

A Pioneering Scalable Self-driving Car Simulation

Platform

Haolun Wu
Department of Computer Science and Engineering

Northeastern University
Shenyang, China

wuhl0203@163.com

Yunfei Feng*
Smart Home Lab Tech Lead

Iowa State University
Ames, USA

yunfei@iastate.edu

Abstract—This paper proposes a novel hybrid, cross-platform

3D self-driving simulator, which offers a platform for researchers

in the field of automatic vehicles to validate algorithms with ease

and criteria to evaluate models in the community. Primarily our

system decomposes the achievement of self-driving into four

distinct steps by using a Tensorflow framework in machine

learning: data generating, data balancing, model training, and

model testing. The core part of our training section, the Alexnet,

underlies training a deep neuron network with high accuracy at a

fast speed. Some techniques, like balancing data, are employed to

avoid overfitting, thus improving the robustness and accuracy;

other functions, such as speed control, are designed for emulating

the reality more vividly. By many study cases, it shows a strong

flexibility of our simulator substantially. Various lane detection and

obstacle detection algorithms are embedded smoothly in our

system. In addition, Canny algorithm and Hough Transfer

algorithm detect and draw out the edge of lanes perfectly, while

YOLO architecture manages to detect obstacles.

Keywords—self-driving, automatic vehicles, simulation, lane

detection, obstacle detection, Tensorflow, machine learning

I. INTRODUCTION

In response to the public demand for convenience in this
high-tech era full of artificial intelligence, there has been a
growing interest in the development of self-driving car during
the past decade. In the meantime, increasing companies are
jumping into this promising ocean with the intention of a fully
automated system invention that does not involve any human
interference to be in the loop.

In 2011, Google announced its self-driving car project,
which was once a secret [6]. Stanford University Professor
Sebastian Thrun and Google engineer Chris Urmson led this
project, discussing the details in a keynote at
the IEEE International Conference on Intelligent Robots and
Systems in San Francisco. Google’s self-driving car is equipped
with cameras, lidars, radars, GPS, and wheel encoders, using
lidar to create 3D image of its surroundings. Meanwhile,
BOSCH, one of the most leading multinational engineering and
electronics company in the world nowadays, is working on a
Parking Steering Control project with automated steering and
partly automated braking [17].

Prior to a real production of sophisticated self-driving car
system, especially for proof-of-concept, a simulation phrase is
always willingly preferred at a relatively low cost. Typically,
several crucial steps are required in the construction of a
self-driving car simulator, in which the first stage is to generate
data; the application of good datasets that enables testing and
validation of results is a prerequisite all the time. In order to

record a car movement, camera placement and video capture are
worth serious considerations.

Even though many kinds of research and studies have been
executed on lane detection [2,3,8,11–13] and obstacle detection
[2,10] in the automatic vehicles field, the works on a reliable
simulator on the whole self-driving car controller is still
uncommon up to now. Consequently, it is a novelty to create a
self-driving car simulator to offer convenience to the academic
community.

In this paper, we designed a self-driving car simulator
architecture and implemented it. It is a hybrid, cross-platform
3D simulator with high flexibility. Our simulator is able to
generate data, making it possible to train the model later, to get a
good performance in automatic driving. The architecture of our
training model is based on AlexNet [9] to train a much deeper
neural network in a fast speed rolling out overfitting. Many
technical methods are applied to make the system more robust,
such as data balancing, due to the fact that there are always far
more quantities of data representing “Go forward” than those
representing “Turn left”, “Turn right”, or “Go backward” when
driving vehicles on a road in reality. Speed control technique is
also implemented in the simulator to emulate the “throttle” of
the car in the real world. The flexibility of our simulator is also
obvious. Various lane detection and obstacle detection
algorithms were also supported by our simulator. Canny
algorithm and HT (Hough Transfer) algorithm were applied to
detect and draw out the edge lines of the lanes; YOLO [15]
framework was successfully embedded into our simulator to
fulfill a real-time obstacle detection. The ultimate goal of our
achievement is to provide an efficient platform to test others'
algorithms and their own models, in addition, to have fun
playing self-driving car.

The rest of this paper is structured as follows. Section II
reviews existing technologies on automated vehicles and
simulation tools. Section III presents the architecture and
implementation. Section IV presents the flexibility of our
simulator, mainly from the application of two different
algorithms: lane detection and obstacle detection. Section V lists
the limitations of our simulator and future work for this project,
at the end the paper concludes.

II. RELATED WORK

Recently, many automatic vehicles techniques were
proposed and implemented in the community. As we see it, three
of the main issues for a self-driving simulator are lane detection,
obstacle detection and controller. In this part, lane detection and
obstacle detection are mainly described.

149

2019 IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)

978-1-7281-5030-7/19/$31.00 ©2019 IEEE Shenyang, China
November 22-24, 2019

A. Lane Detection

Typically, the road lane detector consists of four main parts:
warping, filtering, detecting and de-warping [13].

In the process of warping, the traditional method first selects
a region of interest (ROI), which contains the road information.
This step reduces the time for image-processing and shows
more details. Afterward, the system converts an RGB image
into a gray style without compromising the original road lines
information [3]. Here the weight of R, G, and B during this
transformation can be set as 0.02900, 0.58700, and 0.11400
separately [11].

The filtering process to distinguish the road pixels from the
background plays a quite substantial part. Reference [13] just
selects the scope of yellow and white color from the images by
using LUV [14] and LaB image formats, thus separating the
pixels of roads from those of the background. Alternatively,
reference [12] uses Gabor filters, which is a best-known
quadrature filters. Gabor filter is characterized by
Gaussian-formed band pass filters. It is a suitable choice to
accomplish functions demanding simultaneous measurement in
both space and frequency domains [1].

As for the road boundary detection, many detectors were
previously proposed. Khalifa, Hashim and Assidiq implemented
a “canny” edge detector [8], which adaptively adjusts
thresholds. M. Bertozzi and A. Broggi developed a GOLD
system [2] to detect both generic obstacles and the lane position
in a structured environment based on a full-custom massively
parallel hardware. Also, Hough Transform (HT) is an effective
and typical approach on lane detection. The principle is to
convert the image on a Cartesian coordinate system to a Polar

system, therefore each point on the same line (,)P x y must fit

the equation: cos sinr x y [11], where r is the

distance from the origin point to the straight line, is the angle

with the positive X axis, the range of is 90 .

De-warping is a reverse process of the warping, which is
necessarily the first step. Several methods have been used in this
process to convert a 2-D perspective image into a 3-D
perspective one. Polynomial regression is one of the good
choices to reshape the lane and curve by fitting lane points [16].

B. Obstacle Detection

It is widely accepted that obstacle detection is indispensable
for safe driving. Some technologies, such as LIDAR (Light
Detection And Ranging device), can yield good performances.
A ray cast is used to detect the distance by emitting laser, so this
approach is not affected by the weather condition. Besides, the
scale of its measurements is uniform despite distance [16].

Reference [10] sets up a novel obstacle detection and
recognition method based on convolutional neural network,
containing 15 layers in addition to the input layer. The network
is also combined with a four-layer RPN (Region Proposal
Network) work for generating obstacle recommended region
and is trained by using the Back Propagation method. Also, the
dropout strategy is used in this work to suppress overfitting.

However, some tasks with huge training data and
unsupervised learning do not work well with the CNN method;
therefore, reference [4] proposes a DSA (deep stacked
auto-encoders) model, which combines a greedy learning
method and an unsupervised k-nearest neighbors (KNN)
algorithm. The DSA model treats the obstacle detection as an

anomaly detection problem based on the V-Disparity data
distribution, using the V-Disparity dataset to initialize training at
a cold stage. Besides, the KNN algorithm is flexible to deal with
the non-linearity in the data [7].

III. ARCHITECTURE AND IMPLEMENTATION

Our work proposes a novel hybrid, cross-platform 3D
automatic vehicles simulation, which is particularly designed
for the field of self-driving car. It attempts to build a standard
open-source simulation for researchers in this area. Moreover, it
follows a hybrid approach to generate data and integrate various
algorithms on automatic vehicles. Hopefully, other researchers
can use our platforms to practice and test their algorithm;
companies can utilize our platform to prove their works.

This section presents the architecture of our simulation from
different steps during the whole work. At the end of this part, the
implementation of our system is briefly discussed.

A. Data Generation

It is very convenient to generate training dataset on our
simulator. In any self-driving system, the first and most
important step is always driving the car by human beings to
collect plenty of data. After running our simulator, the image of
driving will be recorded on the fly. In the former research and
experiments, it is very popular to record the whole image on the
screen in each certain time, then deliver to the training process in
the next step. Nevertheless, as is known that the top half of the
image recorded by the driving camera is usually the sky and
other scenery which is involved less with the training part; the
former way, sometimes leads to a waste of calculation resource.
Therefore, in our simulation, grabscreen module allows users
freely grabbing the screen just by defining the 4-tuple
coordinate (startx, starty, width, height). Many coordinate
screenshoting applications have such a functionality.

Additionally, getkeys module can record humans’
manipulation of the car in our simulator. Our platform record the
operation of these 4 keys when the player drives the car in the
simulator with the grabbed screen simultaneously. We define an
array named output which has 4 dimensions, mapping to
different operations. The detail information is shown in Table I.

TABLE I. THE KEY AND OUTPUT MAPPING TO DIFFERENT OPERATION.

Operation Key Output

Turn Left A [1,0,0,0]

Go Forward W [0,1,0,0]

Turn Right D [0,0,1,0]

Go Backward S [0,0,0,1]

B. Balancing Data

Overfitting is a headache to be cured in machine learning.
Imagining one drives a real car on the road, normally the human
driver seldom turns the steering wheel to turn the vehicle left or
right; instead, during the majority of the time, he or she just steps
on the throttle to keep the speed of car, remaining the steering
wheel unchanged. This life experience tells us that if the human
driver wants to collect the driving data in the real world, there
must be a large amount of data denoting “Go forward”, while
only a few about “Turn left” or “Turn right”, especially on a road
with a perfect traffic condition.

Likewise, driving the car in our simulator has the similar
situation. This may be convenient for the driver: it appears very
easy to drive; while it is not a good thing for the training. Most

150

of the data are about “Go forward”; nevertheless, the most
important part during driving is about how to turn the car at a
certain corner of the road. Therefore, if we use the data collected
directly without any processing, it is likely that overfitting will
occur.

Several approaches are discussed in reference [5] against
overfitting, such as

• Cross validation

• Training with more data

• Removing features

• Stopping early

• Ensembling (bagging and boosting)

In our project, the balancing trick is applied to solve this
issue.

Originally, we have 4 two-dimensional arrays to record the
images. Keystrokes (mentioned in Data Generation)
correspond to the 4 different control of the vehicle separately.
Actually, we can ignore the array about “Go backward”,
because people rarely drive backward on the road, instead of
parking. After saving the data collected during the Data
Generation stage, we find out the array of the shortest length

among Forward, Left and Right. Then it cuts the other two
arrays based on the shortest length. It is better to remove the
elements of the arrays from the beginning, because the traffic is
much easier from the start, so to speak less training will be
needed. Eventually, all the 3 arrays have the same length; thus,
the overfitting is largely avoided and the following step is to
train our model on the processed data. The detail is shown in
Fig. 1 and Fig. 2, for which the blue boxes refer to the
elements in the array; the white boxes refer to the abandoned
elements after balancing data.

C. Training Model

Our training section is based on a famous deep
convolutional neural network, the AlexNet [9].

There are 5 convolutional layers and 3 fully-connected
layers in the architecture of AlexNet. Among the first 5

convolutional layers, the 2nd ,4th ,and 5th layers are merely
connected to part of the kernel maps in the previous layer, while

the 3rd layer connects to the full kernel maps in the 2nd layer.

Besides, only the 1st ,2nd ,and 5th layers are followed by a max
pooling layer. As for the 3 fully-connected layers, the first two
layers connect all the neurons in the former layer, while the last
layer is fed to a 1000-way softmax which produces a
distribution over the 1000 class labels [9].

Fig. 1. One intuitive way is to compute the shortest array among Forward, Left ,and Right. Then cut off those longer two from the tail to achieve the data

balancing.

Forward

Left

Right

Forward

Left

Right

Forward

Left

Right

Forward

Left

Right

Fig. 2. Our thinking is to first abandon some elements in Forward from the head, then continue the work shown in Fig. 1. This is because driving in the beginning

of our simulator is relatively easy; too many data recorded are valueless from the beginning.

AlexNet architecture has several advantages for training
part. The first one is the ReLU (Rectified Linear Unit
nonlinearity) activation function, whose output f as a function of
input x is with () max(0,)f x x , much faster than the

traditional model 1() (1)xf x e . Reference [9] indicates the

6 times of improvement in convergence with the ReLU
neurons compared to the tanh neurons. Besides, the
overlapping pool and dropout technology in AlexNet avoid
overfitting efficiently. Hence, ReLU can help us train a much
deeper neural network in a fast speed with a good performance.

In order to fit with our simulator when using the ReLU
architecture, we first reshape our image to the size of the screen
grabbed during the Data Generation mentioned before. Then

we import the resized images and set epochs = 10 and
validation = 500 for training our model based on the AlexNet.
After training, our simulator teaches the vehicle to map the input
images to the target operation.

D. Testing Model

The aim of the last section, the testing model, is to let the
vehicle drive automatically in our simulator; thereby, we need to
first educate the car how to control itself. Similarly, we still do
not consider “Go backward”. As for “Go forward”, the
computer just needs to press W and release A or D meanwhile.
However, the thing is different when considering the other two
controls. The correct control to make the car make a left turn is:
press W, press A, release D, and then release A after ttime. The

151

control for “Turn right” is similar. This is because the car can
make a turn only when it has a forward speed. We finally set ttime

= 0.09s by experiment, for getting an ideal performance.

After training the model in the past section, the automatic
vehicle has already established a mapping relationship between
the scene grabbed and the operation of the car. In this section,
users just set the car to the place where they start training their
model and run the testing program. We then predict the
operation of the car by comparing the scene grabbed now and
the scene already trained earlier, remembered in the model.

It is obvious that the prediction is a ternary array, for which
the sum of the three numbers is 1. We set a parameter, turnthreshold

= 0.75, to indicate at what circumstance the car needs to make a

turn. Assuming the prediction is [a0, a1, a2], if a0≥turnthreshold or

a2≥turnthreshold , then the computer will control the car to turn

left or right, while it will keep going forward apart from these
two situations until it is controlled to make a turn.

An improvement is additionally implemented in our
simulator to mimic the functionality of “throttle” in a real car:
the speed control. We extracted the speed from the dashboard,

then if the speed is lower than 50km/h, we make the computer

press W 3 times for ttime = 0.09s each; if the speed is lower than

60km/h, we make the computer press W twice for ttime = 0.09s

each; and if the speed is lower than 70km/h, we make the

computer press W for ttime = 0.09s once. Our experiments show
that each ttime speed up can lead the vehicle to accelerate

10km/h. Therefore, this is an efficient and easy way to

parameterize the car’s speed neither too slow(less than 50km/h)

nor too fast(over than 80km/h). The principle of operation and
speed control is shown in Fig. 3.

Fig. 3. The top box indicates the principle of when to make a turn for the car. The bottom box shows the principle of speed control. turnthreshold and ttime are 2

critical parameters based on our experiments.

Fig. 4. The performance of our simulator when considering different number of

training circles and different value of turnthreshold settings.

In order to evaluate the performance of the platform, we
primarily assess the number of successful turns of the car in our

simulator. Of all the 18 bends, 5 are turning right and 13 are
turning left. If the vehicle can make a turn without touching the
lanes, it is considered as a successful turn. Fig. 4 shows the
number of successful turns to the number of training circles in
our simulator when setting a different turnthreshold from 0.65 to
0.85, with a stride of 0.05. By experiments, 5 circles of training
in the Data Generation section and turnthreshold setting as 0.75
achieves a great performance with an accuracy of 94.4%
approximately.

E. Implementation

Our simulator is propelled by Unity3D, programmable by
C#, which is a cross-platform 3D technology available for the
major operating system. Also, the game engine makes it
possible to add obstacles and vehicles in the scenario. Moreover,
it can also add different sensors or cameras on the vehicle for
different perspectives, or make the traffic more chaotic to import
more challenges. Therefore, users of our simulator are able to
design their own favored traffic situations and test algorithms.

152

The core of our training and testing model is programmed
by Python, which is efficient and universal. The Tensorflow
library in Python facilitates to build deep neural networks, as
well. Therefore, the source code is transportable, scalable, and
intelligible on different platforms and operating systems.

IV. FLEXIBILITY AND SCALABILITY

The usability of our simulator is fully discussed in the
former section. In fact, this simulator not only conducts data
generating, training and testing, but also supports other plug-in
algorithms. This section presents the successful combination of
our simulation with lane detection algorithm and obstacle
detection algorithm. We tried our best to make it as flexible and
scalable as possible.

A. Application of Lane Detection Algorithm

The topic on lane detection in the field of self-driving has
been deeply studied in the past decade, in addition, it is also one
of the most significant and popular issues in this area.

In the previous tasks [2,3,8,10–13], researchers usually
downloaded a video on vehicle driving from the Internet or used
a DVR to record a piece of video, then ran the program for lane
detection to find out the lanes on the road. This simulator not
only renders road condition on the fly, but also it provides a
screen grabbing API, so that video downloading becomes
unnecessary any more. We apply the lane detection algorithm in
our simulator directly, and the performance goes well. This
produces a great convenience and high efficiency for
researchers who want to test their algorithms on lane detection.

We used Python and OpenCV to detect the lanes on the road.
Our algorithm does not care about the color of the image, as it
first transfers the RGB image to a gray one. Moreover, as
mentioned in Lane Detection, the top part of the image does not
contain much valuable information in our lane detection task;
therefore, a mask is needed to set a RoI (Region of Interest). We
set a mask to do an XOR (Exclusive Or) operation with the
original gray image and the RoI is in a shape of trapezoid at the
bottom of the image. This region perfectly contains the critical
information of the car and the front perspective, excluding
unnecessary information.

Fig. 5. Column 1 shows the original images in our simulator, emulating the

reality. Column 2 indicates the gray images transferring from the original RGB

images. Column 3 is the result after implementing Gaussian Blur algorithm and

Canny algorithm.

After obtaining the processed image, Gaussian Blur and

Canny algorithms are implemented to process the image in
order to achieve image denoising and detect the edges in the
image precisely. Gaussian Blur in OpenCV2 mainly targets to
smooth the edges, or rough edges will occur caused by noises.
We set the kernel size in Gaussian Blur to be 3, because the
bigger the value of the kernel size is, the more obscure the image
will be, also consuming much longer time to process. Canny is
used to find the edges in the next step. The lower-threshold and
the higher-threshold are two significant parameters in Canny.
We set threshold1 = 200 and threshold2 = 300 by testing. The
result of our experiment is shown in Fig. 5.

The final step is to use Hough Transfer to detect lines in the
edge images, and then draw them out. We set the threshold =
180, minLineLength = 20 and maxLineGap = 15 to fit our
simulator with a good performance. Fig. 6 shows our results of
lane detection after running the Hough Transfer algorithm.

Fig. 6. Draw out the lanes by using Hough Transfer algorithm.

B. Application of Obstacle Detection Algorithm

Obstacle detection is a field studied even before the
emergence of the automatic vehicles topic for its wide use in
many aspects from image recognition to smart driving. The past
works [4,10,16] mainly based on discrete data in a relatively
safe environment; however, the real situation is totally different
from those in the past works because of noises in the traffic.
Therefore, our contribution is to test whether the algorithm can
be applied in our simulator which mimics a real traffic world full
of noise.

YOLO (You Only Look Once), a great deep learning
framework, is applied in the obstacle detection algorithm in our
simulator for real-time processing. YOLO is regarded fast and
accurate because it only “looks” the image once to identify the
bounding box and category of the target object; thus transferring
the detection problem to a regression problem [15].

The training uses the sum of squared error loss, then it
predicts an objectness value for each bounding box using
logistic regression [15]. The application of YOLO in our system
indicates that our simulator is a good platform to test and
support other algorithms.

The result of implementing YOLO in our simulator is
shown in Fig. 7.

Fig. 7. Obstacle detection for the car by implementing YOLO in our simulator.

V. CONCLUSION AND FUTURE WORK

Our achievement is successfully creating a simulator in
automatic vehicles area as a pioneer. It is a hybrid, cross 3D and
robust platform, orienting to both companies, researchers, and
any other users who are interested in this field. This simulator
can achieve the data generation, balancing data, training, and
testing by using a Tensorflow framework in machine learning.

153

Additionally, various algorithms are able to be applied in our
system, such as algorithms for lane detection and obstacle
detection; hence, we provide a real-time rather than off-line
platform to train their models and test their algorithms with
many conveniences in the field of automatic vehicles. Besides,
we also define an evaluation criterion on the approaches and
performance in this field. Hopefully, our work could readily
help more researchers to test and evaluate other similar works.

The results of this study are promising, yet there is room for
more improvements. One of the identified issues is that
multi-camera technology is not used in the current version of
this simulator. Moreover, we also plan to add the object tracking
technology in our work in the future to identify not only a
category of “car” but also any particular vehicle, making it much
closer to the real world. These are challenging tasks for
ameliorating our simulation as for the future work.

REFERENCES
[1] C. Ajmi, S. E. Ferchichi, and K. Laabidi. New procedure for weld

defect detection based-gabor filter. pages 11–16, 2018.

[2] M. Bertozzi and A. Broggi. Gold: a parallel real-time stereo vision
system for generic obstacle and lane detection. IEEE Transactions on
Image Processing, 7(1):62–81, 1998.

[3] F. Bounini, D. Gingras, V. Lapointe, and H. Pollart. Autonomous
vehicle and real time road lanes detection and tracking. In 2015 IEEE
Vehicle Power and Propulsion Conference (VPPC), pages 1–6, 2015.

[4] A. Dairi, F. Harrou, Y. Sun, and M. Senouci. Obstacle detection for
intelligent transportation systems using deep stacked autoencoder and
k -nearest neighbor scheme. IEEE Sensors Journal, 18(12):5122– 5132,
2018.

[5] EliteDataScience.https://elitedatascience.com/overfitting-in-machine-l
earning-how-to-prevent. Elite- DataScience.com, 2016-2018.

[6] Erico Guizzo. How google’s self-driving car works.

https://spectrum.ieee.org/automaton/robotics/artificial-
intelligence/how-google-self-driving-car-works/, 2011.

[7] Q. P. He and J. Wang. Fault detection using the k-nearest neighbor rule
for semiconductor manufac- turing processes. In IEEE Trans.
Semicond. Manuf., volume 20, pages 345–354, 2007.

[8] O. O. Khalifa, A. H. A. Hashim, and A. A. M. Assidiq. Vision-based
lane detection for autonomous artificial intelligent vehicles. In 2009
IEEE International Conference on Semantic Computing, pages 636–
641, 2009.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolu- tional neural networks. 2012.

[10] P. Li, Y. Mi, C. He, and Y. Li. Detection and discrimination of
obstacles to vehicle environment under convolutional neural networks.
pages 337–341, 2018.

[11] X. Li, Q. Wu, Y. Kou, L. Hou, and H. Yang. Lane detection based on
spiking neural network and hough transform. pages 626–630, 2015.

[12] Z. Q. Li, H. M. Ma, and Z. Y. Liu. Road lane detection with gabor
filters. In 2016 International Conference on Information System and
Artificial Intelligence (ISAI), pages 436–440, 2016.

[13] B. T. Nugraha, S. F. Su, and Fahmizal. Towards self-driving car using
convolutional neural network and road lane detector. In 2017 2nd
International Conference on Automation, Cognitive Science, Optics,
Micro Electro- 173;Mechanical System, and Information Technology
(ICACOMIT), pages 65– 69, 2017.

[14] D. Pritam and J. H. Dewan. Detection of fire using image processing
techniques with luv color space. pages 1158–1162, 2017.

[15] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. CoRR, abs/1804.02767, 2018.

[16] L. Zhang, Q. Li, M. Li, Q. Mao, and A. Nüchter. Multiple
vehicle-like target tracking based on the velodyne lidar, volume 8.
2013.

[17] Dr. Jan Becker. Toward Fully Automated Driving.
https://higherlogicdownload.s3.amazonaws.com/AUVSI/3a47c2f1-97
a8-4fb7-8a39-56cba0733145/UploadedImages/documents/pdfs/7-15-
14%20AVS%20presentations/Jan%20Becker.pdf, 2014

154

View publication statsView publication stats

https://www.researchgate.net/publication/339908934

