make it a fair comparison with the baseline
method, we first use the same input image size (299× 299).
SSD Person is a monolithic person detector where we treat
person as positives and all other 199 categories as negatives.
Compared to the baseline result 51.5, SSD Person achieves
52.7 which is slightly better because SSD learns to regress
the priors as well as predict the confidences at the same time
instead of using two decoupled steps. It is appealing given
the dramatic efficiency gains of SSD and the fact that the
two-stage method has approximately 2× the number of pa-
rameters, since it uses two Inception networks. When we

2 Details of the network structure can be found in [21].

Models person car dog mAP # priorsinput size method
299× 299 Baseline 51.5 47.1 90.4 44.7 1420

299× 299

SSD Person 52.7 N/A N/A N/A 1420
SSD 3 46.7 38.8 89.4 N/A 1420
SSD Full 45.2 38.9 88.7 31.0 1420
SSD Multi 46.6 43.2 90.2 34.7 9864

443× 443 SSD full 50.9 45.0 92.0 39.6 2704
Table 1. Average precision (AP) on person, car, and dog as the
number of categories increases for SSD. SSD Person is a mono-
lithic person detector. SSD 3 is a detector trained on these three
categories. SSD Full is trained on all 200 DET categories and
SSD Multi uses two extra lower level feature maps for predictions.
Baseline is a two-stage detector [21] with same pre-trained net-
work as SSD. mAP is the mean AP across all 200 DET categories.

include three categories, person, car, and dog, we see that
the performance (of SSD 3) on person is worse than SSD
Person. We hypothesize that this difference is because the
two-stage method has resized each proposal to 299×299 for
post-classification, which preserves very fine details even
for small objects in the dataset, while SSD takes a whole
image with the same resolution and thus loses many de-
tails and introduces more confusions. If we go further by
training SSD on all 200 DET categories, we see that SSD
Full has similar performance on these three categories with
SSD 3. Finally, SSD Full achieves 31.0 mAP on the val2
dataset, which is worse than the two-stage method (44.7)
but still very promising given that SSD is about 100× faster,
and that SSD is much easier to train and integrate in other
systems where detection is needed.

4.1.3 More feature maps are better

We notice that for some objects, such as dog, which are rel-
atively big in the input images, the performance is not much
different compared to the two-stage method (88.7 vs. 90.4).
However, for other objects, such as car, SSD performs much
worse than the two-stage method. We hypothesize that this
is because SSD cannot handle those small objects since the
input image is too small and loses many details of the small
objects. For example, at training time, we resize each input
image to 299 × 299, resulting in 8 × 8 feature map on top.
Following [21], we further reduce the topmost feature map
to 6 × 6, 4 × 4, 3 × 3, 2 × 2, and 1 × 1 by using extra
convolutional layers, impose 1420 manually optimized pri-
ors instead of the ones described in Sec. 3.3 on these layers,
and use all of these feature maps to do predictions. These
feature maps all have large receptive fields, and thus can
handle very large objects. But they cannot detect very small
objects because of the down sampling effect in both input
image and feature maps. Inspired by many works in seman-

3 http://host.robots.ox.ac.uk:8080/anonymous/ZOFLVS.html
4 http://host.robots.ox.ac.uk:8080/anonymous/KXJIN8.html

http://host.robots.ox.ac.uk:8080/anonymous/ZOFLVS.html
http://host.robots.ox.ac.uk:8080/anonymous/KXJIN8.html

System data aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Fast R-CNN [5] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0
Faster R-CNN [16] 07+12 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6 73.2

SSD (299× 299) 07+12 64.5 65.6 55.5 54.5 31.5 75.1 65.7 75.2 41.3 53.9 69.9 70.1 70.4 69.9 64.3 36.0 54.9 69.8 78.7 57.0 61.2
SSD (443× 443) 07+12 71.4 76.2 63.5 60.2 40.7 80.8 76.4 78.6 54.9 72.0 72.3 73.8 76.0 75.9 72.0 49.8 69.1 73.1 77.9 69.7 69.2

Table 2. PASCAL VOC2007 test detection results. Training data key: ”07+12” – VOC07 trainval and VOC12 trainval. Both
Fast R-CNN and Faster R-CNN use input images whose minimum dimension is 600. The two SSD models have exactly the same settings
except that they have different input size (299× 299 vs. 443× 443). It is obvious that larger input size leads to much better results.

System data aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Fast R-CNN [5] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7
Fast R-CNN [5] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4
Faster R-CNN [16] 07++12 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5 70.4
YOLO [15] 07++12 77.0 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8 57.9

SSD (299× 299)3 07+12 71.2 61.7 49.4 38.6 25.9 69.5 52.0 75.7 34.1 52.3 53.8 69.2 59.2 68.0 63.8 25.8 44.4 53.3 70.7 50.1 54.4
SSD (443× 443)4 07+12 78.6 68.5 60.2 46.4 35.6 74.7 65.5 81.8 46.6 61.0 57.6 75.8 69.4 75.7 72.1 38.2 62.7 60.2 75.9 58.9 63.3

Table 3. PASCAL VOC2012 test detection results. Training data key: ”12” – VOC12 trainval, ”07+12” – VOC07 trainval
and VOC12 trainval, ”07++12” – VOC07 trainval and test and VOC12 trainval. Fast R-CNN and Faster R-CNN use input
images whose minimum dimension is 600, while the input size for YOLO is 448× 448. SSD models are the same as the ones in Table 2.

tic segmentation [14, 7, 13], we also use lower level feature
maps to do predictions and combine the predictions for the
final detection results. For example, instead of only using
the 8 × 8 (and additional upper) feature maps, we also use
lower feature maps such as 17×17 and 35×35 so that these
lower feature maps can capture more fine details of the input
objects. As a result, we have 9864 priors in total (6 priors
per location), far more than 1420. However, the computa-
tion overhead is negligible because we use 1 × 1 features
for predictions and share the prior for all categories. From
Table 1, we can see that SSD Multi, a model combining pre-
dictions from lower level feature maps, is obviously better
than SSD Full (34.7 vs. 31.0). Thus, including lower level
feature maps can help improve performance with negligible
additional computation time.

4.1.4 Larger input image size is better

Even if we use the lower feature maps to help improve SSD
on small objects, it is still not enough because the input im-
age size is small compared to the average image resolution
on ILSVRC DET (299×299 vs. 482×415). Thus we have
experimented with larger input image size (443×443), with
all other settings the same as before except the increase of
the number of priors (2704 vs. 1420) as we have larger fea-
ture maps. From Table 1, we can see that using larger input
size has a much bigger improvement than using lower fea-
ture maps with the same input size. For example, it results
in a 5.7 AP increase for person and 6.1 for car, making both
of them have comparable performance to the baseline. We
hypothesize that the bigger model can detect small objects
much better because it sees more details and thus has less
confusion between categories. AP also increases by 3.3 for
dog, resulting in even better performance than the two-stage

method (92.0 vs. 90.4). As a result, the mAP increases from
31.0 to 39.6; and the computation complexity only doubles.
As far as we know, SSD is the first and best ”single stage”
method on the ILSVRC 2014 DET val2 dataset.

Although there is still a gap between SSD and the two-
stage method, we could expect to bridge the gap further by
using the lower feature maps from the 443 × 443 model or
using an even larger input image size (e.g. 600 × 600 as
used in [5, 16]). These are left for future work.

4.2. VOC 2007 results

On this dataset, we mainly compare with other top
”single stage” methods. In particular, we use VOC2007
trainval and VOC2012 trainval for training, and
test on VOC2007 test. Notice that both Fast R-CNN [5]
and Faster R-CNN [16] are fine-tuned from VGG [19] and
use input images whose minimum dimension is 600. Our
SSD is fine-tuned from a particular version of Inception,
and uses either a 299× 299 or 443× 443 input image size.

Table 2 shows that Fast R-CNN and Faster R-CNN have
slightly better performance than SSD, possibly because they
have bigger input image size. However, Fast R-CNN is
much slower because it still requires the proposal step.
Faster R-CNN is hard to train because it has to alterna-
tively fine-tune the shared convolutional layers and the ex-
tra prediction layers for RPN and Fast R-CNN. Our SSD is
easy and straightforward to train, and completely discards
the separate object proposal step. Table 3 shows compar-
isons on VOC2012 test set. We use the same models as
Table 2. Fast R-CNN and Faster R-CNN have even bet-
ter performance because they use extra 4952 images from
VOC2007 test for training. However, the gap is smaller
if Fast R-CNN is only trained on VOC2012 trainval.
Compared to YOLO, SSD 299 × 299 already has compa-

occ trn size asp view part
0

0.2

0.4

0.6

0.8

1

0.301

0.739

0.634
0.683

0.108

0.883

0.528

0.719

0.471

0.787

0.486

0.749
0.659

SSD 299: Sensitivity and Impact

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1

0.02

0.45

0.77

0.98
0.91

0.14

0.50

0.77

0.88
0.96

0.05

0.31

0.63

0.860.88

0.12

0.26

0.69

0.850.83

0.31

0.76

0.85

0.950.96

0.01

0.20

0.51
0.58

0.42

0.11

0.63

0.92
0.950.97airplane bicycle bird boat cat chair table

SSD 299: BBox Area

XTT M WXW XTT M WXW XTT M WXW XTT M WXW XTT M WXW XTT M WXW XTT M WXW
0

0.2

0.4

0.6

0.8

1

0.59

0.46

0.770.77
0.81

0.51

0.68

0.770.75

0.59

0.50

0.62
0.58

0.63
0.56 0.58

0.64
0.600.620.65

0.750.77

0.87
0.83

0.74

0.360.37
0.41

0.46

0.32

0.57

0.810.840.84

0.74

airplane bicycle bird boat cat chair table

SSD 299: Aspect Ratio

occ trn size asp view part
0

0.2

0.4

0.6

0.8

1

0.427

0.807

0.702
0.785

0.278

0.903

0.627

0.794

0.578

0.857

0.602

0.816
0.746

SSD 443: Sensitivity and Impact

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1

0.14

0.67

0.82

0.97
0.93

0.42

0.81
0.85

0.89
0.96

0.14

0.54

0.73

0.870.90

0.31

0.53

0.70

0.86
0.91

0.39

0.83
0.90

0.960.97

0.15

0.47

0.660.65

0.41 0.38

0.75

0.92
0.960.95airplane bicycle bird boat cat chair table

SSD 443: BBox Area

XT T M WXW XT T M WXW XT T M WXW XT T M WXW XT T M WXW XT T M WXW XT T M WXW
0

0.2

0.4

0.6

0.8

1

0.72

0.60

0.830.800.83

0.71

0.860.84
0.810.78

0.55

0.74
0.68

0.74

0.65

0.74
0.690.710.68

0.57

0.85
0.80

0.90
0.840.83

0.54
0.600.570.54

0.42

0.74

0.890.870.87

0.76

airplane bicycle bird boat cat chair table

SSD 443: Aspect Ratio

Figure 2. Sensitivity and impact of different object characteristics on VOC2007 test set. Each plot shows the normalized AP [9]
with standard error bars (red). Black dashed lines indicate overall normalized AP. The most left plot summarizes the sensitivity for each
characteristic over all categories. The rest two plots show detailed effects per categories. Key: BBox Area: XS=extra-small; S=small;
M=medium; L=large; XL =extra-large. Aspect Ratio: XT=extra-tall/narrow; T=tall; M=medium; W=wide; XW =extra-wide.

animals

total detections (x 357)
0.125 0.25 0.5 1 2 4 8

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

0

20

40

60

80

100

Cor
Loc
Sim
Oth
BG

furniture

total detections (x 400)
0.125 0.25 0.5 1 2 4 8

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

0

20

40

60

80

100

Cor
Loc
Sim
Oth
BG

vehicles

total detections (x 415)
0.125 0.25 0.5 1 2 4 8

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

0

20

40

60

80

100

Cor
Loc
Sim
Oth
BG

animals

total false positives
25 50 100 200 400 800 16003200

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

0

20

40

60

80

100
Loc
Sim
Oth
BG

furniture

total false positives
25 50 100 200 400 800 16003200

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

0

20

40

60

80

100
Loc
Sim
Oth
BG

vehicles

total false positives
25 50 100 200 400 800 16003200

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

0

20

40

60

80

100
Loc
Sim
Oth
BG

Figure 3. Visualization of performance for SSD 443 on animal,
furniture, and vehicle from VOC2007 test. Top row shows
the cumulative fraction of detections that are correct (Cor) or false
positive due to poor localization (Loc), confusion with similar cat-
egories (Sim), with others (Oth), or with background (BG). Solid
(red) line reflects the change of recall with ”strong” criteria (0.5
jaccard overlap) as the number of detections increases. Dashed
(red) line is using the ”weak” criteria (0.1 jaccard overlap). Bot-
tom row shows the distribution of top-ranked false positive types.

rable performance (54.4 vs. 57.9). When using the same
input size, our SSD is much better than YOLO (63.3 vs.
57.9). It is because of the use of the convolutional priors
from multiple feature maps and matching strategy during
training, making SSD more flexible and better than YOLO.

In addition, we used the detection analysis tool from [9]
to understand what characteristics affects SSD the most.
Figure 3 shows that SSD can detect various object cate-
gories with high quality (large white area). It is very con-
fident with most of the top detections. The recall is around
85-90%, and is much higher with ”weak” (0.1 jaccard over-
lap) criteria. Compared to R-CNN [6], SSD has less local-
ization error, indicating that SSD can localize objects bet-

ter because it directly learns to regress priors to the objects
instead of using two decoupled steps. However, SSD has
more confusions with similar object categories, partly be-
cause we share locations for multiple categories and the in-
put size is too small to distinguish the difference.

Figure 2 shows that SSD is very sensitive to the bound-
ing box size. In other words, it has much worse perfor-
mance on smaller objects than bigger objects. For example,
it almost has 0 AP for extra-small (XS) objects if the input
size is 299 × 299. This is not surprising because those XS
objects may not even have any information at the topmost
layer (8×8). Increasing the input size (e.g. from 299×299
to 443 × 443) can help improve detecting XS objects, but
there is still a lot of room to improve. On the positive side,
we can clearly see that SSD performs really well on large
objects. And it is very robust to different aspect ratios and
viewpoints of objects because we have imposed priors of
various shapes per feature map location.

In the future, we would like to try bigger input size (e.g.
600 × 600) and/or using lower feature maps as was done
in SSD Multi on ILSVRC. We expect this will further help
remedy the confusion with similar categories problem and
improve performance on small objects.

4.3. Training time

It takes a while for SSD to learn to regress priors to
ground truth and predict confidences for all categories at
the same time. For example, starting from a pre-trained net-
work and using a batch size of 32 images, the network takes
3M steps to converge if trained on ILSVRC DET train
dataset, and 500K steps on PASCAL VOC2012 + VOC2007
trainval. One reason is because there are many detec-
tions from all locations of multiple feature maps for mul-
tiple categories. We can reduce the training time by only
updating all positives plus a small set of negatives (hard
negatives) as described in Sec. 3.4. By doing this, perfor-

Source Match method Target mAP # matches

priors Per-prediction 0/1 39.0 160
priors Per-prediction Jac 34.7 160
priors Bipartite 0/1 31.7 28
priors Bipartite Jac 27.8 28

predictions Per-prediction 0/1 20.8 25000
predictions Per-prediction Jac 19.5 26000
predictions Bipartite 0/1 28.2 28
predictions Bipartite Jac 29.3 28

Table 4. Design choices comparison on 20 PASCAL classes
from ILSVRC2014 DET. Using priors to do per-prediction
matching and regressing to 0/1 target performed the best.

mance grows much faster in the beginning but still needs
a similar number of steps to converge. Besides, compared
to [6, 16], who regress selective search or RPN proposal
boxes to ground truth, SSD requires more training steps be-
cause SSD priors have much less spatial information for the
underlying objects and are thus more difficult to learn.

4.4. Design choices analysis

To understand SSD better, we have also carried out sev-
eral controlled experiments to examine how each compo-
nent affects the final performance. For all of the following
experiments, we use the same underlying network and input
size, and set batch size to 32. These experiments were per-
formed on a subset of ILSVRC 2014 DET dataset, which
has the same or equivalent 20 classes as PASCAL.

4.4.1 Matching source: Priors or Predictions?

During training time, a key step is to identify positives
and negatives by matching source boxes with ground truth
boxes. The source boxes can be either priors or actual pre-
dictions. If we use priors, which serve as ”anchors”, to do
matching, we force the network to regress these priors to
the ground truth and avoid letting the predictions free-float.
However, if we use the prediction results to do matching,
the network will be biased towards its own outputs. From
Table 4, we can clearly see that using priors to do matching
is much better than using predictions. Especially for per-
prediction matching (as we will described in details later),
using priors for matching doubles the average precision.

4.4.2 Matching method: Bipartite or Per-prediction?

As we have introduced in 3.1.1, there are two matching
strategies: bipartite and per-prediction. Using different
matching strategies will affect the number of positives and
negatives during training time. In Table 4, we show the
(average) number of matches when the models start saturat-
ing during training time. Because bipartite matching does
a greedy one-to-one matching with ground truth boxes, it
has an average of 28 matches for batch size of 32, which

means that there are around 28 ground truth boxes on av-
erage in a batch. From Table 4, we can see that using the
per-prediction matching strategy results in more positives.
For example, if we use priors to do per-prediction matching,
it has much more positives than bipartite (160 vs. 28), and
also has better performance. But do we always get better
performance if we have more positives? Not really. For ex-
ample, if we use predictions to do per-prediction matching
it has about 25000 matches, which means almost all predic-
tions are matched to ground truth boxes – a clear overfit and
bias toward its own outputs. Indeed, performance is much
worse than using bipartite matching.

4.4.3 Target type: 0/1 or Jac

Since we used the multi-class logistic loss during the back-
propagation step, we could either regress each category us-
ing 0/1 or Jac (jaccard overlap) in the objective function.
From Table 4, it looks like regressing with 0/1 is always
preferred, especially if we use priors for matching.

5. Conclusions
This paper introduces SSD, a unified and fast single shot

object detector for multiple categories. We have shown
that SSD has comparable results with many state-of-the-
art methods on both ILSVRC DET and PASCAL VOC,
and also have conducted many experiments to understand
SSD in detail. We want to emphasize that SSD has demon-
strated that sliding window methods can also achieve a sim-
ilar level of performance, if designed carefully, compared to
the methods with sparse object proposals [6, 2, 5, 16]. The
use of many convolutional priors and tiling the priors to fea-
ture maps of multiple scales that we introduce both improve
detection performance. It seems like using more ”windows”
does not always lead to worse results as argued in [5], and
actually can improve performance from our experiments. In
the future, we would like to explore training with higher
resolution input images and also use lower feature maps for
predictions to further improve detection performance.

Additionally, we also want to explore new techniques for
decreasing the training time. Currently SSD uses a single
network to learn to predict both the offsets and confidences
for multiple categories, which might be too hard to learn. In
the future, we would like to use two separate towers for lo-
calization and classification, so that each tower can be more
light weight for the specific subtask and thus decouple the
complexity of the problem and boost the training speed.

6. Acknowledgment
We would like to thank Alex Toshev for helpful discussions.
We are indebted to the Image Understanding and DistBelief
teams at Google for their support. We also thank Philip
Ammirato and Patrick Poirson for their helpful comments.

References
[1] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradi-

ent methods for online learning and stochastic optimization.
JMLR, 2011. 5

[2] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable
object detection using deep neural networks. In CVPR, 2014.
1, 2, 3, 8

[3] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. IJCV, 2010. 2, 5

[4] P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-
criminatively trained, multiscale, deformable part model. In
CVPR, 2008. 2

[5] R. Girshick. Fast r-cnn. arXiv preprint arXiv:1504.08083,
2015. 1, 2, 6, 8

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 1, 2, 5, 7, 8

[7] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localiza-
tion. arXiv preprint arXiv:1411.5752, 2014. 4, 6

[8] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In
ECCV. 2014. 1, 2, 4

[9] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error
in object detectors. In ECCV 2012. 2012. 7

[10] A. G. Howard. Some improvements on deep convolutional
neural network based image classification. arXiv preprint
arXiv:1312.5402, 2013. 5

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015. 5

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 1

[13] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking
wider to see better. arXiv preprint arXiv:1506.04579, 2015.
4, 6

[14] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-
tional networks for semantic segmentation. arXiv preprint
arXiv:1411.4038, 2014. 4, 6

[15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. arXiv
preprint arXiv:1506.02640 v4, 2015. 1, 2, 3, 6

[16] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. arXiv preprint arXiv:1506.01497, 2015. 1, 2, 4, 6,
8

[17] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and F.-F. Li. Imagenet large scale visual recog-
nition challenge. IJCV, 2015. 2, 5

[18] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013. 1, 2, 3, 4

[19] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 1, 6

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014. 1, 5

[21] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov.
Scalable, high-quality object detection. arXiv preprint
arXiv:1412.1441 v3, 2015. 2, 3, 5

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
arXiv preprint arXiv:1512.00567, 2015. 5

[23] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.
Smeulders. Selective search for object recognition. IJCV,
2013. 2

[24] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Object detectors emerge in deep scene cnns. arXiv preprint
arXiv:1412.6856, 2014. 4

