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Absiract. The aim of progrom dralyss and viswaliration [PAXYV} ix 1o belp the program-
mer understand a progran by means of graphical presentations of different aspects of the
program. Program analysis and vismelization systems can be classified secording to the
specification method of visualisation, e.g., in what way can the ueer of the syotem specify
his own visnalipers. In the article three specification methods (predefizgtion, emmotEtion
and declaratiop) are discussed and some exaunple systems ace preseated.  Paoticular
atention s paid to the declaralive specification methnd, thes, in addibon, Jnowledge-
besed program analysers are dlsenssed, Increased nnderstandability end modifiability
are argned 10 be the main sdvantages of deckrative PASY syslems,

The general distussion iz continued by a short presentation of a ceaze study, where
the declarative and synthesisabls visualinaton in the WUT syetem ic discuaced.

EKey words: program analysis, program understanding, program visualisation, declar-
alive visualisation, knowledge-bazed program analysis

1. Introduoction

Program annlysls and voderstomding. The aimn of program code aralysiz
i to help the programmer understand the functionality of a program. What is
thea program urderrianding? The definition of program viderstanding consi-
tates, itself a research topic. We agree with the informal definition provided
in the paper Biggerstaff «f ol {1994} “a person understands a program when
able to explaio the program, its stmchire, its behaviour, its effects on its oper-
alional coniext, and its relationships to its application domain in terms that are
cualitatively different from the tokens 1sed to conatroct the scarce code of the
programs™,

Program understanding has been called 1 challenge of the 90°s (Corbi, 1989).
This statement is in oo need of justification. A huge amonnt of legacy code 18 in
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e which is difficult to maiatain, diffieult o change and sven moce difficult, or
even impossible, to discard. Documentation is vsually cut-of-date, inconsistent
of incompdete. Working in such conditions “programmers have become part
historian, pert detective, and part clairvoyant™ (Corbi, 1989). It follows that
any tool, which facilitates program analysis and onderstanding i vafueble.

I software engineering research, program undsrstanding is, acconding o
Johnson (1904), understood in two different ways: “zome e it to refer to
automated techniques that determine the intended function of a software system
From source code. Others use it to refer to tools that belp people underateand
the design of a plece of software but may not be capable of anelyzing the code
themselves".

We assume that only inteosive restarch and experimentation can transform
the coment essistaot-tools imto fuily awtomated “decision-makers”. Conse-
quently we ghall only dizcnss the tools and fechniques of program anelysis
aimed at hefping the programmer with program underatanding,.

Program visiulivation. Tradifiopally in seftwire engineering tools, pro-
gram onderstanding has been enhanced by means of graphical presemtaticns
illustrating divers mspects of & program. The construction of a graphical pre-
peatation of a program iz called program viswalisadion. The term sofiware
visualisation is also nsed instead of program visuslisation, althongh we argue
that software viswalisation covers muoch more. In addition to program visoalisa-
tion it may also include visualisations of requirenent specifications, information
of configurations, history of comections and similar.

Program visualisation, as discissed in (Shu, 1988), covers pretty-prioting of
source programs, visuslisation through diegrams, maltiple views of a program
and jes execution statex, algorithm animation. It is interesting to observe that
modt progrem yisnalisation systems introdoce their own graphical notations a=
well as methods for the presentation of the textnal code. It iz rather difficult
to distilf a common notation or techpique. This is, of course, in part due to
the fact that the systems have quite different goals. But it also indicates that
program visualization is still in the experimental stage.
is 1ot clearcot, On coe hand, program visualisation tools usually work with a
fizxed program model (for example, an abgiract syntax iree) and place the main
emphasis on efficient and appropriate graphical presentations of the infonmation
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from the model; whereas program analysis fools offer alternative, advenced
program mokels (such as, for example, connectionist models). On the other
hand, every program visnalisation toc] contains st least one monlysie feature,
and program amalysis tools vsually include graphical presentastions of program
models, As the distinction is highly subjective and, in many cases, cannot
be deduced from erticles, we will henceforward refer 1o program analysis and
program visualisation tocla es: program analysis and visualisaticn tools.

Propram analysis and visoalisstion, Prognem analysis ard visualisation
{PALV) research investipates the ways of combining the features of program
analysis end program visoalisation tools. Ideally, PA&V Lools should offer
the possibility 1o specify differeni program models and o present dhese models
graphically in different (als specifiable) ways, Neither of the systems presented
in the paper fully saxisfy these requirements. In practice, PAZV toola do not
cover such a wide range of feamres and either program analysix or peopgram
visualisatinn ig limited.

The organisation of the paper. The paper discisses current trends in the
development of tools for program analyeis and vievalieation. These trends ane
revealed in an overview of a set of existing PAEZWV wols {Part 2) where the
systems are classified according 1o the specification method of vimalisation,
Three common methods ane disenswsd: predefinition, annntadon and declara-
tion. For each of these methods, a description, example systenns and potes on
limitations and advaotages are given. The overview of PAXV tools is contin-
ued (Part 3) by n presentation of Imowledge-bazed program analysers. Then
the gencral disensgion is “mapped” to a case study (Part 4), In partienlar, we
discuss the development and usage of declarative and synthesisable program
visualisers in the NUT systemn {the NUT system itself and the langusge are
also briefly presented in the article). An illostration of the construction of a
declarative visnaliser a5 well as ite work ane provided informally, throngh an
example.

1, Specification methods of PALY tools, Researchers contribating to the
PAEV field offer different clessifications of systems being developed. Price
& al. (19973) use such classification criteria like scope, form, content, method,
interartion and effectivensss, wheress Roman end Cox (1993) consider scope,
abstraction, interface, presentation anl specificatiorn method. In thiz articls
we adopt the lsst criteria mentioned — specification method. Thus, we ask the
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question: Can the vser of a particular PALY system specify his own visalisers?
If yes, then how? As in the taxonomy of Roman and Cox (1993), we distingwish
three main gpecification methods: predefinition, annotation and declaration.

2.1. Predefinition

2.1.1. Method description. Tools with 2 predefined method for PA&Y hide
inside a “Black box” all knowledze employed in the visnalisafion process. The
uEer can peither construct his cwn views gor medify them and is obliped 1o

1.1.2. Examples: code vlewers. The most common PASVY woole sre code
viewers — tools, which offer the user a fixed set of graphical presentaticns of an
iput progtam. In 4 sevies of articles (Koskinen et a7, 1994; Linos and Courtois,
1994; Wilde and Huitt, 1992) on cbject-oriented program maictenance, a book
on visual object-ariented programming (Bumett ef ol., 1995) (anicles (Citrin
ef al., 1995 Chang «f ai., 1995; Grundy et al., 1993) in particular) a tich set
of views is offered. Thees inchude the following (the list covld definitely be
lenpthened by consnlting more anticles and books):

» control flow graphs;

» data» flow graphs;

+ backward and forward elicers {(showing the minimal subset of the code
that affects a set of variables and showing the minimal subset of the
code affected by a st of variables);

s dicers (showing the subset of the code that can be executed when a givea
assertion is troe);

+» definitionforage graphs of program variables;

o call graphs;

» module dependence graphs;,

» class hierarchies (mheritance, containment) in QO programs;

» tracing chains of polymocphic functions;

» gymholr’ {program tokens) lookaps;

» deadcode views;

o prograin layers:

» resalts of simple qoeries;

» domein-specific execntion visualiseps.

The construction of some views is also a featwre in many CASE tools which
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sipport reengineering. For example, in Rafional Rose (a product of Rational
Software Corp.) inheritance and aggregation hierarchies can be shown from the
user’s C4+ program. Similerly, but more confignrable, the Graphical Designer
(a product of Advapced Software Techoologies, Inc.) constructs a varicty of
views of C and C-+ programs.

Why are there so many and so different views? The existence of code views
is based on the idea of program dependencies. A program dependency ean
be described as a triple {Pointl InCode, Point2InCode, Link). (An exam-
ple could be {Classl, Closs2, Inherilance).) On the other hand, during the
development of the erca of software enginecring, vatiouns graph-hased presen-
tafions of sofiware were offered, beginning with simple program bleck-charts
and contiobing to the present day object-oriented diagrams. The graphs are
also deacribed by a triphe (N odel, Node2, Link). Combining vaciows program
dependencies and views of graphs has cavsed the emergence of quite r varied
set of program views. In essence, the process of viewing a program as a graph
inchedes the extraction of insiencesz of a program dependency, the storage of
these instances, and the retrieval (for a query) or mapping to a graph {for a
graphical view). Chen ef al. (1990) point to the peed of having a concise
concepiual model (for example, the entity-relationship ruadel), which defines
the software objects md relationships at a selected level of abstraction. But io
many of the aforementioned articles this need is not sddressed.

2.1.3. Method advantages and limiatlons. The main advantape of the
ahove mentioped systems it performapes, As the constiuction of views ix
predefined, then specialised, optimissd algorithms can be applied. Very often
program visaalisation is but one feature among others, nicely integrated with
other snbsystenny (like forward atk] reveyse sngineering feamnes are integrated
in many CASE tools).

Users of these systems face different kinds of problems. First, they are
often offered a narrow set of views in one systemn. Users may have their own,
highly mdividual “mental maps” of programs, The poteotial meer of program
vigualisation toods iz, mwst peobably, a programmer himself end capsble of
gpecifying his own visualisers. It could be argoed that the nser should be
provided with the option to specify his own vienalisers, congidering that PASV
3¢ still a hot research topic and that researchers are still far from having defined
the complete set of program views.
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Second, the semantics of graphical symbois used are described in a very
informal way. If we can assnme that a program dependency can be explaned
informally or understood mtnitively (which is ot always tnae), then we canoet
rely on an inforual deseription of the mapping from a program dependency
to & graphical view. Suppose, for example, thet two classes in a graph are
joined with a line pressating link “nees”. Do we take into account calliog a
clasz from an implementation of a method of another class or pot? This and
sirmlar points might oot be clear, Evidently, the user would like to open the
“black box™ ar, in other words, he needs access to imternal repuesentations of
visualisers.

2.2. Aumotation

22,1, Method deseription. The annotation method i meinly applied n
algorithn animation. Here, the nser develops animation procedures and marks
{or annotates) ao inpot program text with calls to these procednnes. Procedures’
parameters are used for deta passing,

222 Ezmnplu progrwm sndeandors. In the Balwe 1T system (Brown,
1988), the animation of an algorithm imvolves three steps. First, the peogram is
split into three compooents: the algorithm itself, verions input geoerators that
provide data for the slgorithm and different views. Second, the components
are implemented. Components have parameters through which the data is ex-
chanped. The implementation of new views or inpnt penerstors involves the
reuss of existing cornponents from the litvary, Third, views and input geper-
atore which can be used with each algorithm are identified and named. The
main effart of a Baka-IT progrannner is spent in annotating the algorithm being
animated, This is qvite uoderstandable, as the identification of the essential
operations in the algorithm is by no mesms a trivial sk ise)f, To the eager
reader we suggest to take 2 look at the article (Brown, 1988), where the differ-
ent gteps in the copstmetion of the animation are presented (aa well Bs atiractive
snapshota of animations}.

The Tango system {Stasko, 1990) i3 hased on 2 framework which includes
thress comuponents. To produce an animation, the user must 1) annctate the
program with algorthm operations {or calls to animation procedures — a8 named
sbove), 2) write animation actions and 3) specify the mapping Erom algorithm
operations to anioaation scepes.  Keeping mapping and animation procednpes
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separated gives a xignificant advantape in flexibility terme as the user can change
the amimation simply by edifing the ing file,

223, Methwd advantages and Umitations. The kety advantage of the
annatation medhod is that the vser is permitted to provide his own defmtion
of what should be animated and how. The user can himself define appropriate
evenls in program execution as well ax the way these events should be presented
graphically.

The possibility to write your own animation procedures can be consjdered
a dizadvantage as well, because it consumes additional work. Here, litgaries
of animation procedures facilitate the process and ease the workload. But then
inatead, Sibraries most be well voderstnod themselves, which is not a trivial task
in imperative ptogramming. One more disadvantage of the annotation method
ia the need o modify the program code.

212, Declaration

23.1. Method description. PA&V tools which apply declarative ap-
proaches differ as significantly firom each other an different are the methads
which can be typed declarative, Typically, the nser iz provided with an en-
vitoninent in wich he can specify his own vismalizers in a given declarative
language. As showan in Fig. 1, the mocess of wriling your own visualper
includes, essentially, the specification of program and view models :nd of a
mapping between these models. The extraction of a program model from an
input program and the: preseatation of e view graphically can also he specified
by the user or elbse dooe antomaticatly by the system. Additional models {like
a 1mer model or zimilar}y con easily be added in the same way &3, for example,
3 mew view model,

232. Examples: declarative visuslisers. The usage of the declarative
spproach in PASV systerns ranges from the introduction of simple declarative
mappings 1o the employinent of declarative languages tailored to the specfics
of PAEV.

Declarative mappings. In the aforementioned TANGO system the control
file serves as storage place for the declmative specifications. Here the pames of
alporithm operations and animation scenes and mappings between them can be
listed, The mappings have simple form: algorithm operations — animation
sceres.
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A PA&V toolkit
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Fig. 1. The geperal erchitechre of a declerative PAZY toolkil.

It the reflexion model approach (Murthy & al., 1995) for software analysis,
a reflexion mode! in niroduced in addition to & sownce model, 2 high-leve] modaf
and a mepping, Although the authoes do not paeport to follow a declarstive
approach, they actually nse 2 declarative langrage for the specification of maps.

{Seifridge and Heineman, 1994) Interactive Code Understanding Emviron-
ment {ICUE) takes the information sbout 8 C program stored dn a datahaee
and provideg the wser with & graphicsl goery-formation facility ss well ss the
environment for menipulating object grapha (the praphical representations of
the resnlix of queries).

Declarative lotgeages. In the Pavane aystemn {Romen o =, 1992} the
undeslying visoelisation model ix declamative in the scnee that vienalisation is
treated 26 5 mapping from program stsbey b 3 three-dimenvional world of ge-
ometric objects. All mappings are repesssnted by rules. Rules con be added,
deleted or modified during visuslisation. The specification of the visnalation
in Pavane requins the wer to foomally specily the stste of programs. Thiz
forces the usar to work more on the conceptualisation of program behaviour,
which although being a tine-consumimg requircment also glwes a fundamen-
tal benefit — a decper understanding of the nehure of computations and thear
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In the SPEACemn ayseem (Grundy et ai., 1995), nsers are free to chonse
hoth the contents and layouwt of views. The construction of new display ab-
soractions iovolves specialifing and creating new abstractor classes (written in
Snart), while new display visualisations can be developed using the icon layout
lanpuage, Both Snart (an chject-oriented extension to PROLOG) and the icon
leyout language are declarative.

The key technological idea in the (Kotik and Markosian, 1992) spproach is
code representation as an annotated abstract syntax tree in an object-criented
database. This approach differs essentially from code viewers {discuszed above)
s it also provides B high-Jevel language, the Refine langoage, which allows
the nser to operate on the abstrack syntax tree. For cxample, one can define
ona's own apalysis functions. The sarse langaage is wsed for the specification
of graphical views of the results of enalysis functions. This 15 implemented
inReﬁn:[anguageTmls[aprmhmbfﬂmnningS}mInc.],whmeﬂw
initial set of graphical views can be extended with views written by the nser in
the Refine langusge.

1n the ScftSpy system (discussed in more detail in Part 4), the nser is given
full liberty to specify his own visualisers in the NUT langoage. A specification,
as well 2t a request for computation, are ranslated into logical Language, a
proof is performed ad, if sucvessfnl, a vispaliser is synthesised. The nger
s also provided with an environment, which has Facilies for NUT lenguage
processing, graphice management and other.

233. Method sdvantages snd Hmitations. In the declarative approach
the nser his 1 abstract (of concepialise) the construction of a program's view
and 1o record the sbsiraction (or & conceptoal model) in & given declrative
language. The conceptushisation is alwaye time and effort-consuming work.
But this conrepinalisation i in eny case performed by the user when trying to
understand a program. Amd so, the main role of a declarative PASY system
is to provide an environment, where the user can operate with the conceptual
madels he produced: to record, rease or modify them.

A explicit representation is pacicutarly important in the process of PA&Y,
e in this cese, at least two distinct conceptual models are involved: a model
of the program and ancther of its view, The mapping between different models
in declarative by natare, and, can thus, more vaturally be represented in a
declarative langnage.
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In addition to being tmore underseandable, visnalisers written in a declarative
langnage are eagier to modify. Easy addition, deletion or change of atomic
units of knowledge (like rules, definitions of domain entities etc.) i a feature
inherited from knowledge-based systems {(knowledge-based systemns are chosen
as implementation environments for many declarative visualisers).

The main disadvantage {which declarative PARV systemns inherited from
knwledge-based systems) is a low speed of execution. The good side of
the cojn is that speed measunes of many Imowledpe-hased methods have been
extensively iovestigated vl oprimisations are khown, In addition, the langnage
nsed is usually adapeed 1o the visnalisation problem and simplified.

3. Enowledpe-binsed program analysers. Kozaczynski et al. (1992); John-
son (1994) discuss the general organisaticn of typical knowledge-based prograim
analysers. Thia organisation usnally includea the persing of a code, typically
EeneTating zn abstract syntax e represevtatioo, stored in a koowledpe base.
The koowledge base also inclndes representations of programming knowledge
or, more precisely, common programming patterns and fechmiques, variowsly
called design schemas, programming cliches and programming plans, The anal-
yser mauches the programming patterna with the code W infer that higher-level
gpecification concepts are present in the code. The user of a kmowledpe-based
code apalyser it provided with the possibility © modify the knowledge-base
(programeming patterns) as well as to vse inferential services by asking ques-
tions.

Viricnls repaeseatations of programming knowledge and syatemn models an
well s inferential features influenced the development of diffevent knowledge-
besed szoftware analysers:

» Wills (1992) studies a graph parsing approach to automating pragram
recognition in which programs are represented as attriboted dataflow
praphs and a library of cliches ix encoded as an attributed prammar, A
graph parsing algorithm is nsed o yecopiim: cliches n the code.

+ Quilici (1994} represents programming plaps a5 data stractumes contain-
ing rwo parts: g plan definition, which lists the attributes of the plan that
are filled in when mstances of the plan are areated, and a plan recog-
niticn rule, which lists the components of a plan and the constraints
on those compenents. An instance of the plan is recopnised when all
its components have been recopnised withour violating the constraints,
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In addition, ¢ach prograrmming plan also inclodes indices, specialisation
conatraints, end & list of implied plans. The algorithin employed makes
use of indices in vrder to suggest generst candidate plans to match top-
down againat the code, specialisations (o refine these gereral plans once
they are recogmised, and implications to recognise other, ralated plans
without doing further matching,

» the LaSSIE system (Devanbuo # al., 1991) provides two typea of infer-
ence: gnbsumption and rules. The knowledge base has descriptions of
the objects and operations in the domain, the processes, layers and mes-
gages in the architechire, and the fimetions, variables and files scociated
with the code.

= GEN++ (Devanba er al, 1992), a code analysis tool gencrator for C4+,
is implemented by attaching the portable parse tree querying mechanisin
to the Cfroni compiley. GENOA it an applications’ penerator that pro-
ducxs arbitrary analysers from specifications. The GENOA language hes
special ileration operatcss that are hmed for expressing simple, polyno-
mial time analyris programe. The GENOA specification langnage uses
the vocabulary of abatract Syntax, oecs.

s Kozaczynski et =, (1992); Harandi and Ning (1990) ase an olbject-
orieneed syrvironment in implement the concept recogmition system. All
langoage and abstract coocepts & represented intewnally as olgects of
a knowledge base. Planz are also objeciz and have methods associated
with them for necognising concept. instances. These instances are fonnd
by pattern matching, which is a unification of abstract syntax trees of
the attiibote values.

+ In the DESIRE system (Biggemstaft = gi., 1994), a domein mode] know-
ledge-base is built ax a semanfic/connectionist hybrid petwork and a
conpectionist-based inference engine is employed.

The section below s devoted 10 a case siudy, We dixcuss the resnlis in the
development of woofkits for program analysis in the NUT system. In particular,
we point oot both merits and deficiencies of a eoolkit (for the presentation of
predefined graphics? views of a code). We then rasom st the considerable
improvements of this toolkit when shifting 1o & declamtive approach.
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4. PAEY in the NUT system

4.1. A genwral introduction to the NUT system. NUT is a system of object-
oriented prograpwning with featires of sutomsatie program synthesis (Tyugy,
1991). The NUT prograrwming lengnage rexts on two paradigms: procedural
object-oviented programming and the amomatic syothesis of proprams from
declarative specifications. The latter is p technique for awtomatic construction
of programs for onprogrammed proceditres ont of their specifications and of
the pragrams and specificaions of prograpuned procedures. Hepe a procedure’s
specification embodies its external view (states the names of its input and oatpat
perameters). The antomatic synthesis of programs, as practised in NUT, is based
on proof seanch in inmitionistic propositional logic (2 more detailed description
of the NUT systern and the NUT Lnguage can be found in (Dustalu e .,
1994)). '

The featore of the NUT langusge of being both an object-oriented program-
ming language and a declarative langunage, lead us to the idea of castying ont
varions PASYV experiments. That ie, starting with the development of code
viewars for object-oriented progeams we then moved on to the investigation
of declarative analysis of the same code. The NUT systein iz well suiwed
thia porpose 23 there i 0o need to change langnage and emvironment when
switching to a new {daclarative) techniqne,

In the following two subsectione, we dizcnss the resnlts of our experimen-
taticn in PA&V in the NUT systemn: peedefined and declerative spproaches,
The predefined approach presents a toolkit for creating graphical views of NUT
programs. Discossicn on the declamtive approach inclndes informal and brief
introduction to the problem-oriented language, logical langnege, proof or in-
ferencing issues g8 well as en example — once again the toolkit for creating
graphical views of NUT prograns. The progtams sclected for analysis wexe
writen in the NUT language.

4.1 A toolkit for creating OMT-hased views of a program with the pre-
defined specification method. A toolkit (Sidarkevifiite e =i, 1995) for the
syomatic visualisation of object-oricnsed software modules (or packages as
they are called in the NUT sysiem) was developed. The OMT (Rumbsngh
#f al., 1991) graphical notation was selected, because it includea notations for
the representation of static, dynamic and fonctional azpects of 4 system, OMT
. graphical icons are gimple 1o draw, adapt and modify. Tn addition, many pro-
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prammers possess kmowledge shout OMT,

For the presentation of the static strmctare, three graphical symbols from the
OMT Ohbject Model were borrowed and adapted. First, the class icon showe
the name, atributes and methods of a particular cless. Inherited stiribnics
and methods are also shown. Second, the class hierarchy is visualised in &
vertical tree (as it is in the OMT Object Model). Third, the aggregation tree is
illustrated with a horizontal tree by uvsing the icon for aggregation association
of OMT OM. Other eszociations are not shown, The dynamic aspects of a
code are displayed throwgh the visvalisation of a synthesised algorithm. For
the visualisation of functional dependencies and dataflow, the OMT Functional
Mode] wa chosen and slightly modified. The NUT system provides program
synthegis on higher-order fanctional comstrsints nefworks (HOPCN)Y — which
have their own graphical ootation. The graphical notation of HOFCN md the
modified graphical potation of the OMT Functional Model were combined.
Thus, in the functionsl node] the data flow between the methods of a class is
showm, Clats methods (incloding equivalences axl equations) e considered
to be processes of the OMT Functional Model.

Some snapehotz of the views constmcted by the toolkit can e found on
www on the address:

htip://www . it kth. sa/adn/gro/KAFVT/projects/sctftspy . htnl,

A mumber of experirents were carried out. The purpose of the experiments
was to estinmate how mmch the suggested visualisation can help in naderstanding
the program and evaluating the design. Observations were made like: follows.
Inheritance trees help in acquiring a general view of the static stroctre of &
packape: how many classes are employed and how mary attritates and metbods
are used in their definiions, whether the names chosen are self-explanatory, etc.
%mabhmdﬂeétmlptymmbigc]m Apgregation tress provide a
che for discovering the “main” actors of B package. These are the classes
which usually have more aggregated classca and are normally the most general
classes of the design of a given problem. One can go further from this peint
by investigating functional models of theas “actore™. A fonctional model of a
class helpe the tser to trace the compmtation of class attribuies,

Some deficiencies were also detected when using this toolkit, First, the
correzpondence between parte of the program and graphical aymbols waes de-
scribed wery informally, and so a considerable amount of time had o be spent
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Problem-oriented langunage

L+ ogtet tnguaee
-

|—> Syuthesised program

Fig. 2. The relation betwesn languagea, proof and program in the NUT
Systcmn.

in order to get the meaning of pictures ("“What does this symbol stand for in
the code). Secood, a very narow sst of views wax offired (“Why can I not
create my own view?"), For example if the user is interested only in conpling
bﬂwmclmtw.msimph,mhmjmtmmthluimm.
he can pot in & fexible way specify the view he wishes to have,

The exploration of the declarative featares of the NUT Ianguage seemed to
deal with both problems: it would allow the user to explicitly specify my kind
of internal represepmtions and mappings involved while the stroctual synthesis
of programs would deal with assembling the visnaliser from the specifications.
Thum we switched 1o the declarative spproach in order to frther exteod the
fimctionality of the code analysis toolkit.

43, A decarstive appeoach. The key idea behind our declerative approach
discussed is the wsage of the NUT language for the representation of inowledge
about a program and its varicus views. As shown in Fig. 2, the user starts hy
specifying his visualiser in a problem-oriented language (the NUT language).
Then thix specification s antomatically mapped inta a logical language in which
a proaf for the request is performed. If the proof sucoseds, the program (or a
visnaliger) is syntheaised. The rest of thiz section will be devotad to ilhustrating
each of the stepa in the process of constructing a visualissr, In order not
0 burden the reader with theoretical and technical details, the illustration is
provided informally, with the help of an example.
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An example: an OMT-hased visnallser, As in Section 4.2 we again discuss
an OMT-based graphical presentation of 8 NUT program. We redevelop our
toolkit in the declarative manner &s discussed just above and prescated in Fig. 1.

We get three systemn-subparts: a representation of a program saodel, a tepre-
sentation of OM (Object Modal of OMT) and a representation of the mapping
of a model tp OM. Fig. 3 gives n snapshot of these subparts, The represeatation
of the model inciudes the classes Package, Class, Objecs (two clasess are shown
on the kit side of Fig. 3). Each of the classes has 8 method Exrace... which
defines bow particular anributes of the ciass could be computed in the particular
package. The represemtation of OM consists of the classes OM, OMClass, OM-
InhLink, OMAggrLink (two classes are shown on the right side of Fig. 3), The
clases describe OM diagrams in the NUT language and may contain methods
Draw.. for the constraction of 4 drawing. The mapping between Package and
OM is represented by two classes: PackageToOM and ClassToOMClass (shown
in the middie of Fig. 3). In the class PackageToOM, the specification of the
method Computellasser declares that if in the clasx ClaeTeOMClzcy from
Class, OMClass can be computed thep, from FPackage Classes, OM. Classex
can be computed, The class ClaxyTpOOMClass explicitly defines the mapping
between the class in the program model aod G clims in OM,

The synthesiz of a visualiser cap be requested by the goal obf.compute
(Drawing} - here obj is ay object of a class OM,

Problem-oriented language, Clasges in the NUT language are used as the
main entities of model representation. Classes act as computaticnel frames as
they ate enriched with cotnpatability axions (marked with 1 in Fig. 3), which
contain information about the computability of class compoments. A class can
also have an image (for example, an image of a OMClasr i a rectangle with
one input and one cutput parts and a patameter for a name).

The NUT langnage is teilored to PA&V problem, by extending the stap-
dard function libraries with three new Jibraries: a library for the extraction of
information from a program, enother for the graphical layout and a ¢hied for
passing data to visushsation in MatLab (a prodoct of the MathWorka, Inc.).
The libraries are linked dynamically.

The extraction of information from the program is supporiad by a set of
reflective functions (marked with 3 in Fig. 3), such ss getclasses, getvan getrel,
ete. The mot of availahle fimetions eovers the extraction of all entifies and
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Fig. 3. Parts of the specification of an OMT-based visualiser in the NUT
language: 1) specification of the OMT-based view; 2) explicit in-
vocation of inference; 3) extraction of information directly from
the program code; 4) passing of information for graphical layout.

relations according to the ontology (or model) of the program. If the user
analyses a non-NUT program, he can write extraction functions in the NUT
language or invoke programs written in other languages. The existence of
reflective functions in NUT facilitates our program analysis task considerably.
The program model is easy to build in terms of these functions.

The functions of an independent graphical layout generate a drawing from
simple graph specifications. We solved the task of automatic layout of the
diagrams as an instance of the general graph drawing problem (Kuusik ez al.,
1996). We adapted algorithms addressing directed acyclic graphs, which per-
form, first, a level assignment of nodes by tracing their connections, and then
apply some heuristics to reduce edge crossings and bends. The layout algorithm
is encapsulated in a separate, self-contained graph layout subsystem under NUT.
Functions of this subsystem (marked with 4 in Fig. 3) allow one to construct a
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graph in a declerative way by adding edges and nodes to the graph, to request a
layout calculation on the consiructed graph, and finally, to store the layout as a
scheme (diagram representation) of gome existing class. The user can view the
autonetically genetated disgram by requesting the NUT graphics subsystem to
show the scheme of that class.

Visualisation of data in the MatLsb is performed by the use of veady made
classes such as Matrix, MatlabLow, MatlabArim. The link to the Matlab ix
transparent for the user, £.g., the user specifies in the NUT Ianguage the visu-
alization in the Mail.sh

Logical language. A logical justification for the NUT declaative langusge
and the main peasoning procedure — the structoral synthesiz of programs — is
pravided in (Unstaln, 1996). The explanation it given in terms of a simple
imtuitionistic normal madal logic s the oheervation is made that “clasification
and computability statements are object-retative in object-oriented synthesiz in
the same way as propositions are world-relative in normal modal logics — objeets
apd worlds are inplicit in the ianguage of each™, Thus, objects are treated
gs worlds and component mlations between objects a5 accessibility relaticons
between worlds.

ExaMpLE 1. The classes PackagaToON avd ClassToOMClaas definitions
given in Fig. 3 are translated into the following axioms (we shorten ClassTo—
OMClaae to CTOMC, PackageTolG¥ to PTOM, OMClass to GMC, Package 10 P,
Claasss to Cla and Class to C1):

PTUM D {P}P (1)
PTON 3 {OX)OR (2)
PTOM 3 [+](CTOKG 3 ({C1}r 2 (ONC))){FH{Cla)r 3 {0M){Clsir  (3)
CTONG O {C1)C1 (4)
CTOMC O {CMC)OMC ) {5)
CTOMC O ({C1) (Name}r O (OMC){Nams}r) {6)
CTORC O ({CL}{Var¥amas)r O (UNC}{Attributas)r) {7
CTONC D ({C1}{RelEamesir 7 {OMC){Cperations)r) (&)

Here r stands for computability, {¢laszCoxponentName) and [«] denote
accexsibility relations. For example, axiom (6) 15 interpreted as follows: the
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world (or object) w of the cless CTONG implies that if thete exists snch a world
v, which is acoessible from w via relatiors ¢1 and Hama and is computable,
then there exists such a world «”, which is accessible from w via relations ONC
and Kame and iz compurable. End of Excmple 1.

Progf. The inferencing carried cut by the NUT sysiem is called provable
realizability (ustaly, 1995). Itz main goal is to prove the computability or non-
computability of an object or its component. If copppuitabitity can be provea,
then am algorithm {or a program) for it computation is synthesised. A logical
jimstifleation of the computability inferencing is also provided in (Lustelu, 1996)
and not discuissed here. Rather, an informal illostration of the inferencing
procedure 15 provided by an example,

EXaMrLE 2. If we consider the classes digcussed in Example 1, the goal
given to the system could be: given an object w of the class PTOK with computed
component Packaga, Clazass, find an algorithm for computing its component
OM. )l axean. Thiz amounts to proving the inference (here the sbbreviaticn of
class nemes ia the same a& in Example 1): w:PTOM w : (P}{Cla)s

w: (Om}{Cle)r
The derivation (bassd on the mlss presented in 1, 1996) is the fol-
bowing:
7]
f3) w : PTON w : {ONC)T
w 1 [+]{CTON 2 {{c1)r O {DKC)r)) w ¢ [+](CTOH D
O ({F}{Cle)r D (OM}{Cla)r) {{CLir > (OMC}1)} = : {PY{C1x}r
w - {OM}{C1a}r i
o {CL)r o' : CTOMG
Here © stands for the proof ———
This amounts to proving the inference

w' 1 {Cljr 1w’ :CTOMC
w' : {OMC}{Kama}r A {DMC}{Attributex)r A {OMC}{Oparationeir’
becaitse QNG has the components Fame, Attritutes and Dperationsa,

w':{Cl)r w' ;i CTOMC | .
The proof of o © {OKC) (Rame)r is the following:

[6) w':cTOMC
v 1 {C1}{Nama)r O {OMC}{Name)r w’ : {C1){Name)r
w' : {OMC} {Faman)r )
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Here o 1 {C1}{Mame)r follows from w' : {CL)r, a2 Kane is a component of
Cl.

In the same way (ONC}{Attributes)r from {C1)}(VarWames)r sod
{aMC){Dperationair from ZC1}{Rellames)r are proved.

The proof is completed, Fnd of Exampie 2.

Synthesised programs, If the proof succeeds, 2 peogram for computing the
requested componeat is aynthesized.

Let ue return o oar cxample of an OMT-based vizualiser, where the request
to compute Drawing ia given. In the case when classes do not possess enongh
mformation for the computability of Drewing, the unsolveble problem will be
reported, In the positive case, the program will sleo be synthesised.

Fig. 4 presents the results of the work of the synthesised visualiser. As input
program & visvaliser’s program was chosen.

Fig. 4. Part of the view constracosd by an OMT-ba] vienaliser from a
NUT prograra,
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The advantages of n declarative approach. First, the user can easily modify
hig viewer. For example, if one does not want aggregation links presented in the
OM view, it is snfficient just 10 ke away AggregationLinks from the method
DrawOM in the class OM. By invoking inference procadurss, the user can
check whether a modified specification still possesses the same componett’s
computaehbility festures as the old one. Second, let ws consider the different
representations — ane of the program medel and apother of the OMT-based view.
The terminology used by programming iengnage authors and OMT anthors s
employed in each respective case, For example, the atiributes of & class are
called Variables and Virtuals in the model of NUT programs (as in the NUT
language docomentaticn); sod they are called Antribufes in the OMT-based
view preseniation (so ere they celled by OMT dewelopers). This brings us
ome step closcr to paturalness end user-friendliness. Moreover it simplifies
the introduction of changes. Third, one can easily discover, that replacing the
OMT-bumed viewer with apother viewsr iz not a complicated tesk. It imvolves
the development of the NUT language represntations of a new view and a
mapping from & program model into this pew view.

5. Concluding remarks. We discussed the tendency towards the deciaa-
tive approach in program smalyzis and visualisation. Declarative program anal-
ysis and visualisation tools considerably exsend the functionelity of raditional
PA&Y tools. The main achievement is improved modifiahifity and extensibility
of visualisers. This is e 1o the mezmon that explicit declararive specifications
are easier to yxkerstand and, consequently, to modify. New program models as
well a5 pew analysers (for example, metrics tools or evaluatoss) can be added

We aleo presenizd a case study: the research in program code analysis in
the NUT system. We argoed that viewing a program code in several preds-
fined ways is not sufficient for program understanding. This was motivated by
discussing the resnlts of applying a program visualisation toolkit in the NUT
system, We redeveloped oar toolkik in a declaralive manner. We ued the NUT
declarative language for recording knowledygs about PA&Y. Provable realisabil-
ity was the mein inferencing procedure.

An irmportant issve which has not been thoroughly imvestigated, and which
forms the basis for foture work, is the elaboration of a problem-oriented lan-
gnape, e.g.. & langnuage for the specification of visnalisers. As shown in the
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paper, a declarative langnage is maitable 1o PA&Y, But what additional fea-
tres {for example, what standard librares or suitable language construcs) the
language shonld have — remains to be investigated.
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PROGRAMY] ANALIZES IR VIZUALIZAYIMO REIKALAVIMI]
SFECIFIKAVIMAS DEKLARATY VIAJA KALBA

Diana SIDARKEVICTUTE

Mazdojaml progmamn aealizés v vigualizavimn priemones, programos pavaizdua-
jamos grafitksi, Tai daroma, siekimmt palengvieti ju euvokimg, Prograry anzlizés ir
klasifikavimo priemonds klasifibucjamos pagal 1ai, kaip yra apraiicmd progmmor viZia-
lizavimeo relkalavimal Reikalavimai gali bid sufoemuoluoti i6 ankato i malizwati, k-
riant vizusHzavime priemong, formuluojaml, anotoojant vizneliruojams programs arba
fonmuluojami specialial tam tikslul ekirta deklaratyvigja kalba, Straipsnyje athkta ¥y
metody lyginamoi apaliznd, Ypatingas demesys skines dekismiyvisjam viznalizavimo
reikalavinmy, formeulavimo metodni, pateikli kotdoetls jo tafkyvino pavyzdiial,



