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Abstract—This paper proposes a novel hybrid, cross-platform 

3D self-driving simulator, which offers a platform for researchers 

in the field of automatic vehicles to validate algorithms with ease 

and criteria to evaluate models in the community. Primarily our 

system decomposes the achievement of self-driving into four 

distinct steps by using a Tensorflow framework in machine 

learning: data generating, data balancing, model training, and 

model testing. The core part of our training section, the Alexnet, 

underlies training a deep neuron network with high accuracy at a 

fast speed. Some techniques, like balancing data, are employed to 

avoid overfitting, thus improving the robustness and accuracy; 

other functions, such as speed control, are designed for emulating 

the reality more vividly. By many study cases, it shows a strong 

flexibility of our simulator substantially. Various lane detection and 

obstacle detection algorithms are embedded smoothly in our 

system. In addition, Canny algorithm and Hough Transfer 

algorithm detect and draw out the edge of lanes perfectly, while 

YOLO architecture manages to detect obstacles. 

Keywords—self-driving, automatic vehicles, simulation, lane 

detection, obstacle detection, Tensorflow, machine learning 

I. INTRODUCTION  

In response to the public demand for convenience in this 
high-tech era full of artificial intelligence, there has been a 
growing interest in the development of self-driving car during 
the past decade. In the meantime, increasing companies are 
jumping into this promising ocean with the intention of a fully 
automated system invention that does not involve any human 
interference to be in the loop. 

In 2011, Google announced its self-driving car project, 
which was once a secret [6]. Stanford University Professor 
Sebastian Thrun and Google engineer Chris Urmson led this 
project, discussing the details in a keynote at 
the IEEE International Conference on Intelligent Robots and 
Systems in San Francisco. Google’s self-driving car is equipped 
with cameras, lidars, radars, GPS, and wheel encoders, using 
lidar to create 3D image of its surroundings. Meanwhile, 
BOSCH, one of the most leading multinational engineering and 
electronics company in the world nowadays, is working on a 
Parking Steering Control project with automated steering and 
partly automated braking [17].  

Prior to a real production of sophisticated self-driving car 
system, especially for proof-of-concept, a simulation phrase is 
always willingly preferred at a relatively low cost. Typically, 
several crucial steps are required in the construction of a 
self-driving car simulator, in which the first stage is to generate 
data; the application of good datasets that enables testing and 
validation of results is a prerequisite all the time. In order to 

record a car movement, camera placement and video capture are 
worth serious considerations.  

Even though many kinds of research and studies have been 
executed on lane detection [2,3,8,11–13] and obstacle detection 
[2,10] in the automatic vehicles field, the works on a reliable 
simulator on the whole self-driving car controller is still 
uncommon up to now. Consequently, it is a novelty to create a 
self-driving car simulator to offer convenience to the academic 
community. 

In this paper, we designed a self-driving car simulator 
architecture and implemented it. It is a hybrid, cross-platform 
3D simulator with high flexibility. Our simulator is able to 
generate data, making it possible to train the model later, to get a 
good performance in automatic driving. The architecture of our 
training model is based on AlexNet [9] to train a much deeper 
neural network in a fast speed rolling out overfitting. Many 
technical methods are applied to make the system more robust, 
such as data balancing, due to the fact that there are always far 
more quantities of data representing “Go forward” than those 
representing “Turn left”, “Turn right”, or “Go backward” when 
driving vehicles on a road in reality. Speed control technique is 
also implemented in the simulator to emulate the “throttle” of 
the car in the real world. The flexibility of our simulator is also 
obvious. Various lane detection and obstacle detection 
algorithms were also supported by our simulator. Canny 
algorithm and HT (Hough Transfer) algorithm were applied to 
detect and draw out the edge lines of the lanes; YOLO [15] 
framework was successfully embedded into our simulator to 
fulfill a real-time obstacle detection. The ultimate goal of our 
achievement is to provide an efficient platform to test others' 
algorithms and their own models, in addition, to have fun 
playing self-driving car.  

The rest of this paper is structured as follows. Section II 
reviews existing technologies on automated vehicles and 
simulation tools. Section III presents the architecture and 
implementation. Section IV presents the flexibility of our 
simulator, mainly from the application of two different 
algorithms: lane detection and obstacle detection. Section V lists 
the limitations of our simulator and future work for this project, 
at the end the paper concludes. 

II. RELATED WORK 

Recently, many automatic vehicles techniques were 
proposed and implemented in the community. As we see it, three 
of the main issues for a self-driving simulator are lane detection, 
obstacle detection and controller. In this part, lane detection and 
obstacle detection are mainly described. 
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A. Lane Detection 

Typically, the road lane detector consists of four main parts: 
warping, filtering, detecting and de-warping [13].  

In the process of warping, the traditional method first selects 
a region of interest (ROI), which contains the road information. 
This step reduces the time for image-processing and shows 
more details. Afterward, the system converts an RGB image 
into a gray style without compromising the original road lines 
information [3]. Here the weight of R, G, and B during this 
transformation can be set as 0.02900, 0.58700, and 0.11400 
separately [11]. 

The filtering process to distinguish the road pixels from the 
background plays a quite substantial part. Reference [13] just 
selects the scope of yellow and white color from the images by 
using LUV [14] and LaB image formats, thus separating the 
pixels of roads from those of the background. Alternatively, 
reference [12] uses Gabor filters, which is a best-known 
quadrature filters. Gabor filter is characterized by 
Gaussian-formed band pass filters. It is a suitable choice to 
accomplish functions demanding simultaneous measurement in 
both space and frequency domains [1].  

As for the road boundary detection, many detectors were 
previously proposed. Khalifa, Hashim and Assidiq implemented 
a “canny” edge detector [8], which adaptively adjusts 
thresholds. M. Bertozzi and A. Broggi developed a GOLD 
system [2] to detect both generic obstacles and the lane position 
in a structured environment based on a full-custom massively 
parallel hardware. Also, Hough Transform (HT) is an effective 
and typical approach on lane detection. The principle is to 
convert the image on a Cartesian coordinate system to a Polar 

system, therefore each point on the same line ( , )P x y  must fit 

the equation: cos sinr x y    [11], where r  is the 

distance from the origin point to the straight line,   is the angle 

with the positive X axis, the range of   is 90 .  

De-warping is a reverse process of the warping, which is 
necessarily the first step. Several methods have been used in this 
process to convert a 2-D perspective image into a 3-D 
perspective one. Polynomial regression is one of the good 
choices to reshape the lane and curve by fitting lane points [16]. 

B. Obstacle Detection 

It is widely accepted that obstacle detection is indispensable 
for safe driving. Some technologies, such as LIDAR (Light 
Detection And Ranging device), can yield good performances. 
A ray cast is used to detect the distance by emitting laser, so this 
approach is not affected by the weather condition. Besides, the 
scale of its measurements is uniform despite distance [16]. 

Reference [10] sets up a novel obstacle detection and 
recognition method based on convolutional neural network, 
containing 15 layers in addition to the input layer. The network 
is also combined with a four-layer RPN (Region Proposal 
Network) work for generating obstacle recommended region 
and is trained by using the Back Propagation method. Also, the 
dropout strategy is used in this work to suppress overfitting.  

However, some tasks with huge training data and 
unsupervised learning do not work well with the CNN method; 
therefore, reference [4] proposes a DSA (deep stacked 
auto-encoders) model, which combines a greedy learning 
method and an unsupervised k-nearest neighbors (KNN) 
algorithm. The DSA model treats the obstacle detection as an 

anomaly detection problem based on the V-Disparity data 
distribution, using the V-Disparity dataset to initialize training at 
a cold stage. Besides, the KNN algorithm is flexible to deal with 
the non-linearity in the data [7]. 

III. ARCHITECTURE AND IMPLEMENTATION 

Our work proposes a novel hybrid, cross-platform 3D 
automatic vehicles simulation, which is particularly designed 
for the field of self-driving car. It attempts to build a standard 
open-source simulation for researchers in this area. Moreover, it 
follows a hybrid approach to generate data and integrate various 
algorithms on automatic vehicles. Hopefully, other researchers 
can use our platforms to practice and test their algorithm; 
companies can utilize our platform to prove their works. 

This section presents the architecture of our simulation from 
different steps during the whole work. At the end of this part, the 
implementation of our system is briefly discussed. 

A. Data Generation 

It is very convenient to generate training dataset on our 
simulator. In any self-driving system, the first and most 
important step is always driving the car by human beings to 
collect plenty of data. After running our simulator, the image of 
driving will be recorded on the fly. In the former research and 
experiments, it is very popular to record the whole image on the 
screen in each certain time, then deliver to the training process in 
the next step. Nevertheless, as is known that the top half of the 
image recorded by the driving camera is usually the sky and 
other scenery which is involved less with the training part; the 
former way, sometimes leads to a waste of calculation resource. 
Therefore, in our simulation, grabscreen module allows users 
freely grabbing the screen just by defining the 4-tuple 
coordinate (startx, starty, width, height). Many coordinate 
screenshoting applications have such a functionality. 

Additionally, getkeys module can record humans’ 
manipulation of the car in our simulator. Our platform record the 
operation of these 4 keys when the player drives the car in the 
simulator with the grabbed screen simultaneously. We define an 
array named output which has 4 dimensions, mapping to 
different operations. The detail information is shown in Table I. 

TABLE I.  THE KEY AND OUTPUT MAPPING TO DIFFERENT OPERATION. 

Operation Key Output 

Turn Left A [1,0,0,0] 

Go Forward W [0,1,0,0] 

Turn Right D [0,0,1,0] 

Go Backward S [0,0,0,1] 

B. Balancing Data 

Overfitting is a headache to be cured in machine learning. 
Imagining one drives a real car on the road, normally the human 
driver seldom turns the steering wheel to turn the vehicle left or 
right; instead, during the majority of the time, he or she just steps 
on the throttle to keep the speed of car, remaining the steering 
wheel unchanged. This life experience tells us that if the human 
driver wants to collect the driving data in the real world, there 
must be a large amount of data denoting “Go forward”, while 
only a few about “Turn left” or “Turn right”, especially on a road 
with a perfect traffic condition. 

Likewise, driving the car in our simulator has the similar 
situation. This may be convenient for the driver: it appears very 
easy to drive; while it is not a good thing for the training. Most 
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of the data are about “Go forward”; nevertheless, the most 
important part during driving is about how to turn the car at a 
certain corner of the road. Therefore, if we use the data collected 
directly without any processing, it is likely that overfitting will 
occur. 

Several approaches are discussed in reference [5] against 
overfitting, such as 

• Cross validation 

• Training with more data 

• Removing features 

• Stopping early 

• Ensembling (bagging and boosting) 

In our project, the balancing trick is applied to solve this 
issue. 

Originally, we have 4 two-dimensional arrays to record the 
images. Keystrokes (mentioned in Data Generation) 
correspond to the 4 different control of the vehicle separately. 
Actually, we can ignore the array about “Go backward”, 
because people rarely drive backward on the road, instead of 
parking. After saving the data collected during the Data 
Generation stage, we find out the array of the shortest length 

among Forward, Left and Right. Then it cuts the other two 
arrays based on the shortest length. It is better to remove the 
elements of the arrays from the beginning, because the traffic is 
much easier from the start, so to speak less training will be 
needed. Eventually, all the 3 arrays have the same length; thus, 
the overfitting is largely avoided and the following step is to 
train our model on the processed data. The detail is shown in 
Fig. 1 and Fig. 2, for which the blue boxes refer to the 
elements in the array; the white boxes refer to the abandoned 
elements after balancing data. 

C. Training Model 

Our training section is based on a famous deep 
convolutional neural network, the AlexNet [9]. 

There are 5 convolutional layers and 3 fully-connected 
layers in the architecture of AlexNet. Among the first 5 

convolutional layers, the 2nd ,4th ,and 5th layers are merely 
connected to part of the kernel maps in the previous layer, while 

the 3rd layer connects to the full kernel maps in the 2nd layer. 

Besides, only the 1st ,2nd ,and 5th layers are followed by a max 
pooling layer. As for the 3 fully-connected layers, the first two 
layers connect all the neurons in the former layer, while the last 
layer is fed to a 1000-way softmax which produces a 
distribution over the 1000 class labels [9]. 

 
Fig. 1. One intuitive way is to compute the shortest array among Forward, Left ,and Right. Then cut off those longer two from the tail to achieve the data 

balancing. 

Forward

Left

Right

Forward

Left

Right

Forward

Left

Right

Forward

Left

Right

 
Fig. 2. Our thinking is to first abandon some elements in Forward from the head, then continue the work shown in Fig. 1. This is because driving in the beginning 

of our simulator is relatively easy; too many data recorded are valueless from the beginning. 

AlexNet architecture has several advantages for training 
part. The first one is the ReLU (Rectified Linear Unit 
nonlinearity) activation function, whose output f as a function of 
input x is with ( ) max(0, )f x x , much faster than the 

traditional model 1( ) (1 )xf x e   . Reference [9] indicates the 

6 times of improvement in convergence with the ReLU 
neurons compared to the tanh neurons. Besides, the 
overlapping pool and dropout technology in AlexNet avoid 
overfitting efficiently. Hence, ReLU can help us train a much 
deeper neural network in a fast speed with a good performance. 

In order to fit with our simulator when using the ReLU 
architecture, we first reshape our image to the size of the screen 
grabbed during the Data Generation mentioned before. Then 

we import the resized images and set epochs = 10 and 
validation = 500 for training our model based on the AlexNet. 
After training, our simulator teaches the vehicle to map the input 
images to the target operation. 

D. Testing Model 

The aim of the last section, the testing model, is to let the 
vehicle drive automatically in our simulator; thereby, we need to 
first educate the car how to control itself. Similarly, we still do 
not consider “Go backward”. As for “Go forward”, the 
computer just needs to press W and release A or D meanwhile. 
However, the thing is different when considering the other two 
controls. The correct control to make the car make a left turn is: 
press W, press A, release D, and then release A after ttime. The 
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control for “Turn right” is similar. This is because the car can 
make a turn only when it has a forward speed. We finally set ttime 

= 0.09s by experiment, for getting an ideal performance. 

After training the model in the past section, the automatic 
vehicle has already established a mapping relationship between 
the scene grabbed and the operation of the car. In this section, 
users just set the car to the place where they start training their 
model and run the testing program. We then predict the 
operation of the car by comparing the scene grabbed now and 
the scene already trained earlier, remembered in the model.   

It is obvious that the prediction is a ternary array, for which 
the sum of the three numbers is 1. We set a parameter, turnthreshold 

= 0.75, to indicate at what circumstance the car needs to make a 

turn. Assuming the prediction is [a0, a1, a2], if a0≥turnthreshold or 

a2≥turnthreshold , then the computer will control the car to turn 

left or right, while it will keep going forward apart from these 
two situations until it is controlled to make a turn. 

An improvement is additionally implemented in our 
simulator to mimic the functionality of “throttle” in a real car: 
the speed control. We extracted the speed from the dashboard, 

then if the speed is lower than 50km/h, we make the computer 

press W 3 times for ttime = 0.09s each; if the speed is lower than 

60km/h, we make the computer press W twice for ttime = 0.09s 

each; and if the speed is lower than 70km/h, we make the 

computer press W for ttime = 0.09s once. Our experiments show 
that each ttime speed up can lead the vehicle to accelerate 

10km/h. Therefore, this is an efficient and easy way to 

parameterize the car’s speed neither too slow(less than 50km/h) 

nor too fast(over than 80km/h). The principle of operation and 
speed control is shown in Fig. 3. 

 
Fig. 3. The top box indicates the principle of when to make a turn for the car. The bottom box shows the principle of speed control. turnthreshold and ttime are 2 

critical parameters based on our experiments. 

 

Fig. 4.  The performance of our simulator when considering different number of 

training circles and different value of turnthreshold settings.  

In order to evaluate the performance of the platform, we 
primarily assess the number of successful turns of the car in our 

simulator. Of all the 18 bends, 5 are turning right and 13 are 
turning left. If the vehicle can make a turn without touching the 
lanes, it is considered as a successful turn. Fig. 4 shows the 
number of successful turns to the number of training circles in 
our simulator when setting a different turnthreshold from 0.65 to 
0.85, with a stride of 0.05. By experiments, 5 circles of training 
in the Data Generation section and turnthreshold setting as 0.75 
achieves a great performance with an accuracy of 94.4% 
approximately. 

E. Implementation 

Our simulator is propelled by Unity3D, programmable by 
C#, which is a cross-platform 3D technology available for the 
major operating system. Also, the game engine makes it 
possible to add obstacles and vehicles in the scenario. Moreover, 
it can also add different sensors or cameras on the vehicle for 
different perspectives, or make the traffic more chaotic to import 
more challenges. Therefore, users of our simulator are able to 
design their own favored traffic situations and test algorithms.  
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The core of our training and testing model is programmed 
by Python, which is efficient and universal. The Tensorflow 
library in Python facilitates to build deep neural networks, as 
well. Therefore, the source code is transportable, scalable, and 
intelligible on different platforms and operating systems. 

IV. FLEXIBILITY AND SCALABILITY 

The usability of our simulator is fully discussed in the 
former section. In fact, this simulator not only conducts data 
generating, training and testing, but also supports other plug-in 
algorithms. This section presents the successful combination of 
our simulation with lane detection algorithm and obstacle 
detection algorithm. We tried our best to make it as flexible and 
scalable as possible. 

A. Application of Lane Detection Algorithm 

The topic on lane detection in the field of self-driving has 
been deeply studied in the past decade, in addition, it is also one 
of the most significant and popular issues in this area. 

In the previous tasks [2,3,8,10–13],  researchers usually 
downloaded a video on vehicle driving from the Internet or used 
a DVR to record a piece of video, then ran the program for lane 
detection to find out the lanes on the road. This simulator not 
only renders road condition on the fly, but also it provides a 
screen grabbing API, so that video downloading becomes 
unnecessary any more. We apply the lane detection algorithm in 
our simulator directly, and the performance goes well. This 
produces a great convenience and high efficiency for 
researchers who want to test their algorithms on lane detection. 

We used Python and OpenCV to detect the lanes on the road. 
Our algorithm does not care about the color of the image, as it 
first transfers the RGB image to a gray one. Moreover, as 
mentioned in Lane Detection, the top part of the image does not 
contain much valuable information in our lane detection task; 
therefore, a mask is needed to set a RoI (Region of Interest). We 
set a mask to do an XOR (Exclusive Or) operation with the 
original gray image and the RoI is in a shape of trapezoid at the 
bottom of the image. This region perfectly contains the critical 
information of the car and the front perspective, excluding 
unnecessary information. 

 
Fig. 5.  Column 1 shows the original images in our simulator, emulating the 

reality. Column 2 indicates the gray images transferring from the original RGB 

images. Column 3 is the result after implementing Gaussian Blur algorithm and 

Canny algorithm. 

After obtaining the processed image, Gaussian Blur and 

Canny algorithms are implemented to process the image in 
order to achieve image denoising and detect the edges in the 
image precisely. Gaussian Blur in OpenCV2 mainly targets to 
smooth the edges, or rough edges will occur caused by noises. 
We set the kernel size in Gaussian Blur to be 3, because the 
bigger the value of the kernel size is, the more obscure the image 
will be, also consuming much longer time to process. Canny is 
used to find the edges in the next step. The lower-threshold and 
the higher-threshold are two significant parameters in Canny. 
We set threshold1 = 200 and threshold2 = 300 by testing. The 
result of our experiment is shown in Fig. 5. 

The final step is to use Hough Transfer to detect lines in the 
edge images, and then draw them out. We set the threshold = 
180, minLineLength = 20 and maxLineGap = 15 to fit our 
simulator with a good performance. Fig. 6 shows our results of 
lane detection after running the Hough Transfer algorithm.  

 
Fig. 6.  Draw out the lanes by using Hough Transfer algorithm. 

B. Application of Obstacle Detection Algorithm 

Obstacle detection is a field studied even before the 
emergence of the automatic vehicles topic for its wide use in 
many aspects from image recognition to smart driving. The past 
works [4,10,16] mainly based on discrete data in a relatively 
safe environment; however, the real situation is totally different 
from those in the past works because of noises in the traffic. 
Therefore, our contribution is to test whether the algorithm can 
be applied in our simulator which mimics a real traffic world full 
of noise. 

YOLO (You Only Look Once), a great deep learning 
framework, is applied in the obstacle detection algorithm in our 
simulator for real-time processing. YOLO is regarded fast and 
accurate because it only “looks” the image once to identify the 
bounding box and category of the target object; thus transferring 
the detection problem to a regression problem [15]. 

The training uses the sum of squared error loss, then it 
predicts an objectness value for each bounding box using 
logistic regression [15]. The application of YOLO in our system 
indicates that our simulator is a good platform to test and 
support other algorithms. 

The result of implementing YOLO in our simulator is 
shown in Fig. 7. 

  
Fig. 7.  Obstacle detection for the car by implementing YOLO in our simulator. 

V. CONCLUSION AND FUTURE WORK 

Our achievement is successfully creating a simulator in 
automatic vehicles area as a pioneer. It is a hybrid, cross 3D and 
robust platform, orienting to both companies, researchers, and 
any other users who are interested in this field. This simulator 
can achieve the data generation, balancing data, training, and 
testing by using a Tensorflow framework in machine learning. 
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Additionally, various algorithms are able to be applied in our 
system, such as algorithms for lane detection and obstacle 
detection; hence, we provide a real-time rather than off-line 
platform to train their models and test their algorithms with 
many conveniences in the field of automatic vehicles. Besides, 
we also define an evaluation criterion on the approaches and 
performance in this field. Hopefully, our work could readily 
help more researchers to test and evaluate other similar works. 

The results of this study are promising, yet there is room for 
more improvements. One of the identified issues is that 
multi-camera technology is not used in the current version of 
this simulator. Moreover, we also plan to add the object tracking 
technology in our work in the future to identify not only a 
category of “car” but also any particular vehicle, making it much 
closer to the real world. These are challenging tasks for 
ameliorating our simulation as for the future work. 
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