
Performance Evaluation of a Multi-GPU

Enabled Finite Element Method for
Computational Electromagnetics

Tristan Cabel, Joseph Charles, and Stéphane Lanteri

INRIA Sophia Antipolis-Méditerranée Research Center, Nachos project-team
06902 Sophia Antipolis Cedex, France

Stephane.Lanteri@inria.fr

Abstract. We study the performance of a multi-GPU enabled numer-
ical methodology for the simulation of electromagnetic wave propaga-
tion in complex domains and heterogeneous media. For this purpose,
the system of time-domain Maxwell equations is discretized by a discon-
tinuous finite element method which is formulated on an unstructured
tetrahedral mesh and which relies on a high order interpolation of the
electromagnetic field components within a mesh element. The resulting
numerical methodology is adapted to parallel computing on a cluster of
GPU acceleration cards by adopting a hybrid strategy which combines
a coarse grain SPMD programming model for inter-GPU parallelization
and a fine grain SIMD programming model for intra-GPU paralleliza-
tion. The performance improvement resulting from this multiple-GPU
algorithmic adaptation is demonstrated through three-dimensional sim-
ulations of the propagation of an electromagnetic wave in the head of a
mobile phone user.

1 Introduction

Efforts to exploit GPUs, for non-graphical applications have been underway since
2003 and has evolved into programmable and massively parallel computational
units with very high memory bandwidth. From this time to the present day a
review of research works aiming at harnessing GPUs for the acceleration of sci-
entific computing applications would hardly fit into one page. In particular, the
development of GPU enabled high order numerical methods for the solution of
partial differential equations is a rapidly growing field. Focusing on contributions
that are dealing with wave propagation problems, GPUs have been considered
for the first time for computational electromagnetics and computational geoseis-
mics applications respectively by Klöckner et al. [3] and by Komatitsch et al.
[5]-[4]. The present work shares several concerns with [3] which describes the de-
velopment of a GPU enabled discontinuous Galerkin (DG) method formulated
on an unstructured tetrahedral mesh for the discretization of hyperbolic systems
of conservation laws. As it is the case with the DG method considered in [3], the
approximation of the unknown field in a tetrahedron relies on a high order nodal

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part II, LNCS 7156, pp. 355–364, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

356 T. Cabel, J. Charles, and S. Lanteri

interpolation method which is a key feature in view of exploiting the processing
capabilities of a GPU architecture. A recent evolution of the work described in
[3] is presented in Gödel et al. [2] where the authors discuss the adaptation of a
multirate time stepping based DG method for solving the time-domain Maxwell
equations on a multiple GPU system. Here, we study the performance of a multi-
GPU enabled numerical methodology for the simulation of electromagnetic wave
propagation.

2 The Physical Problem and Its Numerical Treatment

We consider the Maxwell equations in three space dimensions for heterogeneous
linear isotropic media. The electric field E(x, t) = t(Ex, Ey, Ez) and the mag-
netic field H(x, t) = t(Hx, Hy, Hz) verify:

ε∂tE − curlH = −J , μ∂tH + curlE = 0, (1)

where the symbol ∂t denotes a time derivative and J(x, t) is a current source
term. These equations are set on a bounded polyhedral domain Ω of R3. The
electric permittivity ε(x) and the magnetic permeability coefficients μ(x) are
varying in space, time-invariant and both positive functions. The current source
term J is the sum of the conductive current Jσ = σE (where σ(x) denotes the
electric conductivity of the media) and of an applied current Js associated to a
localized source for the incident electromagnetic field. Our goal is to solve system
(1) in a domain Ω with boundary ∂Ω = Γa∪Γm, where we impose the following
boundary conditions: n × E = 0 on Γm, and L(E,H) = L(E inc,H inc) on Γa

where L(E,H) = n×E −
√

μ

ε
n× (H × n). Here n denotes the unit outward

normal to ∂Ω and (Einc,H inc) is a given incident field. The first boundary
condition is called metallic (referring to a perfectly conducting surface) while
the second condition is called absorbing and takes here the form of the Silver-
Müller condition which is a first order approximation of the exact absorbing
boundary condition. This absorbing condition is applied on Γa which represents
an artificial truncation of the computational domain.

For the numerical treatment of system (1), the domain Ω is triangulated into
a set Th of tetrahedra τi. We denote by Vi the set of indices of the elements which
are neighbors of τi (i.e. sharing a face). In the following, to simplify the presenta-
tion, we set J = 0. For a given partition Th, we seek approximate solutions to (1)
in the finite element space Vpi(Th) = {v ∈ L2(Ω)3 : v|τi ∈ (Ppi [τi])

3, ∀τi ∈ Th}
where Ppi [τi] denotes the space of nodal polynomial functions of degree at
most pi inside τi. Following the discontinuous Galerkin approach, the electric
and magnetic fields (Ei,Hi) are locally approximated as combinations of lin-
early independent basis vector fields ϕij . Let Pi = span(ϕij , 1 ≤ j ≤ di)
where di denotes the number of degrees of freedom inside τi. The approximate
fields (Eh,Hh), defined by (∀i,Eh|τi = Ei,Hh|τi = Hi), are thus allowed to be
completely discontinuous across element boundaries. For such a discontinuous

Performance Evaluation of a Multi-GPU Enabled Finite Element Method 357

field Uh, we define its average {Uh}ik through any internal interface aik, as
{Uh}ik = (Ui|aik

+Uk|aik
)/2. Because of this discontinuity, a global variational

formulation cannot be obtained. However, dot-multiplying (1) by ϕ ∈ Pi, inte-
grating over each single element τi and integrating by parts, yields a local weak
formulation involving volume integrals over τi and surface integrals over ∂τi.
While the numerical treatment of volume integrals is rather straightfoward, a
specific procedure must be introduced for the surface integrals, leading to the
definition of a numerical flux. In this study, we choose to use a fully centered
numerical flux, i.e., ∀i, ∀k ∈ Vi, E|aik

� {Eh}ik, H|aik
� {Hh}ik. The local

weak formulation can be written as:∫
τi

ϕ · εi∂tEi =
1

2

∫
τi

(curlϕ ·Hi + curlHi ·ϕ)−
1

2

∑
k∈Vi

∫
aik

ϕ · (Hk × nik),

∫
τi

ϕ · μi∂tHi=−1

2

∫
τi

(curlϕ · Ei + curlEi ·ϕ) +
1

2

∑
k∈Vi

∫
aik

ϕ · (Ek × nik).

(2)

Eq. (2) can be rewritten in terms of scalar unknowns. Inside each element, the

fields are re-composed according to Ei =
∑

1≤j≤d

Eijϕij and Hi =
∑

1≤j≤d

Hijϕij

and let us now denote by Ei and Hi respectively the column vectors (Eil)1≤l≤di

and (Hil)1≤l≤di . Then, (2) is equivalent to:

M ε
i

dEi

dt
= KiHi −

∑
k∈Vi

SikHk, Mμ
i

dHi

dt
= −KiEi +

∑
k∈Vi

SikEk, (3)

where the symmetric positive definite mass matricesMη
i (η stands for ε or μ), the

symmetric stiffness matrix Ki (both of size di × di) and the symmetric interface
matrix Sik (of size di × dk) are given by:

(Mη
i)jl = ηi

∫
τi

tϕij ·ϕil, (Sik)jl =
1

2

∫
aik

tϕij · (ϕkl × nik).

(Ki)jl =
1

2

∫
τi

tϕij · curlϕil +
tϕil · curlϕij .

The set of local systems of ordinary differential equations for each τi (3) can be
formally transformed in a global system. To this end, we suppose that all electric
(resp. magnetic) unknowns are gathered in a column vector E (resp. H) of size

dg =

Nt∑
i=1

di where Nt stands for the number of elements in Th. Then system (3)

can be rewritten as:

M
ε dE

dt
= KH− AH− BH+ CEE , M

μ dH

dt
= −KE+ AE− BE+ CHH, (4)

where we emphasize that Mε and M
μ are dg × dg block diagonal matrices. if we

set S = K− A− B then system (4) rewrites as:

M
ε dE

dt
= SH+ CEE , M

μ dH

dt
= − t

SE+ CHH. (5)

358 T. Cabel, J. Charles, and S. Lanteri

Finally, system (5) is time integrated using a second-order leap-frog scheme as:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M
ε

(
E
n+1 − E

n

Δt

)
= SH

n+ 1
2 + CEE

n,

M
μ

(
H

n+ 3
2 −H

n+ 1
2

Δt

)
= − t

SE
n+1 + CHH

n+ 1
2 .

(6)

The resulting discontinuous Galerkin time domain method (DGTD-Ppi in the
sequel) is analyzed in [1] where it is shown that, when Γa = ∅, the method is
stable under a CFL-like condition.

3 Implementation Aspects

3.1 DGTD CUDA Kernels

We describe here the implementation strategy adopted for the GT200 gener-
ation of NVIDIA GPUs and for calculations in single precision floating point
arithmetic. We first note that the main computational kernels of the DGTD-Ppi

method considered in this study are the volume and surface integrals over τi and
∂τi appearing in (2). Moreover, we limit ourselves to a uniform order method
i.e. p ≡ pi is the same for all the elements of the mesh, and we present ex-
perimental results for the values p = 1, 2, 3, 4. At the discrete level, these local
computations translate into the matrix-vector products appearing in (3). The
discrete equations for updating the electric and magnetic fields are composed
of the same steps and only differ by the fields they are applied to. They both
involve the same kernels that we will refer to in the sequel as intVolume (com-
putation of volume integrals), intSurface (computation of surface integrals)
and updateField (update of field components). All these kernels stick to the
following paradigm: (1) load data from device memory to shared memory, (2)
synchronize with all the other threads of the block so that each thread can safely
read shared memory locations that were populated by different threads, (3) pro-
cess the data in shared memory, (4) synchronize again to make sure that shared
memory has been updated with the results, (5) write the results back to device
memory. This paradigm ensures that almost all the operations on data allocated
in global memory are performed in a coalesced way.

We outline below the main characteristics of these kernels and refer to [6]
for a more detailed description. In our implementation, some useful elementary
matrices, such as the mass matrix computed on the reference element, are stored
in constant memory because they are small and are accessed following constant
memory patterns. For the sequel, we introduce the following notations: NBTET
is the number of tetrahedra that are treated by a block of threads. It depends
of the chosen interpolation order and it is taken to be a multiple of 16 because
of the way one load and write data to and from device memory; NDL is the
number of degrees of freedom (d.o.f) in an element τi for each field component,
for a given interpolation order; finally, NDF is the number of d.o.f on a face aik
for each field component, for a given interpolation order.

Performance Evaluation of a Multi-GPU Enabled Finite Element Method 359

Volume integral kernel : intVolume. This kernel operates on each d.o.f of a
tetrahedron. Since the number of d.o.f increases with the interpolation order,
resources needed by this kernel (registers and shared memory) also raise. Con-
sequently, we wrote two versions of this kernel: one kernel for p = 1 and 2, and
the other one for p = 3 and 4. However, these two versions have some common
features. First, each thread computes one d.o.f of one tetrahedron. The second
common feature is the data stored in shared memory, which are some geomet-
rical quantities associated to a tetrahedron, and the field and the flux balance
components. The last common feature is the number of tetrahedra operated by
a block (i.e.NBTET). The main difference is that when in the low order version
a block computes all the d.o.f (NDL) of the NBTET tetrahedra, the high order
volume kernel only computes a certain number of d.o.f of the NBTET tetrahe-
dra. Consequently, in the latter case, two or three instances of the kernel are
necessary to compute all the d.o.f of all the tetrahedra. This approach induces
a drawback because we have to load field data in two or three kernels instead
of one. Indeed, the dimension of a block is NBTET*NDL which leads to blocks
of more than 512 threads for high interpolation orders which is not possible in
CUDA. However, there is also a benefit because computing a lower number of
d.o.f in a kernel allows us to use less shared memory in the buffer storing field
data and less registers in a kernel thus increasing the occupancy of the GPU.

Surface Integral kernel : intSurface. For this kernel, one thread works on one
surface d.o.f of one tetrahedron. Similarly to the intVolume kernel, two versions
of this kernel have been implemented. For the low order version, a thread applies
the influence of its d.o.f to the four faces of its tetrahedron whereas for the
high order version, a thread only works on one face of its tetrahedron. So, for
the low order version, a block computes the numerical flux for four faces of
NBTET tetrahedra instead of one face of NBTET tetrahedra for the high order
version. Therefore, the high order version has to launch four kernels instead of
one for the low order version. Here, we work on the surface d.o.f (NDF) but
fields components are store using the volume d.o.f (NDL) so we need to use
a permutation matrix to link these different local numberings of these d.o.f.
Moreover, a face of a tetrahedron is also shared by another tetrahedron and
the corresponding field values are needed in the computation of the elementary
flux. Consequently, we cannot load field data in a coalesced way and we have
to use texture memory. Field values are loaded before each face computation.
Nevertheless, the high order version has a memory drawback compared to the
lower one. Indeed, because there are four launches of the function, data are
written four times to the flux table instead of once in the low order version.

Update kernel : updateField. There are four update kernels. First of all, update
kernels are a bit different according to the field they are working on (electric
or magnetic). Since in this case a thread works on one d.o.f of a tetrahedron,
the dimension of a block is NBTET*NDL. Consequently, as for the intVolume

kernel, we need a special version for the higher interpolation orders in order to
avoid exceeding the maximum number of threads per block. In the high order
version, we adopt an approach where a thread deals with two different d.o.f of a

360 T. Cabel, J. Charles, and S. Lanteri

tetrahedron which allows a block to compute all the d.o.f for NBTET tetrahedra.
This approach is less efficient for the lower interpolation orders. The two versions
of the electric field update kernels need only one shared memory table. Indeed,
in the first step, the flux computed by the previous kernels is loaded in this
table, used to do some computations and then stored in a register. Therefore,
the shared memory table is no longer used at the end of this part. In the second
step, we load the previous values of the electric field in it in a coalesced way. In
a third step, we update the value of the field in the shared memory, and in the
last step, we write the new value of the field in the global memory. The update
of the magnetic field follows the same pattern as the update of the electric field.

3.2 Multi-GPU Strategy

The multi-GPU parallelization strategy adopted in this study combines a coarse
grain SPMD model based on a partitioning of the underlying tetrahedral mesh,
with a fine grain SIMD model through the development of CUDA enabled DGTD
kernels. A non-overlapping partitioning of the mesh is obtained using a graph
partitioning tool such as MeTiS or Scotch and results in the definition of a set of
sub-meshes. The interface between neighboring sub-meshes is a triangular sur-
face. In the current implementation of this strategy, there is a one to one mapping
between a sub-mesh and a GPU. Then the CUDA kernels described previously
are applied at the sub-mesh level. The operations of the DGTD method are
purely local except for the computation of the numerical flux for the approxima-
tion of the boundary integral over ∂τi in (2) which requires, for a given element,
the values of the electromagnetic field components in the face-wise neighboring
elements. For those faces which are located on an interface between neighbor-
ing sub-meshes, the availability of the electromagnetic field components on the
attached elements is obtained thanks to point-to-point communications imple-
mented using non-blocking MPI send and receive operations in order to overlap
as much as possible communication operations by local computations of the
volume integrals in (2). Moreover, we also overlap most of the PCI-express com-
munications by using a CudaHostAlloc buffer which allows us to let the driver
manage this CPU-GPU communication.

4 Performance Results

We first note that GPU timings (for all the performance results presented here
and in the following subsections) are for single precision arithmetic computations
and include the data structures copy operations from the CPU memory to the
GPU device memory prior to the time stepping loop, and vice versa at the
end of the time stepping loop. Numerical experiments have been performed on
a hybrid CPU-GPU cluster with 1068 Intel CPU nodes and 48 Tesla S1070
GPU systems. Each Tesla S1070 has four GT200 GPUs and two PCI Express-
2 buses. The Tesla systems are connected to BULL Novascale R422 E1 nodes
with two quad-core Intel Xeon X5570 Nehalem processors operating at 2.93 GHz
themselves connected by an InfiniBand network.

Performance Evaluation of a Multi-GPU Enabled Finite Element Method 361

4.1 Weak Scalability

We first present results for the assessment of the weak scalability properties of
the GPU enabled DGTD-Pp method. For that purpose, we consider a model
test problem which consists in the propagation of a standing wave in a perfectly
conducting unitary cubic cavity. For this simple geometry, we make use of reg-
ular uniform tetrahedral meshes respectively containing 3,072,000 elements for
the DGTD-P1 and DGTD-P2 methods, 1,296,000 elements for the DGTD-P3

method and 750,000 elements for the DGTD-P4 method for the experiments
involving one GPU. As usual in the context of a weak scalability analysis, the
size of each mesh is increased proportionally to the number of computational
entities. Moreover, since these meshes are regular discretizations of the cube, it
is possible to construct perfectly balanced partitions and this is achieved here
by constructing the tetrahedral meshes in parallel (i.e.on a sub domain basis)
given a box-wise decomposition of the domain. Table 1 summarizes the measured
timings measures for 1000 iterations of the leap-frog time scheme (6), and cor-
responding GFlops rates for 1 and 128 GPUs. These results illustrate an almost
perfect weak scalability of the GPU enabled DGTD-Pp method with p = 3 and
4 for up to 128 GPUs. It also appears from these results that, for the proposed
GPU implementation of the DGTD-Pp method and the hardware configuration
considered in the above numerical experiments, the third-order scheme yields
the best performance while, when increasing further the interpolation order, the
sustained performance decrease due to bandwidth-bound effects.

4.2 Strong Scalability

We now consider a more realistic physical problem which corresponds to the
simulation of the propagation of an electromagnetic wave in the head of mo-
bile phone user. For this problem, compatible geometrical models of the head
tissues have been constructed from magnetic resonance images. First, head tis-
sues are segmented and surface triangulations of a selected number of tissues
are obtained. In a second step, these triangulated surfaces together with a tri-
angulation of the artificial boundary (absorbing boundary) of the overall com-
putational domain are used as inputs for the generation of volume meshes. The
exterior of the head must also be meshed, up to a certain distance and the

Table 1. Weak scalability assessment: timings and sustained performance figures

GPU DGTD-P1 DGTD-P2

1 104.7 sec/63 GFlops 325.1 sec/92 GFlops
128 104.9 sec/8072 GFlops 323.1 sec/11844 GFlops

GPU DGTD-P3 DGTD-P4

1 410.3 sec/106 GFlops 759.8 sec/94 GFlops
128 408.4 sec/13676 GFlops 763.6 sec/12009 GFlops

362 T. Cabel, J. Charles, and S. Lanteri

Fig. 1. Geometrical model of head tissues and computed contour lines of the amplitude
of the electric field on the skin

Table 2. Characteristics of the fully unstructured tetrahedral meshes of head tissues

Mesh # elements Lmin (mm) Lmax (mm) Lavg (mm)

M1 815,405 1.00 28.14 10.69
M2 1,862,136 0.65 23.81 6.89
M3 7,894,172 0.77 22.75 3.21

Table 3. Head tissues exposure to an electromagnetic wave emitted by a mobile phone.
Strong scalability assessment: mesh M1. Elapsed time on 16 CPUs: 715 sec (DGTD-P1

method) and 3824 sec (DGTD-P2 method).

GPU DGTD-P1 DGTD-P2

Time GFlops Speedup Time GFlops Speedup

1 620 sec 32 - 2683 sec 60 -
16 35 sec 566 17.8 145 sec 1110 18.5

computational domain is artificially bounded by a sphere surface correspond-
ing to the boundary Γa on which the Silver-Müller absorbing boundary condi-
tion is imposed. Moreover, a simplified mobile phone model (metallic box with
a quarter-wave length mounted on the top surface) is included and placed in
vertical position close to the right ear. The surface of this metallic box de-
fines the boundary Γm. Overall, the geometrical models considered here consist
of four tissues (skin, skull, CSF - Cerebro Spinal Fluid and brain). For the
numerical experiments, we consider a sequence of three unstructured tetrahe-
dral meshes whose characteristics are summarized in Table 2. The tetrahedral
meshes are globally non-uniform and the quantities Lmin, Lmax and Lavg in Ta-
ble 2 respectively denote the minimum, maximum and average lengths of mesh
edges. Performance results are presented in Tables 3 to 5. For the coarsest mesh
(i.e. mesh M1), the parallel speedup is evaluated for 16 GPUs relatively to the

Performance Evaluation of a Multi-GPU Enabled Finite Element Method 363

Table 4. Head tissues exposure to an electromagnetic wave emitted by a mobile phone.
Strong scalability assessment: mesh M2. Elapsed time on 64 CPUs: 519 sec (DGTD-P1

method) and 2869 sec (DGTD-P2 method).

GPU DGTD-P1 DGTD-P2

Time GFlops Speedup Time GFlops Speedup

16 82 sec 699 - 407 sec 1137 -
32 46 sec 1239 1.8 201 sec 2299 2.0
64 33 sec 1747 2.5 116 sec 4007 3.5

Table 5. Head tissues exposure to an electromagnetic wave emitted by a mobile phone.
Strong scalability assessment: mesh M3. Elapsed time on 64 CPUs: 2786 sec (DGTD-P1

method) and 6057 sec (DGTD-P2 method).

GPU DGTD-P1 DGTD-P2

Time GFlops Speedup Time GFlops Speedup

32 162 sec 146 - 816 sec 2370 -
64 97 sec 2470 1.7 416 sec 4657 2.0
128 69 sec 3469 2.4 257 sec 7522 3.2

simulation time using one GPU. Although the number of elements of this mesh is
well below the size of the mesh considered for the weak scalability analysis
(i.e. 3,072,000 elements for the DGTD-P1 and DGTD-P2 methods), superlinear
speedups are obtained. However, not surprisingly, the single GPU GFlops rates
are lower than the corresponding ones reported in Table 1 (32 instead of 63 for
the DGTD-P1 method, and 60 instead of 92 for the DGTD-P2 method). For the
two other meshes (i.e. M2 and M3), as expected the DGTD-P2 method is always
more scalable than the DGTD-P1 method because of a more favorable computa-
tion to communication ratio. Overall, acceleration factors ranging from 15 to 25
are observed between the multiple CPU and multiple GPU simulations. We note
however that this comparison is made with a CPU version whose parallel imple-
mentation relies on MPI only. In particular, we have not considered a possible op-
timization to hybrid shared-memory multi-core systems combining the OpenMP
and MPI programming models. Besides, an optimized CPU version in terms of
simulation times can be obtained by computing the surface integrals over ∂τi in
(2) through a loop over element faces and updating the flux balance of both ele-
ments τi and τj since the numerical flux between τj and τi is just the opposite of
that from τi and τj . Such an optimization would lower the simulation times of the
CPU version by approximately 30%. In the present implementation, each elemen-
tary numerical flux is computed twice (respectively for flux balances of τi and τj)
for maximizing the floating point performance in the CUDA SIMD framework.

364 T. Cabel, J. Charles, and S. Lanteri

5 Conclusion

We have presented a high performance numerical methodology to simulate elec-
tromagnetic wave propagation in complex domains and heterogeneous media.
This methodology is based on a high order discontinuous Galerkin time domain
method formulated on unstructured tetrahedral meshes for solving the system
of Maxwell equations. Due to its intrinsically local nature, this DGTD method
is particularly well suited to distributed memory parallel computing. Besides,
from the algorithmic point of view, the method mixes sparse linear algebra op-
erations (as usual with classical finite element or finite volume methods) with
dense linear algebra operations due to the use of a high order nodal interpola-
tion method at the element level. Therefore, the method is an ideal candidate for
exploiting the processing capabilities of GPU systems. In this work, this DGTD
method has been adapted to multi-GPU parallel computing by combining a
coarse grain SPMD programming model for inter-GPU parallelization and a fine
grain SIMD programming model for intra-GPU parallelization. Numerical exper-
iments presented in this paper clearly demonstrate the viability of the proposed
parallelization strategy and open the route for further investigation especially
in view of improving the GPU utilization as well as the overall scalability on
systems consisting of several hundreds of GPU nodes.

Acknowledgments. This work was granted access to the HPC resources of
CCRT under the allocation 2010-t2010065004 made by GENCI (Grand Equipe-
ment National de Calcul Intensif).

References

1. Fezoui, L., Lanteri, S., Lohrengel, S., Piperno, S.: Convergence and stability of
a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell
equations on unstructured meshes. ESAIM: Math. Model. Num. Anal. 39(6),
1149–1176 (2005)

2. Gödel, N., Nunn, N., Warburton, T., Clemens, M.: Scalability of higher-order discon-
tinuous Galerkin FEM computations for solving electromagnetic wave propagation
problems on GPU clusters. IEEE. Trans. Magn. 46(8), 3469–3472 (2010)

3. Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.: Nodal discontinuous
Galerkin methods on graphic processors. J. Comput. Phys. 228, 7863–7882 (2009)

4. Komatitsch, D., Erlebacher, G., Göddeke, D., Michéa, D.: High-order finite-element
seismic wave propagation modeling with MPI on a large GPU cluster. J. Comput.
Phys. 229(20), 7692–7714 (2010)

5. Komatitsch, D., Göddeke, D., Erlebacher, G., Michéa, D.: Modeling the propagation
of elastic waves using spectral elements on a cluster of 192 GPUs. Comput. Sci. Res.
Dev. 25, 75–82 (2010)

6. Cabel, T., Charles, J., Lanteri, S.: Multi-GPU acceleration of a DGTD method for
modeling human exposure to electromagnetic waves. Tech. rep., INRIA Research
eport RR-7592 (2011), http://hal.inria.fr/inria-00583617

http://hal.inria.fr/inria-00583617

	Performance Evaluation of a Multi-GPU Enabled Finite Element Method for Computational Electromagnetics
	Introduction
	The Physical Problem and Its Numerical Treatment
	Implementation Aspects
	DGTD CUDA Kernels
	Multi-GPU Strategy

	Performance Results
	Weak Scalability
	Strong Scalability

	Conclusion
	References

