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Abstract

For object detection, the two-stage approach (e.g.,
Faster R-CNN) has been achieving the highest accuracy,
whereas the one-stage approach (e.g., SSD) has the ad-
vantage of high efficiency. To inherit the merits of both
while overcoming their disadvantages, in this paper, we pro-
pose a novel single-shot based detector, called RefineDet,
that achieves better accuracy than two-stage methods and
maintains comparable efficiency of one-stage methods. Re-
fineDet consists of two inter-connected modules, namely,
the anchor refinement module and the object detection mod-
ule. Specifically, the former aims to (1) filter out nega-
tive anchors to reduce search space for the classifier, and
(2) coarsely adjust the locations and sizes of anchors to
provide better initialization for the subsequent regressor.
The latter module takes the refined anchors as the input
from the former to further improve the regression and pre-
dict multi-class label. Meanwhile, we design a transfer
connection block to transfer the features in the anchor re-
finement module to predict locations, sizes and class la-
bels of objects in the object detection module. The multi-
task loss function enables us to train the whole network
in an end-to-end way. Extensive experiments on PASCAL
VOC 2007, PASCAL VOC 2012, and MS COCO demon-
strate that RefineDet achieves state-of-the-art detection ac-
curacy with high efficiency. Code is available at https:
//github.com/sfzhang15/RefineDet.

1. Introduction
Object detection has achieved significant advances in re-

cent years, with the framework of deep neural networks
(DNN). The current DNN detectors of state-of-the-art can
be divided into two categories: (1) the two-stage approach,
including [3, 15, 36, 41], and (2) the one-stage approach,
including [30, 35]. In the two-stage approach, a sparse set
of candidate object boxes is first generated, and then they
are further classified and regressed. The two-stage meth-

ods have been achieving top performances on several chal-
lenging benchmarks, including PASCAL VOC [8] and MS
COCO [29].

The one-stage approach detects objects by regular and
dense sampling over locations, scales and aspect ratios. The
main advantage of this is its high computational efficiency.
However, its detection accuracy is usually behind that of
the two-stage approach, one of the main reasons being due
to the class imbalance problem [28].

Some recent methods in the one-stage approach aim to
address the class imbalance problem, to improve the detec-
tion accuracy. Kong et al. [24] use the objectness prior con-
straint on convolutional feature maps to significantly reduce
the search space of objects. Lin et al. [28] address the class
imbalance issue by reshaping the standard cross entropy
loss to focus training on a sparse set of hard examples and
down-weights the loss assigned to well-classified examples.
Zhang et al. [53] design a max-out labeling mechanism to
reduce false positives resulting from class imbalance.

In our opinion, the current state-of-the-art two-stage
methods, e.g., Faster R-CNN [36], R-FCN [5], and FPN
[27], have three advantages over the one-stage methods as
follows: (1) using two-stage structure with sampling heuris-
tics to handle class imbalance; (2) using two-step cascade to
regress the object box parameters; (3) using two-stage fea-
tures to describe the objects1. In this work, we design a
novel object detection framework, called RefineDet, to in-
herit the merits of the two approaches (i.e., one-stage and
two-stage approaches) and overcome their shortcomings. It
improves the architecture of the one-stage approach, by us-
ing two inter-connected modules (see Figure 1), namely, the
anchor 2 refinement module (ARM) and the object detection

1In case of Faster R-CNN, the features (excluding shared features) in
the first stage (i.e., RPN) are trained for the binary classification (being an
object or not), while the features (excluding shared features) in the sec-
ond stage(i.e., Fast R-CNN) are trained for the multi-class classification
(background or object classes).

2We denote the reference bounding box as “anchor box”, which is also
called “anchor” for simplicity, as in [36]. However, in [30], it is called
“default box”.
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Figure 1: Architecture of RefineDet. For better visualization, we only display the layers used for detection. The celadon
parallelograms denote the refined anchors associated with different feature layers. The stars represent the centers of the
refined anchor boxes, which are not regularly paved on the image.

module (ODM). Specifically, the ARM is designed to (1)
identify and remove negative anchors to reduce search space
for the classifier, and (2) coarsely adjust the locations and
sizes of anchors to provide better initialization for the subse-
quent regressor. The ODM takes the refined anchors as the
input from the former to further improve the regression and
predict multi-class labels. As shown in Figure 1, these two
inter-connected modules imitate the two-stage structure and
thus inherit the three aforementioned advantages to produce
accurate detection results with high efficiency. In addition,
we design a transfer connection block (TCB) to transfer the
features3 in the ARM to predict locations, sizes, and class
labels of objects in the ODM. The multi-task loss function
enables us to train the whole network in an end-to-end way.

Extensive experiments on PASCAL VOC 2007, PAS-
CAL VOC 2012, and MS COCO benchmarks demonstrate
that RefineDet outperforms the state-of-the-art methods.
Specifically, it achieves 85.8% and 86.8% mAPs on VOC
2007 and 2012, with VGG-16 network. Meanwhile, it out-
performs the previously best published results from both
one-stage and two-stage approaches by achieving 41.8%
AP4 on MS COCO test-dev with ResNet-101. In ad-

3The features in the ARM focus on distinguishing positive anchors
from background. We design the TCB to transfer the features in the ARM
to handle the more challenging tasks in the ODM, i.e., predict accurate
object locations, sizes and multi-class labels.

4Based on the evaluation protocol in MS COCO [29], AP is the sin-

dition, RefineDet is time efficient, i.e., it runs at 40.2 FPS
and 24.1 FPS on a NVIDIA Titan X GPU with the input
sizes 320× 320 and 512× 512 in inference.

The main contributions of this work are summarized as
follows. (1) We introduce a novel one-stage framework
for object detection, composed of two inter-connected mod-
ules, i.e., the ARM and the ODM. This leads to performance
better than the two-stage approach while maintaining high
efficiency of the one-stage approach. (2) To ensure the ef-
fectiveness, we design the TCB to transfer the features in
the ARM to handle more challenging tasks, i.e., predict ac-
curate object locations, sizes and class labels, in the ODM.
(3) RefineDet achieves the latest state-of-the-art results on
generic object detection (i.e., PASCAL VOC 2007 [10],
PASCAL VOC 2012 [11] and MS COCO [29]).

2. Related Work
Classical Object Detectors. Early object detection meth-
ods are based on the sliding-window paradigm, which ap-
ply the hand-crafted features and classifiers on dense image
grids to find objects. As one of the most successful meth-
ods, Viola and Jones [47] use Haar feature and AdaBoost
to train a series of cascaded classifiers for face detection,

gle most important metric, which is computed by averaging over all 10
intersection over union (IoU) thresholds (i.e., in the range [0.5:0.95] with
uniform step size 0.05) of 80 categories.



achieving satisfactory accuracy with high efficiency. DPM
[12] is another popular method using mixtures of multi-
scale deformable part models to represent highly variable
object classes, maintaining top results on PASCAL VOC [8]
for many years. However, with the arrival of deep convolu-
tional network, the object detection task is quickly dom-
inated by the CNN-based detectors, which can be roughly
divided into two categories, i.e., the two-stage approach and
one-stage approach.
Two-Stage Approach. The two-stage approach consists of
two parts, where the first one (e.g., Selective Search [46],
EdgeBoxes [55], DeepMask [32, 33], RPN [36]) generates a
sparse set of candidate object proposals, and the second one
determines the accurate object regions and the correspond-
ing class labels using convolutional networks. Notably, the
two-stage approach (e.g., R-CNN [16], SPPnet [18], Fast R-
CNN [15] to Faster R-CNN [36]) achieves dominated per-
formance on several challenging datasets (e.g., PASCAL
VOC 2012 [11] and MS COCO [29]). After that, numer-
ous effective techniques are proposed to further improve the
performance, such as architecture diagram [5, 26, 54], train-
ing strategy [41, 48], contextual reasoning [1, 14, 40, 50]
and multiple layers exploiting [3, 25, 27, 42].
One-Stage Approach. Considering the high efficiency, the
one-stage approach attracts much more attention recently.
Sermanet et al. [38] present the OverFeat method for clas-
sification, localization and detection based on deep Con-
vNets, which is trained end-to-end, from raw pixels to ul-
timate categories. Redmon et al. [34] use a single feed-
forward convolutional network to directly predict object
classes and locations, called YOLO, which is extremely
fast. After that, YOLOv2 [35] is proposed to improve
YOLO in several aspects, i.e., add batch normalization on
all convolution layers, use high resolution classifier, use
convolution layers with anchor boxes to predict bounding
boxes instead of the fully connected layers, etc. Liu et al.
[30] propose the SSD method, which spreads out anchors
of different scales to multiple layers within a ConvNet and
enforces each layer to focus on predicting objects of a cer-
tain scale. DSSD [13] introduces additional context into
SSD via deconvolution to improve the accuracy. DSOD
[39] designs an efficient framework and a set of principles to
learn object detectors from scratch, following the network
structure of SSD. To improve the accuracy, some one-stage
methods [24, 28, 53] aim to address the extreme class im-
balance problem by re-designing the loss function or clas-
sification strategies. Although the one-stage detectors have
made good progress, their accuracy still trails that of two-
stage methods.

3. Network Architecture
Refer to the overall network architecture shown in Fig-

ure 1. Similar to SSD [30], RefineDet is based on a feed-

forward convolutional network that produces a fixed num-
ber of bounding boxes and the scores indicating the pres-
ence of different classes of objects in those boxes, followed
by the non-maximum suppression to produce the final re-
sult. RefineDet is formed by two inter-connected modules,
i.e., the ARM and the ODM. The ARM aims to remove neg-
ative anchors so as to reduce search space for the classifier
and also coarsely adjust the locations and sizes of anchors
to provide better initialization for the subsequent regressor,
whereas ODM aims to regress accurate object locations and
predict multi-class labels based on the refined anchors. The
ARM is constructed by removing the classification layers
and adding some auxiliary structures of two base networks
(i.e., VGG-16 [43] and ResNet-101 [19] pretrained on Im-
ageNet [37]) to meet our needs. The ODM is composed of
the outputs of TCBs followed by the prediction layers (i.e.,
the convolution layers with 3× 3 kernel size), which gener-
ates the scores for object classes and shape offsets relative to
the refined anchor box coordinates. The following explain
three core components in RefineDet, i.e., (1) transfer con-
nection block (TCB), converting the features from the ARM
to the ODM for detection; (2) two-step cascaded regression,
accurately regressing the locations and sizes of objects; (3)
negative anchor filtering, early rejecting well-classified neg-
ative anchors and mitigate the imbalance issue.

Transfer Connection Block. To link between the ARM
and ODM, we introduce the TCBs to convert features of dif-
ferent layers from the ARM, into the form required by the
ODM, so that the ODM can share features from the ARM.
Notably, from the ARM, we only use the TCBs on the fea-
ture maps associated with anchors. Another function of the
TCBs is to integrate large-scale context [13, 27] by adding
the high-level features to the transferred features to improve
detection accuracy. To match the dimensions between them,
we use the deconvolution operation to enlarge the high-level
feature maps and sum them in the element-wise way. Then,
we add a convolution layer after the summation to ensure
the discriminability of features for detection. The architec-
ture of the TCB is shown in Figure 2.

Two-Step Cascaded Regression. Current one-stage meth-
ods [13, 24, 30] rely on one-step regression based on various
feature layers with different scales to predict the locations
and sizes of objects, which is rather inaccurate in some chal-
lenging scenarios, especially for the small objects. To that
end, we present a two-step cascaded regression strategy to
regress the locations and sizes of objects. That is, we use
the ARM to first adjust the locations and sizes of anchors to
provide better initialization for the regression in the ODM.
Specifically, we associate n anchor boxes with each regu-
larly divided cell on the feature map. The initial position of
each anchor box relative to its corresponding cell is fixed.
At each feature map cell, we predict four offsets of the re-
fined anchor boxes relative to the original tiled anchors and
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Figure 2: The overview of the transfer connection block.

two confidence scores indicating the presence of foreground
objects in those boxes. Thus, we can yield n refined anchor
boxes at each feature map cell.

After obtaining the refined anchor boxes, we pass them
to the corresponding feature maps in the ODM to further
generate object categories and accurate object locations and
sizes, as shown in Figure 1. The corresponding feature
maps in the ARM and the ODM have the same dimension.
We calculate c class scores and the four accurate offsets of
objects relative to the refined anchor boxes, yielding c + 4
outputs for each refined anchor boxes to complete the de-
tection task. This process is similar to the default boxes
used in SSD [30]. However, in contrast to SSD [30] di-
rectly uses the regularly tiled default boxes for detection,
RefineDet uses two-step strategy, i.e., the ARM generates
the refined anchor boxes, and the ODM takes the refined
anchor boxes as input for further detection, leading to more
accurate detection results, especially for the small objects.
Negative Anchor Filtering. To early reject well-classified
negative anchors and mitigate the imbalance issue, we de-
sign a negative anchor filtering mechanism. Specifically, in
training phase, for a refined anchor box, if its negative con-
fidence is larger than a preset threshold θ (i.e., set θ = 0.99
empirically), we will discard it in training the ODM. That is,
we only pass the refined hard negative anchor boxes and re-
fined positive anchor boxes to train the ODM. Meanwhile,
in the inference phase, if a refined anchor box is assigned
with a negative confidence larger than θ, it will be discarded
in the ODM for detection.

4. Training and Inference

Data Augmentation. We use several data augmentation
strategies presented in [30] to construct a robust model to

adapt to variations of objects. That is, we randomly ex-
pand and crop the original training images with additional
random photometric distortion [20] and flipping to generate
the training samples. Please refer to [30] for more details.
Backbone Network. We use VGG-16 [43] and ResNet-101
[19] as the backbone networks in our RefineDet, which are
pretrained on the ILSVRC CLS-LOC dataset [37]. Notably,
RefineDet can also work on other pretrained networks, such
as Inception V2 [22], Inception ResNet [44], and ResNeXt-
101 [49]. Similar to DeepLab-LargeFOV [4], we convert
fc6 and fc7 of VGG-16 to convolution layers conv fc6 and
conv fc7 via subsampling parameters. Since conv4 3 and
conv5 3 have different feature scales compared to other lay-
ers, we use L2 normalization [31] to scale the feature norms
in conv4 3 and conv5 3 to 10 and 8, then learn the scales
during back propagation. Meanwhile, to capture high-level
information and drive object detection at multiple scales,
we also add two extra convolution layers (i.e., conv6 1 and
conv6 2) to the end of the truncated VGG-16 and one extra
residual block (i.e., res6) to the end of the truncated ResNet-
101, respectively.
Anchors Design and Matching. To handle different scales
of objects, we select four feature layers with the total stride
sizes 8, 16, 32, and 64 pixels for both VGG-16 and ResNet-
1015, associated with several different scales of anchors for
prediction. Each feature layer is associated with one spe-
cific scale of anchors (i.e., the scale is 4 times of the to-
tal stride size of the corresponding layer) and three aspect
ratios (i.e., 0.5, 1.0, and 2.0). We follow the design of
anchor scales over different layers in [53], which ensures
that different scales of anchors have the same tiling den-
sity [51, 52] on the image. Meanwhile, during the train-
ing phase, we determine the correspondence between the
anchors and ground truth boxes based on the jaccard over-
lap [7], and train the whole network end-to-end accordingly.
Specifically, we first match each ground truth to the anchor
box with the best overlap score, and then match the anchor
boxes to any ground truth with overlap higher than 0.5.
Hard Negative Mining. After matching step, most of the
anchor boxes are negatives, even for the ODM, where some
easy negative anchors are rejected by the ARM. Similar
to SSD [30], we use hard negative mining to mitigate the
extreme foreground-background class imbalance, i.e., we
select some negative anchor boxes with top loss values to
make the ratio between the negatives and positives below
3 : 1, instead of using all negative anchors or randomly se-
lecting the negative anchors in training.
Loss Function. The loss function for RefineDet consists of
two parts, i.e., the loss in the ARM and the loss in the ODM.

5For the VGG-16 base network, the conv4 3, conv5 3, conv fc7, and
conv6 2 feature layers are used to predict the locations, sizes and con-
fidences of objects. While for the ResNet-101 base network, res3b3,
res4b22, res5c, and res6 are used for prediction.



For the ARM, we assign a binary class label (of being an
object or not) to each anchor and regress its location and
size simultaneously to get the refined anchor. After that, we
pass the refined anchors with the negative confidence less
than the threshold to the ODM to further predict object cat-
egories and accurate object locations and sizes. With these
definitions, we define the loss function as:

L({pi}, {xi}, {ci}, {ti}) = 1
Narm

(∑
i Lb(pi, [l

∗
i ≥ 1])

+
∑

i[l
∗
i ≥ 1]Lr(xi, g

∗
i )
)
+ 1

Nodm

(∑
i Lm(ci, l

∗
i )

+
∑

i[l
∗
i ≥ 1]Lr(ti, g

∗
i )
)

(1)
where i is the index of anchor in a mini-batch, l∗i is the
ground truth class label of anchor i, g∗i is the ground truth
location and size of anchor i. pi and xi are the predicted
confidence of the anchor i being an object and refined co-
ordinates of the anchor i in the ARM. ci and ti are the
predicted object class and coordinates of the bounding box
in the ODM. Narm and Nodm are the numbers of positive
anchors in the ARM and ODM, respectively. The binary
classification loss Lb is the cross-entropy/log loss over two
classes (object vs. not object), and the multi-class classifi-
cation loss Lm is the softmax loss over multiple classes con-
fidences. Similar to Fast R-CNN [15], we use the smooth
L1 loss as the regression loss Lr. The Iverson bracket indi-
cator function [l∗i ≥ 1] outputs 1 when the condition is true,
i.e., l∗i ≥ 1 (the anchor is not the negative), and 0 other-
wise. Hence [l∗i ≥ 1]Lr indicates that the regression loss is
ignored for negative anchors. Notably, if Narm = 0, we set
Lb(pi, [l

∗
i ≥ 1]) = 0 and Lr(xi, g

∗
i ) = 0; and if Nodm = 0,

we set Lm(ci, l
∗
i ) = 0 and Lr(ti, g

∗
i ) = 0 accordingly.

Optimization. As mentioned above, the backbone network
(e.g., VGG-16 and ResNet-101) in our RefineDet method is
pretrained on the ILSVRC CLS-LOC dataset [37]. We use
the “xavier” method [17] to randomly initialize the parame-
ters in the two extra added convolution layers (i.e., conv6 1
and conv6 2) of VGG-16 based RefineDet, and draw the pa-
rameters from a zero-mean Gaussian distribution with stan-
dard deviation 0.01 for the extra residual block (i.e., res6) of
ResNet-101 based RefineDet. We set the default batch size
to 32 in training. Then, the whole network is fine-tuned us-
ing SGD with 0.9 momentum and 0.0005 weight decay. We
set the initial learning rate to 10−3, and use slightly differ-
ent learning rate decay policy for different dataset, which
will be described in details later.
Inference. At inference phase, the ARM first filters out the
regularly tiled anchors with the negative confidence scores
larger than the threshold θ, and then refines the locations
and sizes of remaining anchors. After that, the ODM takes
over these refined anchors, and outputs top 400 high con-
fident detections per image. Finally, we apply the non-
maximum suppression with jaccard overlap of 0.45 per
class and retain the top 200 high confident detections per
image to produce the final detection results.

5. Experiments
Experiments are conducted on three datasets: PASCAL

VOC 2007, PASCAL VOC 2012 and MS COCO. The PAS-
CAL VOC and MS COCO datasets include 20 and 80 ob-
ject classes, respectively. The classes in PASCAL VOC are
the subset of that in MS COCO. We implement RefineDet
in Caffe [23]. All the training and testing codes and the
trained models are available at https://github.com/
sfzhang15/RefineDet.

5.1. PASCAL VOC 2007

All models are trained on the VOC 2007 and VOC 2012
trainval sets, and tested on the VOC 2007 test set. We
set the learning rate to 10−3 for the first 80k iterations, and
decay it to 10−4 and 10−5 for training another 20k and 20k
iterations, respectively. We use the default batch size 32 in
training, and only use VGG-16 as the backbone network for
all the experiments on the PASCAL VOC dataset, including
VOC 2007 and VOC 2012.

We compare RefineDet6 with the state-of-the-art detec-
tors in Table 1. With low dimension input (i.e., 320× 320),
RefineDet produces 80.0% mAP without bells and whis-
tles, which is the first method achieving above 80% mAP
with such small input images, much better than several
modern objectors. By using larger input size 512 × 512,
RefineDet achieves 81.8% mAP, surpassing all one-stage
methods, e.g., RON384 [24], SSD513 [13], DSSD513 [13],
etc. Comparing to the two-stage methods, RefineDet512
performs better than most of them except CoupleNet [54],
which is based on ResNet-101 and uses larger input size
(i.e., ∼ 1000 × 600) than our RefineDet512. As pointed
out in [21], the input size significantly influences detection
accuracy. The reason is that high resolution inputs make
the detectors “seeing” small objects clearly to increase suc-
cessful detections. To reduce the impact of input size for a
fair comparison, we use the multi-scale testing strategy to
evaluate RefineDet, achieving 83.1% (RefineDet320+) and
83.8% (RefineDet512+) mAPs, which are much better than
the state-of-the-art methods.

5.1.1 Run Time Performance

We present the inference speed of RefineDet and the state-
of-the-art methods in the fifth column of Table 1. The speed
is evaluated with batch size 1 on a machine with NVIDIA
Titan X, CUDA 8.0 and cuDNN v6. As shown in Table 1,
we find that RefineDet processes an image in 24.8ms (40.3
FPS) and 41.5ms (24.1 FPS) with input sizes 320 × 320
and 512× 512, respectively. To the best of our knowledge,

6Due to the shortage of computational resources, we only train Re-
fineDet with two kinds of input size, i.e., 320 × 320 and 512 × 512. We
believe the accuracy of RefineDet can be further improved using larger
input images.

https://github.com/sfzhang15/RefineDet
https://github.com/sfzhang15/RefineDet


Table 1: Detection results on PASCAL VOC dataset. For VOC 2007, all methods are trained on VOC 2007 and VOC 2012
trainval sets and tested on VOC 2007 test set. For VOC 2012, all methods are trained on VOC 2007 and VOC 2012
trainval sets plus VOC 2007 test set, and tested on VOC 2012 test set. Bold fonts indicate the best mAP.

Method Backbone Input size #Boxes FPS mAP (%)
VOC 2007 VOC 2012

two-stage:
Fast R-CNN[15] VGG-16 ∼ 1000× 600 ∼ 2000 0.5 70.0 68.4

Faster R-CNN[36] VGG-16 ∼ 1000× 600 300 7 73.2 70.4
OHEM[41] VGG-16 ∼ 1000× 600 300 7 74.6 71.9

HyperNet[25] VGG-16 ∼ 1000× 600 100 0.88 76.3 71.4
Faster R-CNN[36] ResNet-101 ∼ 1000× 600 300 2.4 76.4 73.8

ION[1] VGG-16 ∼ 1000× 600 4000 1.25 76.5 76.4
MR-CNN[14] VGG-16 ∼ 1000× 600 250 0.03 78.2 73.9

R-FCN[5] ResNet-101 ∼ 1000× 600 300 9 80.5 77.6
CoupleNet[54] ResNet-101 ∼ 1000× 600 300 8.2 82.7 80.4

one-stage:
YOLO[34] GoogleNet [45] 448× 448 98 45 63.4 57.9

RON384[24] VGG-16 384× 384 30600 15 75.4 73.0
SSD321[13] ResNet-101 321× 321 17080 11.2 77.1 75.4

SSD300∗[30] VGG-16 300× 300 8732 46 77.2 75.8
DSOD300[39] DS/64-192-48-1 300× 300 8732 17.4 77.7 76.3
YOLOv2[35] Darknet-19 544× 544 845 40 78.6 73.4
DSSD321[13] ResNet-101 321× 321 17080 9.5 78.6 76.3
SSD512∗[30] VGG-16 512× 512 24564 19 79.8 78.5
SSD513[13] ResNet-101 513× 513 43688 6.8 80.6 79.4

DSSD513[13] ResNet-101 513× 513 43688 5.5 81.5 80.0
RefineDet320 VGG-16 320× 320 6375 40.3 80.0 78.1
RefineDet512 VGG-16 512× 512 16320 24.1 81.8 80.1

RefineDet320+ VGG-16 - - - 83.1 82.7
RefineDet512+ VGG-16 - - - 83.8 83.5

RefineDet is the first real-time method to achieve detection
accuracy above 80% mAP on PASCAL VOC 2007. Com-
paring to SSD, RON, DSSD and DSOD, RefineDet asso-
ciates fewer anchor boxes on the feature maps (e.g., 24564
anchor boxes in SSD512∗[30] vs. 16320 anchor boxes in
RefineDet512). However, RefineDet still achieves top accu-
racy with high efficiency, mainly thanks to the design of two
inter-connected modules, (e.g., two-step regression), which
enables RefineDet to adapt to different scales and aspect ra-
tios of objects. Meanwhile, only YOLO and SSD300∗ are
slightly faster than our RefineDet320, but their accuracy are
16.6% and 2.5% worse than ours. In summary, RefineDet
achieves the best trade-off between accuracy and speed.

5.1.2 Ablation Study

To demonstrate the effectiveness of different components
in RefineDet, we construct four variants and evaluate them
on VOC 2007, shown in Table 3. Specifically, for a fair
comparison, we use the same parameter settings and input
size (320 × 320) in evaluation. All models are trained on
VOC 2007 and VOC 2012 trainval sets, and tested on
VOC 2007 test set.

Negative Anchor Filtering. To demonstrate the effective-
ness of the negative anchor filtering, we set the confidence

threshold θ of the anchors to be negative to 1.0 in both train-
ing and testing. In this case, all refined anchors will be
sent to the ODM for detection. Other parts of RefineDet re-
main unchanged. Removing negative anchor filtering leads
to 0.5% drop in mAP (i.e., 80.0% vs. 79.5%). The reason
is that most of these well-classified negative anchors will be
filtered out during training, which solves the class imbal-
ance issue to some extent.

Two-Step Cascaded Regression. To validate the effective-
ness of the two-step cascaded regression, we redesign the
network structure by directly using the regularly paved an-
chors instead of the refined ones from the ARM (see the
fourth column in Table 3). As shown in Table 3, we find that
mAP is reduced from 79.5% to 77.3%. This sharp decline
(i.e., 2.2%) demonstrates that the two-step anchor cascaded
regression significantly help promote the performance.

Transfer Connection Block. We construct a network by
cutting the TCBs in RefineDet and redefining the loss func-
tion in the ARM to directly detect multi-class of objects,
just like SSD, to demonstrate the effect of the TCB. The
detection accuracy of the model is presented in the fifth col-
umn in Table 3. We compare the results in the fourth and
fifth columns in Table 3 (77.3% vs. 76.2%) and find that
the TCB improves the mAP by 1.1%. The main reason is



Table 2: Detection results on MS COCO test-dev set. Bold fonts indicate the best performance.

Method Data Backbone AP AP50 AP75 APS APM APL

two-stage:
Fast R-CNN [15] train VGG-16 19.7 35.9 - - - -

Faster R-CNN [36] trainval VGG-16 21.9 42.7 - - - -
OHEM [41] trainval VGG-16 22.6 42.5 22.2 5.0 23.7 37.9

ION [1] train VGG-16 23.6 43.2 23.6 6.4 24.1 38.3
OHEM++ [41] trainval VGG-16 25.5 45.9 26.1 7.4 27.7 40.3

R-FCN [5] trainval ResNet-101 29.9 51.9 - 10.8 32.8 45.0
CoupleNet [54] trainval ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8

Faster R-CNN by G-RMI [21] - Inception-ResNet-v2[44] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN+++ [19] trainval ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [27] trainval35k ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w TDM [42] trainval Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

Deformable R-FCN [6] trainval Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5
umd det [2] trainval ResNet-101 40.8 62.4 44.9 23.0 43.4 53.2
G-RMI [21] trainval32k Ensemble of Five Models 41.6 61.9 45.4 23.9 43.5 54.9

one-stage:
YOLOv2 [35] trainval35k DarkNet-19[35] 21.6 44.0 19.2 5.0 22.4 35.5
SSD300∗ [30] trainval35k VGG-16 25.1 43.1 25.8 6.6 25.9 41.4

RON384++ [24] trainval VGG-16 27.4 49.5 27.1 - - -
SSD321 [13] trainval35k ResNet-101 28.0 45.4 29.3 6.2 28.3 49.3

DSSD321 [13] trainval35k ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6
SSD512∗ [30] trainval35k VGG-16 28.8 48.5 30.3 10.9 31.8 43.5
SSD513 [13] trainval35k ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [13] trainval35k ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet500 [28] trainval35k ResNet-101 34.4 53.1 36.8 14.7 38.5 49.1
RetinaNet800 [28]∗ trainval35k ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

RefineDet320 trainval35k VGG-16 29.4 49.2 31.3 10.0 32.0 44.4
RefineDet512 trainval35k VGG-16 33.0 54.5 35.5 16.3 36.3 44.3
RefineDet320 trainval35k ResNet-101 32.0 51.4 34.2 10.5 34.7 50.4
RefineDet512 trainval35k ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4

RefineDet320+ trainval35k VGG-16 35.2 56.1 37.7 19.5 37.2 47.0
RefineDet512+ trainval35k VGG-16 37.6 58.7 40.8 22.7 40.3 48.3
RefineDet320+ trainval35k ResNet-101 38.6 59.9 41.7 21.1 41.7 52.3
RefineDet512+ trainval35k ResNet-101 41.8 62.9 45.7 25.6 45.1 54.1

∗ This entry reports the single model accuracy of RetinaNet method, trained with scale jitter and for 1.5× longer than RetinaNet500.

Table 3: Effectiveness of various designs. All models are
trained on VOC 2007 and VOC 2012 trainval set and
tested on VOC 2007 test set.

Component RefineDet320
negative anchor filtering? !

two-step cascaded regression? ! !

transfer connection block? ! ! !

mAP (%) 80.0 79.5 77.3 76.2

that the model can inherit the discriminative features from
the ARM, and integrate large-scale context information to
improve the detection accuracy by using the TCB.

5.2. PASCAL VOC 2012

Following the protocol of VOC 2012, we submit the de-
tection results of RefineDet to the public testing server for
evaluation. We use VOC 2007 trainval set and test
set plus VOC 2012 trainval set (21, 503 images) for

training, and test on VOC 2012 test set (10, 991 images).
We use the default batch size 32 in training. Meanwhile, we
set the learning rate to 10−3 in the first 160k iterations, and
decay it to 10−4 and 10−5 for another 40k and 40k itera-
tions.

Table 1 shows the accuracy of the proposed RefineDet al-
gorithm, as well as the state-of-the-art methods. Among the
methods fed with input size 320 × 320, RefineDet320 ob-
tains the top 78.1% mAP, which is even better than most of
those two-stage methods using about 1000× 600 input size
(e.g., 70.4% mAP of Faster R-CNN [36] and 77.6% mAP
of R-FCN [5]). Using the input size 512 × 512, RefineDet
improves mAP to 80.1%, which is surpassing all one-stage
methods and only slightly lower than CoupleNet [54] (i.e.,
80.4%). CoupleNet uses ResNet-101 as base network with
1000 × 600 input size. To reduce the impact of input size
for a fair comparison, we also use multi-scale testing to
evaluate RefineDet and obtain the state-of-the-art mAPs of
82.7% (RefineDet320+) and 83.5% (RefineDet512+).



Table 4: Detection results on PASCAL VOC dataset. All
models are pre-trained on MS COCO, and fine-tuned on
PASCAL VOC. Bold fonts indicate the best mAP.

Method Backbone mAP (%)
VOC 2007 test VOC 2012 test

two-stage:
Faster R-CNN[36] VGG-16 78.8 75.9

OHEM++[41] VGG-16 - 80.1
R-FCN[5] ResNet-101 83.6 82.0

one-stage:
SSD300[30] VGG-16 81.2 79.3
SSD512[30] VGG-16 83.2 82.2

RON384++[24] VGG-16 81.3 80.7
DSOD300[39] DS/64-192-48-1 81.7 79.3
RefineDet320 VGG-16 84.0 82.7
RefineDet512 VGG-16 85.2 85.0

RefineDet320+ VGG-16 85.6 86.0
RefineDet512+ VGG-16 85.8 86.8

5.3. MS COCO

In addition to PASCAL VOC, we also evaluate Re-
fineDet on MS COCO [29]. Unlike PASCAL VOC, the
detection methods using ResNet-101 always achieve bet-
ter performance than those using VGG-16 on MS COCO.
Thus, we also report the results of ResNet-101 based Re-
fineDet. Following the protocol in MS COCO, we use the
trainval35k set [1] for training and evaluate the results
from test-dev evaluation server. We set the batch size to
32 in training7, and train the model with 10−3 learning rate
for the first 280k iterations, then 10−4 and 10−5 for another
80k and 40k iterations, respectively.

Table 7 shows the results on MS COCO test-dev set.
RefineDet320 with VGG-16 produces 29.4% AP that is bet-
ter than all other methods based on VGG-16 (e.g., SSD512∗

[30] and OHEM++ [41]). The accuracy of RefineDet can
be improved to 33.0% by using larger input size (i.e.,
512 × 512), which is much better than several modern ob-
ject detectors, e.g., Faster R-CNN [36] and SSD512∗ [30].
Meanwhile, using ResNet-101 can further improve the per-
formance of RefineDet, i.e., RefineDet320 with ResNet-101
achieves 32.0% AP and RefineDet512 achieves 36.4% AP,
exceeding most of the detection methods except Faster R-
CNN w TDM [42], Deformable R-FCN [6], RetinaNet800
[28], umd det [2], and G-RMI [21]. All these methods use a
much bigger input images for both training and testing (i.e.,
1000×600 or 800×800) than our RefineDet (i.e., 320×320
and 512 × 512). Similar to PASCAL VOC, we also report
the multi-scale testing AP results of RefineDet for fair com-
parison in Table 7, i.e., 35.2% (RefineDet320+ with VGG-
16), 37.6% (RefineDet512+ with VGG-16), 38.6% (Re-

7Due to the memory issue, we reduce the batch size to 20 (which is the
largest batch size we can use for training on a machine with 4 NVIDIA
M40 GPUs) to train the ResNet-101 based RefineDet with the input size
512× 512, and train the model with 10−3 learning rate for the first 400k
iterations, then 10−4 and 10−5 for another 80k and 60k iterations.

fineDet320+ with ResNet-101) and 41.8% (RefineDet512+
with ResNet-101). The best performance of RefineDet is
41.8%, which is the state-of-the-art, surpassing all pub-
lished two-stage and one-stage approaches. Although the
second best detector G-RMI [21] ensembles five Faster R-
CNN models, it still produces 0.2% lower AP than Re-
fineDet using a single model. Comparing to the third and
fourth best detectors, i.e., umd det [2] and RetinaNet800
[28], RefineDet produces 1.0% and 2.7% higher APs. In
addition, the main contribution: focal loss in RetinaNet800,
is complementary to our method. We believe that it can be
used in RefineNet to further improve the performance.

5.4. From MS COCO to PASCAL VOC

We study how the MS COCO dataset help the detec-
tion accuracy on PASCAL VOC. Since the object classes
in PASCAL VOC are the subset of MS COCO, we directly
fine-tune the detection models pretrained on MS COCO via
subsampling the parameters, which achieves 84.0% mAP
(RefineDet320) and 85.2% mAP (RefineDet512) on VOC
2007 test set, and 82.7% mAP (RefineDet320) and 85.0%
mAP (RefineDet512) on VOC 2012 test set, shown in Ta-
ble 4. After using the multi-scale testing, the detection ac-
curacy are promoted to 85.6%, 85.8%, 86.0% and 86.8%,
respectively. As shown in Table 4, using the training data in
MS COCO and PASCAL VOC, our RefineDet obtains the
top mAP scores on both VOC 2007 and VOC 2012. Most
important, our single model RefineNet512+ based on VGG-
16 ranks as the top 5 on the VOC 2012 Leaderboard (see
[9]), which is the best accuracy among all one-stage meth-
ods. Other two-stage methods achieving better results are
based on much deeper networks (e.g., ResNet-101 [19] and
ResNeXt-101 [49]) or using ensemble mechanism.

6. Conclusions
In this paper, we present a single-shot refinement neu-

ral network based detector, which consists of two inter-
connected modules, i.e., the ARM and the ODM. The ARM
aims to filter out the negative anchors to reduce search space
for the classifier and also coarsely adjust the locations and
sizes of anchors to provide better initialization for the subse-
quent regressor, while the ODM takes the refined anchors as
the input from the former ARM to regress the accurate ob-
ject locations and sizes and predict the corresponding multi-
class labels. The whole network is trained in an end-to-end
fashion with the multi-task loss. We carry out several exper-
iments on PASCAL VOC 2007, PASCAL VOC 2012, and
MS COCO datasets to demonstrate that RefineDet achieves
the state-of-the-art detection accuracy with high efficiency.
In the future, we plan to employ RefineDet to detect some
other specific kinds of objects, e.g., pedestrian, vehicle, and
face, and introduce the attention mechanism in RefineDet to
further improve the performance.
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7. Complete Object Detection Results
We show the complete object detection results of the

proposed RefineDet method on the PASCAL VOC 2007
test set, PASCAL VOC 2012 test set and MS COCO
test-dev set in Table 5, Table 6 and Table 7, respec-
tively. Among the results of all published methods, our Re-
fineDet achieves the best performance on these three detec-
tion datasets, i.e., 85.8% mAP on the PASCAL VOC 2007
test set, 86.8% mAP on the PASCAL VOC 2012 test
set and 41.8% AP on the MS COCO test-dev set.

8. Qualitative Results
We show some qualitative results on the PASCAL VOC

2007 test set, the PASCAL VOC 2012 test set and the
MS COCO test-dev in Figure 3, Figure 4, and Figure 5,
respectively. We only display the detected bounding boxes
with the score larger than 0.6. Different colors of the bound-
ing boxes indicate different object categories. Our method
works well with the occlusions, truncations, inter-class in-
terference and clustered background.

9. Detection Analysis on PASCAL VOC 2007
We use the detection analysis tool8 to understand the

performance of two RefineDet models (i.e., RefineDet320
and RefineDet512) clearly. Figure 6 shows that RefineDet
can detect various object categories with high quality (large
white area). The majority of its confident detections are
correct. The recall is around 95%-98%, and is much higher
with “weak” (0.1 jaccard overlap) criteria. Compared to
SSD, RefineDet reduces the false positive errors at all as-
pects: (1) RefineDet has less localization error (Loc), indi-
cating that RefineDet can localize objects better because it
uses two-step cascade to regress the objects. (2) RefineDet
has less confusion with background (BG), due to the neg-
ative anchor filtering mechanism in the anchor refinement
module (ARM). (3) RefineDet has less confusion with sim-
ilar categories (Sim), benefiting from using two-stage fea-
tures to describe the objects, i.e., the features in the ARM
focus on the binary classification (being an object or not),
while the features in the object detection module (ODM) fo-
cus on the multi-class classification (background or object
classes).

Figure 7 demonstrates that RefineDet is robust to dif-
ferent object sizes and aspect ratios. This is not surprising
because the object bounding boxes are obtained by the two-
step cascade regression, i.e., the ARM diversifies the default
scales and aspect ratios of anchor boxes so that the ODM
is able to regress tougher objects (e.g., extra-small, extra-
large, extra-wide and extra-tall). However, as shown in Fig-
ure 7, there is still much room to improve the performance

8http://web.engr.illinois.edu/˜dhoiem/projects/
detectionAnalysis/

of RefineDet for small objects, especially for the chairs and
tables. Increasing the input size (e.g., from 320 × 320 to
512 × 512) can improve the performance for small objects
, but it is only a temporary solution. Large input will be a
burden on running speed in inference. Therefore, detecting
small objects is still a challenge task and needs to be further
studied.

http://web.engr.illinois.edu/~dhoiem/projects/detectionAnalysis/
http://web.engr.illinois.edu/~dhoiem/projects/detectionAnalysis/


Table 5: Object detection results on the PASCAL VOC 2007 test set. All models use VGG-16 as the backbone network.

Method Data mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
RefineDet320 07+12 80.0 83.9 85.4 81.4 75.5 60.2 86.4 88.1 89.1 62.7 83.9 77.0 85.4 87.1 86.7 82.6 55.3 82.7 78.5 88.1 79.4
RefineDet512 07+12 81.8 88.7 87.0 83.2 76.5 68.0 88.5 88.7 89.2 66.5 87.9 75.0 86.8 89.2 87.8 84.7 56.2 83.2 78.7 88.1 82.3

RefineDet320+ 07+12 83.1 89.5 87.9 84.9 79.7 70.0 87.5 89.1 89.8 69.8 87.1 76.4 86.6 88.6 88.4 85.3 62.4 83.7 82.3 89.0 83.1
RefineDet512+ 07+12 83.8 88.5 89.1 85.5 79.8 72.4 89.5 89.5 89.9 69.9 88.9 75.9 87.4 89.6 89.0 86.2 63.9 86.2 81.0 88.6 84.4
RefineDet320 COCO+07+12 84.0 88.9 88.4 86.2 81.5 71.7 88.4 89.4 89.0 71.0 87.0 80.1 88.5 90.2 88.4 86.7 61.2 85.2 83.8 89.1 85.5
RefineDet512 COCO+07+12 85.2 90.0 89.2 87.9 83.1 78.5 90.0 89.9 89.7 74.7 89.8 79.5 88.7 89.9 89.2 87.8 63.1 86.4 82.3 89.5 84.7

RefineDet320+ COCO+07+12 85.6 90.2 89.0 87.6 84.6 78.0 89.4 89.7 89.9 74.7 89.8 80.5 89.0 89.7 89.6 87.8 65.5 87.9 84.2 88.6 86.3
RefineDet512+ COCO+07+12 85.8 90.4 89.6 88.2 84.9 78.3 89.8 89.9 90.0 75.9 90.0 80.0 89.8 90.3 89.6 88.3 66.2 87.8 83.5 89.3 85.2

Table 6: Object detection results on the PASCAL VOC 2012 test set. All models use VGG-16 as the backbone network.

Method Data mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
RefineDet320 07++12 78.1 90.4 84.1 79.8 66.8 56.1 83.1 82.7 90.7 61.7 82.4 63.8 89.4 86.9 85.9 85.7 53.3 84.3 73.1 87.4 73.9
RefineDet512 07++12 80.1 90.2 86.8 81.8 68.0 65.6 84.9 85.0 92.2 62.0 84.4 64.9 90.6 88.3 87.2 87.8 58.0 86.3 72.5 88.7 76.6

RefineDet320+ 07++12 82.7 92.0 88.4 84.9 74.0 69.5 86.0 88.0 93.3 67.0 86.2 68.3 92.1 89.7 88.9 89.4 62.0 88.5 75.9 90.0 80.0
RefineDet512+ 07++12 83.5 92.2 89.4 85.0 74.1 70.8 87.0 88.7 94.0 68.6 87.1 68.2 92.5 90.8 89.4 90.2 64.1 89.8 75.2 90.7 81.1
RefineDet320 COCO+07++12 82.7 93.1 88.2 83.6 74.4 65.1 87.1 87.1 93.7 67.4 86.1 69.4 91.5 90.6 91.4 89.4 59.6 87.9 78.1 91.1 80.0
RefineDet512 COCO+07++12 85.0 94.0 90.0 86.9 76.9 74.1 89.7 89.8 94.2 69.7 90.0 68.5 92.6 92.8 91.5 91.4 66.0 91.2 75.4 91.8 83.0

RefineDet320+ COCO+07++12 86.0 94.2 90.2 87.7 80.4 74.9 90.0 91.7 94.9 71.9 89.8 71.7 93.5 91.9 92.4 91.9 66.5 91.5 79.1 92.8 83.9
RefineDet512+ COCO+07++12 86.8 94.7 91.5 88.8 80.4 77.6 90.4 92.3 95.6 72.5 91.6 69.9 93.9 93.5 92.4 92.6 68.8 92.4 78.5 93.6 85.2

Table 7: Object detection results on the MS COCO test-dev set.

Method Net AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

RefineDet320 VGG-16 29.4 49.2 31.3 10.0 32.0 44.4 26.2 42.2 45.8 18.7 52.1 66.0
RefineDet512 VGG-16 33.0 54.5 35.5 16.3 36.3 44.3 28.3 46.4 50.6 29.3 55.5 66.0
RefineDet320 ResNet-101 32.0 51.4 34.2 10.5 34.7 50.4 28.0 44.0 47.6 20.2 53.0 69.8
RefineDet512 ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4 30.6 49.0 53.0 30.0 58.2 70.3

RefineDet320+ VGG-16 35.2 56.1 37.7 19.5 37.2 47.0 30.1 49.6 57.4 36.2 62.3 72.6
RefineDet512+ VGG-16 37.6 58.7 40.8 22.7 40.3 48.3 31.4 52.4 61.3 41.6 65.8 75.4
RefineDet320+ ResNet-101 38.6 59.9 41.7 21.1 41.7 52.3 32.2 52.9 61.1 40.2 66.2 77.1
RefineDet512+ ResNet-101 41.8 62.9 45.7 25.6 45.1 54.1 34.0 56.3 65.5 46.2 70.2 79.8

Figure 3: Qualitative results of RefineDet512 on the PASCAL VOC 2007 test set (corresponding to 85.2% mAP). VGG-16
is used as the backbone network. The training data is 07+12+COCO.



Figure 4: Qualitative results of RefineDet512 on the PASCAL VOC 2012 test set (corresponding to 85.0% mAP). VGG-16
is used as the backbone network. The training data is 07++12+COCO.

Figure 5: Qualitative results of RefineDet512 on the MS COCO test-dev set (corresponding to 36.4% mAP). ResNet-101
is used as the backbone network. The training data is COCO trainval35k.



Figure 6: Visualization of the performance of RefineDet512 on animals, vehicles, and furniture classes in the VOC 2007
test set. The top row shows the cumulative fraction of detections that are correct (Cor) or false positive due to poor
localization (Loc), confusion with similar categories (Sim), with others (Oth), or with background (BG). The solid red line
reflects the change of recall with strong criteria (0.5 jaccard overlap) as the number of detections increases. The dashed red
line is using the “weak” criteria (0.1 jaccard overlap). The bottom row shows the distribution of the top-ranked false positive
types.

Figure 7: Sensitivity and impact of different object characteristics on the VOC 2007 test set. The plot on the left shows the
effects of BBox Area per category, and the right plot shows the effect of Aspect Ratio. Key: BBox Area: XS=extra-small;
S=small; M=medium; L=large; XL =extra-large. Aspect Ratio: XT=extra-tall/narrow; T=tall; M=medium; W=wide; XW
=extra-wide.


