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Abstract: In recent years, demand side management (DSM) techniques have been designed for
residential, industrial and commercial sectors. These techniques are very effective in flattening the
load profile of customers in grid area networks. In this paper, a heuristic algorithms-based energy
management controller is designed for a residential area in a smart grid. In essence, five heuristic
algorithms (the genetic algorithm (GA), the binary particle swarm optimization (BPSO) algorithm, the
bacterial foraging optimization algorithm (BFOA), the wind-driven optimization (WDO) algorithm
and our proposed hybrid genetic wind-driven (GWD) algorithm) are evaluated. These algorithms
are used for scheduling residential loads between peak hours (PHs) and off-peak hours (OPHs) in
a real-time pricing (RTP) environment while maximizing user comfort (UC) and minimizing both
electricity cost and the peak to average ratio (PAR). Moreover, these algorithms are tested in two
scenarios: (i) scheduling the load of a single home and (ii) scheduling the load of multiple homes.
Simulation results show that our proposed hybrid GWD algorithm performs better than the other
heuristic algorithms in terms of the selected performance metrics.

Keywords: Demand side management; priority scheduling; user comfort; heuristic optimization

1. Introduction

In order to make a robust and more reliable power grid, peak demand is taken into account rather
than the average demand. As a consequence, natural resources are wasted, and the generation and
distribution systems are under-utilized. Fast responding generators (e.g., coal and gas units), which
are used to meet the peak demand, are not only expensive, but also have a high carbon emission
rate. As a solution, different programs have been presented to shape the energy consumption profiles
of users. Such programs aim to efficiently utilize the available generation so that new transmission
and new generation infrastructures are minimally installed. These programs, known as demand side
management (DSM) programs, aim either at scheduling consumption or reducing consumption [1].

A DSM program provides support towards power grid functionalities in various areas, such as
electricity market control, infrastructure maintenance and management of decentralized energy
resources [2]. In electricity markets, it informs the load controller about the latest load schedule
and possible load reduction capabilities for each time step of the next day. Using this procedure,
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it schedules the load according to the objectives of interest associated with the power distribution
systems [3,4]. The load shapes indicate the daily or seasonal electricity demands of industrial or
residential consumers between peak hours (PHs) and off-peak hours (OPHs). These shapes can be
modified by six techniques [5,6]: peak clipping, valley filling, load shifting, strategic conservation,
strategic load growth and flexible load shape.

Peak clipping and valley filling are direct load control techniques. Peak clipping deals with the
reduction of the peak loads, whereas valley filling considers the construction of loads for the off peak
demands. Load shifting is the most effective and widely-used technique for load management in
current power supply networks. It is concerned with shifting of the load from PHs to OPHs. Strategic
conservation [5] applies demand reduction methods at the customer side for achieving optimized
load shapes. If there is a larger load demand, then the daily responses are optimized by load growth
techniques (distributed energy resources) [5–7].

The working of a generic DSM controller is shown in Figure 1. The figure shows that DSM aims
for: (i) electricity cost minimization; (ii) energy consumption minimization; (iii) peak to average ratio
(PAR) minimization; and (iv) user comfort (UC) maximization. In the literature, many DSM techniques
are proposed [8–11] to achieve the aforementioned objectives. However, UC is not considered in
most of these techniques, like [8,10,12–17]. In these works, [11,18,19] aim to reduce the electricity cost,
and [20,21] focus on minimizing the aggregated power consumption using integer linear programming
and mixed integer linear programming. Similarly, electricity bills and aggregated power consumption
are reduced in [22] by using mixed integer non-linear programming. However, these techniques do
not take into account the large number of different household appliances. Moreover, randomness in
user load profiles makes the scheduling task more challenging.
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Figure 1. Working of demand side management (DSM). AMI: Advanced metering infrastructure, HEM:
Home Energy Management.
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In this paper, a heuristic algorithm-based DSM controller is designed for a residential area in a SG
using the RTP scheme. In the designed DSM controller, five heuristic algorithms are implemented;
GA, BPSO, wind-driven optimization (WDO), bacterial foraging optimization algorithm (BFOA)
and our proposed hybrid genetic wind-driven (GWD) algorithm. These algorithms are chosen
for implementation due to their flexibility for specified constraints and their low computational
complexity [23]. More distinctively, prioritized load shifting is carried out between PHs and OPHs
using a large number of appliances in the residential area. For effective scheduling and ease of
implementation, the appliances are divided into two classes: (i) Class A (non-shiftable appliances)
and (ii) Class B (shiftable appliances). Simulations are conducted in MATLAB such that all of the
selected heuristic algorithms are compared in terms of electricity cost, energy consumption, PAR and
UC. Results show that our proposed hybrid GWD performs better than the other compared techniques
in terms of the selected performance metrics. It is worth mentioning that the nomenclature and list of
abbreviations are given in Tables 1 and 2, respectively.

Table 1. Nomenclature.

Variables and Subscripts Description

t Time Interval
Eij Energy Consumption of an Appliance
PR(t) Electricity Price at time t
Ai Set of Appliances
S Swarm Size
li Length of Operation Time Counter
xi Position of Swarms
X Appliance ON and OFF Status
gbest Global Best Position of Particles
pbest Local Best Position of Particles
P Population Size
xnew New Position of Particles
Vi velocity of Particles
w Weight of Particles
EcostSavings Electricity Cost Savings
α Cost Function Variable
β Delay Function Variable
delay Delay Function Counter
EappUtil Appliance Utility
RT RT Coefficient
g Gravitational Constant
c Constant in the Update Equation
maxV Maximum Allowed Speed
H Number of Homes
pop1, pop2 New Population
Max.Cost Maximum Cost
Gen. Generation
tsize Total Size
Maxgen Maximum Generations

Table 2. List of abbreviations.

Abbreviations Definition

ANOVA Analysis of variation
AC Air conditioner
ACO Ant colony optimization
ADA Activity-dependent appliances
AMI Advanced metering infrastructure
ANN Artificial neural network
BPSO Binary PSO
BFOA Bacterial foraging optimization algorithm
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Table 2. Cont.

Abbreviations Definition

CAC Central AC
CPP Critical peak pricing
CN Control node
CW Clothes washer
DSM Demand side management
DR Demand response
DW Dish washer
EMC Energy management controller
EP Energy price
F Fan
FCFS First come first serve
FF Furnace fan
GA Genetic algorithm
HG Home gateway
HP Heat pump
IHD In-home display
IBR Inclined block rate
LOT Length of operation time
MC Master controller
ODA Occupancy-dependent appliances
OIA Occupancy independent appliances
OPH Off peak hour
PSO Particle swarm optimization
PAR Peak to average ratio
PH Peak hour
PB Priority bit
RAC Room AC
RF Refrigerator
RTP Real-time pricing
SM Smart meter
SH Space heater
TOU Time of use
UC User comfort
WDO Wind-driven optimization
WH Water heater
WSN Wireless sensor network

The rest of the paper is organized as follows. Section 2 briefly describes the related work. Section 3
formulates the problem. The system model is given in Section 4. Section 5 deals with the results and
discussions. The paper is concluded in Section 6.

2. Related Work

In [10], the authors propose a technique for controlling the residential energy loads while
maximizing UC and minimizing the electricity bill. A survey of home energy management for
the residential customers is presented in [24], where the authors focus on different techniques relating
to shiftable, non-shiftable load and peak shaving. They use various pricing schemes, like RTP, TOU,
CPP, IBR, etc. In [25], a fully-automated EMSfor residential and commercial buildings is presented.
They use the Q-learning algorithm for optimal DR mechanisms. Cristopher et al. [26] design a
new framework. They use SMs to decide the appliance schedules based on their load or power
consumption. After scheduling, all of the data are transferred to the aggregator module, where the
power consumption of all of the appliances is determined. The concept of load clustering is introduced
in this approach, which comprises three clusters for scheduling purposes, as the first cluster is from 1
a.m. to 7 a.m., the second from 8 a.m. to 3 p.m. and the third from 3 p.m. to midnight. Two battery
scheduling scenarios are used as: (i) the FCFS scheduling policy and (ii) appliance first scheduling
policy. In FCFS, requests to consume electricity from clients are assigned priorities based on their
arrival, whereas in the appliance first scenario, all electrical devices’ requests are given priority over
battery charging.
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Another methodology is proposed for minimizing the energy price under the dynamic pricing
scheme to avoid PHs in [27]. Its architecture comprises SM, CN, WSN and IHD. AMI controls
bidirectional data flow between the utility and SM. The SM operates between MC and AMI. The MC
organizes and controls the schedules of both controllable and uncontrollable electrical appliances, such
that the optimal schedule is transmitted to each CN via the WSN. IHD invigilates the whole process.
In [8], GA is used to solve the scheduling problem under the RTP tariff in residential, commercial and
industrial sectors. The authors present a novel approach known as the realistic scheduling mechanisms
in [28] for minimizing the customer inconvenience using the TOU pricing scheme. They organize
three categories of appliances (ADA, ODA, OIA) and the algorithms relevant to their working times.
They also use the BPSO algorithm for the scheduling of these appliances. In [9], the researchers
elaborate an efficient energy scheduling model and an algorithm based on artificial intelligence for
residential area energy management in order to minimize the electricity cost. BPSO and GA are used
for scheduling the optimal time of appliances and also for obtaining the best fitness values of the
objective function.

For solving the numerically-constrained optimization problems, a review of BFOA is presented
in [29]. The authors discuss the taxonomy of constraint handling techniques, the main steps and
adaptations to different schemes, including search space, step size, tumble-swim operator and the
elimination-reproduction process. In [30], a case study describes the electric demand model in rural
households of Narino. Distributed privacy-friendly DSM is presented in [31], which preserves users’
privacy by integrating data aggregation and perturbation. The authors describe that the users schedule
their requests of appliances according to the aggregated energy consumption measurements as an
additive white Gaussian process.

The authors in [32] focus on cost and emission minimization approaches in data centers and
corresponding cloud network infrastructures. They use renewable energy generation capability to
enhance the reliability and energy efficiency in SG. They also improve the latency using the ICTs.
The decentralized system framework presents DR mechanisms for the residential users to minimize
electricity bills, maximize the UC and privacy in [33]. In this framework, customers’ SMs integrate
home load management modules for exchanging the load profiles’ information. Agents exchange
information until they find an accurate load profile where the system does not get more improvement
in the solution.

In [34], an energy consumption management approach considers household users in which each
house consists of two types of requests or demands: (i) essential and (ii) flexible, where flexible
demands are further delay sensitive and delay tolerant. To optimize energy for both delay-sensitive
and delay-tolerant demands, a new centralized algorithm is presented for scheduling. This approach
also aims to minimize the total cost and delay of the flexible demands for obtaining optimal energy
decisions. The authors design a cost-efficient demand side day-ahead bidding process and RTP
mechanisms by using fractional programming methods in [35].

In [36], the authors present a survey of DSM optimization methods for the residential customers.
They classify the DSM techniques into three dimensions as: (i) DSM for individual users and
cooperative consumers; (ii) DSM as a deterministic model versus the stochastic method; and (iii)
day-ahead DSM versus real-time DSM. The dynamic load priority method presents priorities to modify
load priorities during the occurrence of demand response events in [37]. A DR technique formulates the
two-stage stochastic problem for energy resource scheduling; inciting the challenges of the renewable
sources, electric vehicle and market price uncertainty. It reduces the overall operational cost of the
energy aggregator by using stochastic programming [38]. In [39], global load balancing schemes
describe the data center power management for minimizing the total electricity cost. They explain
different components of the data centers as information technology equipment, the power delivery
system and the cooling system in relationship with the SG’s features (power delivery, sustainability,
peak shaving, etc.). A multi-objective optimization solution is designed using the market operator
and the distributed network operator for a microgrid in [40]. The generation of the price signal from
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the market operator and the power distribution system is specified using the Pareto-optimal solution.
In [41], a novel pricing strategy is proposed to investigate the robustness against renewable energy
source power inputs. This scheme also focuses on the marginal befits and marginal cost of the power
market using all existing information related to electricity demand, supply and energy imbalance.

In short, the existing optimization techniques in [8,10,12–14] are unable to handle the complexity
of cost minimization and UC maximization problems due to their non-flexible nature. In fact, the
solution of these non-linear problems lead to high computational complexity. Therefore, we use
heuristic algorithms (GA, BPSO, WDO and BFOA) to solve these two problems. These algorithms
support the multi-objective optimization problems and have flexible constraints and parameters, which
are easy to handle. These algorithms are similar to population-based search methods [42], which
move from one population to another population in a number of iterations with improvement using a
combination of deterministic and probabilistic rules. The comparison of the aforementioned techniques
along with their achievements and drawbacks is listed in detail in Table 3.

Table 3. Recent trends: state of the art work.

Techniques Targeted Area Objective Drawbacks

GA-Based DSM Scheme
for SG [8]

Residential, Commercial and
Industrial Area

Cost Minimization Inconsideration of PAR and UC

Optimal Energy Consumption
Scheduling Algorithm [9]

HEMS Cost Minimization Compromising the UC and RES

Residential Load Management in
Smart Homes [10]

Residential Energy Load Cost and PAR Reduction,
UC Maximization

Explicit Pressure Values
Degrade Performance

Home Energy Management for
Residential Customers [24]

HEMS Concentrates on UC, Energy
Conservation and PAR

Commitments are Required for
Effective Maintenance

Optimal DR Mechanisms [25] Commercial and
Residential Buildings

Considerations on
DR Mechanisms

Do not Focus on Randomizing
Automatic EMS

Smart Charging and Appliance
Scheduling Approaches [13]

Appliance Scheduling
and Storage

Cost Maximization and
Maximum Storage Utilization

Inconsideration of
Superclustering

Optimal Residential Appliance
Scheduling via HEMDAS [27]

HEM Cost Minimization and UC
Maximization

Inconsideration of the Initial
Installation Cost

Realistic scheduling
mechanisms [18]

EMS UC Maximization Inconsideration of EC and PAR

BFOA in Constrained Numerical
Optimization [11]

Residential Area PAR Reduction and Cost
Minimization

Inconsideration of Larger
Population Size

Electricity Demand
Modeling [30]

Rural Households Energy Consumption
Minimization

Inconsideration of Control
Variables for Electric Demand

Enabling Privacy in a Distributed
Game-Theoretical Scheduling

Systems [31]

Game-theoretic DSM Focused on Privacy, Electricity
Bills Minimization and

PAR Reduction

Inconsideration of Total
Bill Reduction

Information and Communication
Infrastructures [32]

ICTs Energy Efficiency Inconsideration of UC

Optimal Residential Load
Management [33]

Residential Customers Energy Efficiency Inconsideration of Cost

Queuing-based Energy
Consumption Management [34]

Residential SG Networks Cost Minimization and
Delay Reduction

Inconsideration of
Parameters Tuning

Residential Load Scheduling
in SG [35]

DSM Concentrates on Energy Inconsideration of
Cost Minimization

SG and Smart Home Security [30] DR Energy Efficiency Tradeoff between Demand Limit
and UC

3. Problem Formulation

In this work, the major objectives are: (i) to reduce consumers’ electricity cost by optimizing
the energy consumption of end users; (ii) to maximize the UC of consumers. Here, the problem is
formulated as an optimization problem with fixed, shiftable and elastic loads.
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3.1. Cost Minimization

Cost minimization refers to the minimum charges for the consumed loads provided by the utilities
to the customers. The elastic and shiftable loads are considered for the cost minimization problem,
which is formulated as follows:

Minimize
N

∑
i=1

T

∑
t=1

(Xi,t × PRi,t) (1)

such that:

Xi,t =

{
0, i f t ∈ H1

1, i f t ∈ H2
(1a)

1 ≤ t ≤ T (1b)

1 ≤ i ≤ N (1c)

where Xi,t represents the states of the appliances as ON or OFF (1 = ON and 0 = OFF) and PRi,t shows
the price of the electricity consumed during any time interval t, which is the index for time upper
bounded by T(T = 24) hours in a day. H = {1, 2, ..., T}, where H shows the time for the 24 h of a day,
including PHs and OPHs. Here, H1 = {7, 8, 9, 10} indicates the PHs and H2 = {H/H1} describes the
OPHs. i denotes the appliances’ index number, which is taken as N = 12.

3.2. UC Maximization

UC is modeled in terms of the minimum delay of appliances and optimal amounts for the
electricity bills. Therefore, consumers always expect utilities with minimum delay and cost. Moreover,
it also helps in minimizing the customers’ frustrations when the energy consumption is high during
the OPHs. In this scenario, the appliances are assigned a specific priority, and high priority appliances
are scheduled at the first and foremost available time intervals during the OPHs. The operations
of the low priority appliances can be canceled or delayed during the PHs. In this way, appliances’
waiting time is minimized, and UC is achieved maximally. This is the multi-objective problem; several
authors handle it using different approaches, as mentioned in the literature [12–17]. Here, it is handled
by the metaheuristics for scheduling the residential area loads in order to reduce the electricity cost
and maximize the UC. Energy cost is weighted at the minimum electricity bill, and UC weights are
considered between [0, 1]. It is calculated by using the equations given below,

Maximize(EappUtil + EcostSavings) (2)

such that:

EappUtil = (α− (delay/24)) (2a)

0.3 ≤ α ≤ 0.7 (2a.1)

1 ≤ delay ≤ 4 (2a.2)

EcostSavings = β× (cost/100)×(Sch_cost/Max. cost) (2b)

0.3 ≤ β ≤ 0.7 (2b.1)

α + β = 1 (2b.2)

α and β are the delay variables. Moreover, delay is the delay function, and it is restricted to four
hours in our scenario. It is worth mentioning that these 4 h are chosen from PHs for elucidating the
maximum delay of the appliances. If the delay is greater than 4 h, then the utility pays a penalty by
either paying back to customers or providing them with reductions in the electricity bills. According
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to Constraint (2b.2), the sum of α and β is equal to one because UC ranges between zero and one. Cost
is the cost function, and its values are between 20% and 70%. Below 20%, its values are assumed to be
negligible, and cost is inconsiderable; and above 70% cost prices are used for the microgrids. Sch_cost
is the cost of the appliances during the full day, and Max.cost is the cost of peak hours of the day;
Sch_cost is obtained from the status bits of the appliance x power rating; Max.cost is also obtained
from the hourly information updates. The values of α, β, delay and Sch_cost are taken from [28].

3.3. Multi-Objective Function

From the objective functions in Equations (1) and (2), it is clear that the optimization problem is
multi-objective. We formulate the combined objective function as follows:

Minimize(c1

N

∑
i=1

T

∑
t=1

(Xi,t × PRi,t) + c2
1

EappUtil + EcostSavings
) (3)

where c1 = c2 = 0.5. Here, it is worth mentioning that the combined objective function in Equation (3)
is subject to the respective constraints of objective functions in Equations (1) and (2).

4. Proposed Solution

The proposed DSM techniques deal with the load management in a residential area for single and
multiple homes. Its architecture consists of the number of homes, SMs, AMI and the utility companies.
Let multiple homes be connected with a utility and SMs be installed in all of the homes as shown in
Figure 2. The AMI is used for bidirectional communication between SM and the utility. All homes have
three types of appliances: (i) fixed; (ii) elastic; and (iii) shiftable. These appliances are also categorized
into Class A and Class B based on their fixed or interruptible load profiles. Fixed load appliances are
included in Class A, whereas elastic and shiftable are included in Class B. In other words, Class B
contains interruptible appliances, which take part in the scheduling process.
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Figure 2. Proposed system design.

The RTP tariff model is used for tracking the pattern of the total hourly costs of the consumed
energy. Figure 3 shows that the appliances are scheduled by the appliances’ handler (EMC) during
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the specified time intervals using the given frame format. EMC schedules and checks appliances’ PB
using the frame format. Each frame format consists of an eight-bit pattern, such that each appliance
uses a specified bit pattern relating to its class ID, appliance ID, scheduling bit, interruptible or
non-interruptible bit and priority bit. Based on the operational status of an appliance, its hourly cost
schedule is tracked. In each class, every attribute uses a single bit, except class ID and appliance
schedule, which use three- and two-bit patterns, respectively. This scenario is specific to these sets
of the appliances using the given frame format for the proposed system’s test cases; however, it can
be further extended to a larger set of appliances, and frame length can also be extended accordingly.
Evolutionary algorithms are efficient in terms of computational complexity, however, at the cost of
reduced accuracy. We prefer frame tracking over other evolutionary algorithms because it provides
simple and efficient procedure in terms of relative accuracy and relative computational complexity.
In the following subsections, the algorithms of GA, BPSO, WDO, BFOA and our proposed GWD
algorithm are discussed in detail.

Class ID
Appliance

ID

Appliance

schedule

Interruptible

or not
Priority bit

2 1 3 1 1
Number of bits assigned

for each attribute

00 01000, …, 1110

11 1 000, …, 111 1 1

1 1 000 1 0 1

App1 Appliances’

handler

(EMC)

1 1 111 1 0 1

App Schedular

H
G

FCS frame

Schedules

FCS frame

Schedules

Bit pattern Class A

Bit pattern Class B

Figure 3. RTP price tracking system.

4.1. GA, BPSO, WDO and BFOA Algorithms

In this section, we modify the existing versions of GA, WDO, BPSO and BFAO to optimally
schedule shiftable appliances. Firstly, the load is shifted to the OPHs subject to electricity cost
minimization. In order to reduce peaks during the OPHs, each appliance is assigned a specific PB,
which indicates the status (either ON or OFF) of the selected appliance. If an appliance is demanded to
run in a specific time slot, its PB = 1; otherwise, its PB = 0. This status bit information is communicated
via an RTP frame format.

The authors in [13] have proposed a GA-based home energy management controller for a single
home in a residential area using RTP tariffs. In this manuscript, a modified GA (an improved form
of [13]) is presented, which is shown in Algorithm 1. Objective functions (refer to Equations (1)–(3))
and their constraints are used by all of the selected optimization algorithms to find feasible solutions.
Users input initial parameters for all appliances. GA creates a random population initially, which
consists of a number of chromosomes represented by binary strings as the ON/OFF status of each
appliance. Each chromosome is evaluated using Equations (1)–(3). RTP is used as the electricity pricing
scheme. Key modifications that are implemented in GA (Algorithm 1 [13]) to achieve the objectives in
the proposed scheme and its expected outcomes are given in Table 4.
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Table 4. Modifications in GA.

Modifications Expected Outcomes

Scheduling using PBs Curtails load
(refer to Equations (1)–(3)) with constraints Reduced PAR

Enhanced UC
Use of RTP Tracks the real-time behavior of system

steps (10, 11, ..., 19) Minimizes the cost

Algorithm 1: GA algorithm.

Input: set of appliances Ai or P;
Initialization: PHs, OPHs, t = 0, H, PB = 0, 1;
for t = 1 to T do

for h = 1 to H do
Generate feasible P randomly;
for h = 1 to P do

Calculate fitness function using Equation (3) ;
Select the best solutions in P, pop and save them in new pop1 ;
Check status of Ai using PHs and OPHs while LOT, Xi = 1 and li = li − 1 ;
if t == PHs then

wait until OPHs;
if EnergyConsumption == high then

Check PB of appliances;
else

Check the remaining t of all Ai, LOT until 0 ;
end

end
end

end
Generate new population;
Perform crossover operation by randomly selecting two chromosomes from P;
Save it in pop2;
Perform mutation operation;
Select a solution from pop2;
Mutate each bit of solution and generate a new solution;
if solution is infeasible then

Update solution with a feasible solution by repairing solution;
Update solution with solution in pop2;

end
Update pop best solution;
Update t = t + 1 till 24 h;
Terminate when t = 24 h;

end
end

In [15], another energy management model is presented in which BPSO is used to meet the
DSM challenges. The goal of this study is to minimize the electricity cost for residential area by
scheduling shiftable loads. The authors use the TOU pricing model to calculate electricity bills of
customers by investigating DR; however, they have ignored UC. Furthermore, in our proposed work,
the objective function is formulated for cost minimization and UC maximization. BPSO is used to
solve the designed optimization problem. RTP scheme is used for tracking the real-time behavior of
the system. Thus, this proposed work gives a more significant solution for electricity bill minimization,
PAR minimization and UC maximization. All steps of the proposed work are shown in Algorithm 2.
Compared to [15], BPSO is modified according to the customers’ requirements. Each particle in the
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generation is represented by a binary string denoted as states of an appliance. The proposed model is
applicable for single and multiple homes in residential areas. In Table 5, some suitable modifications
and expected results in response to those modifications for the BPSO algorithm are given.

Table 5. Refinements in BPSO.

Refinements Expected Consequences

Addition of PBs for scheduling Reduce energy consumption
(refer to Equations (1)–(3)) with the required constraints Minimizes the PAR

Boosts up UC
Use of RTP Monitors the real-time behavior of the system

steps (21, 22, ..., 25) Minimizes the cost

Algorithm 2: BPSO algorithm.

Input: number of particles, maximum iterations, electricity price;
Initialization: S, t = 0, H, PHs, OPHs, PB = 0, 1;
Specify LOT of appliances and power ratings;
Randomly generate population of particles;
for t = 1 to T do

for h = 1 to H do
Evaluate the value of electricity cost of Ai;
Evaluate LOT;
set pbest;
for i = 1 to M do

if f (xi) > f (pbest,i) then
f (pbest,i) = f (xi);
if f (pbest,i) > fgbest,i then

f (gbest,i) = f (pbset,i);
else

f (gbest,i) = f (gbest,i);
end

end
end

end
if t == PHs then

Wait till OPHs;
if EnergyConsumption == high then

Check PBs of appliances;
end
Evaluate fitness function using Equation (3);
Decrement one from the total LOT of appliances;

end
for j = 1toP do

Update w of the particles using piecewise linear function [15] ;
Update Vj using sigmoid function ;
Update position vector xj using piecewise linear function [15];
Increment time counter t = t + 1 until t = 24;

end
end

end

A WDO-based scheduling technique is presented in [10] for comfort maximization of residential
users. By considering appliance classes, user preferences and weather status, they model the UC
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and electricity cost. The WDO algorithm is used for minimizing electricity cost and maximizing
UC. This work also analyses peak cost reduction in electricity bills by considering the TOU tariff.
In this proposed work, household appliances are categorized on the basis of LOT and appliance power
consumption. In order to make the scheduling process more efficient, delay and PB criteria (which
are not considered in [10]) are incorporated here for reducing electricity bills. In this study, WDO is
enhanced in which LOT and the energy consumption of each appliance are calculated by evaluating
the objective function (refer to Equations (1)–(3)) using constraints. Table 6 shows the enhancements
made as per our proposed work and the expected results based on the enhancements. All steps of the
implemented WDO algorithm are shown in Algorithm 3.

Table 6. Adaptations in WDO.

Adaptations Expected Results

Incorporation of the PBs Minimizes energy consumption
(refer to Equations (1)–(3)) by considering constraints Reduces the PAR

Improves UC
Use of RTP Tracks the real-time behavior of the system

steps (10, 11, ..., 19) Minimizes the cost

Algorithm 3: WDO algorithm.

Initialization: P, Maxgen, RT, g, c, max. V, particles’ pressure, t = 0, PHs, OPHs, H and PB = 0, 1;
Generate initial random population;
for t = 1 to T do

for h = 1 to H do
for i=1 to P do

Assign random positions and velocities to air particles;
Evaluate fitness of each air parcel Equation (3);
Identify the best solution among all air parcels;
while number of iterations reached to specified limits do

if t == PHs then
swap (OPH, PH);
if EnergyConsumption == high then

Check appliance PB;
else

Check velocity and speed values;
Update velocities and positions;

end
end

end
Generate new population;
Check the limits (t);
Identify the best solution among all air parcels;
Increment the generation count G = G + 1;
Increment timeslots t = t +1;

end
end

end
end
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In [17], the authors propose a BFOA technique for grid resource scheduling. This technique is
based on the hyper-heuristic resource scheduling algorithm, which has been designed to effectively
schedule jobs on available resources in a grid environment. The authors evaluate the performance
of the proposed BFOA algorithm by comparing it with the existing heuristic scheduling algorithms
(GA and simulated annealing) using the makespan and cost performance metrics. Experimental results
show that the proposed algorithm outperforms the existing algorithms in terms of cost minimization.
In comparison to [17], the proposed work introduces a new methodology of appliance scheduling
for minimizing electricity cost, energy consumption and PAR, which benefits both customers and the
utility. In this study, objective functions (refer to Equations (1)–(3)) and their constraints are modified
according to the designed scenario. Table 7 contains the refinements made and their respective expected
results. All steps of the proposed work are given in Algorithm 4.

Algorithm 4: BFOA algorithm.

Input: randomly initialize the swarm of bacteria θi(j, k, l);
Initialization: PHs, OPHs and t = 0, H, PB = 0, 1;
Generate initial population randomly;
for t = 1 to T do

for h = 1 to H do
for i=1 to P do

Compute for f (θi(j, k, l));
for l=1 to Ned do

for k=1 to Nre do
for j=1 to Nsb do

for Gen.l = 1 to Gen.tsize do
if t == PHs then

swap (OPH, PH);
else if EnergyConsumption == high then

check appliance PB;
end
else

Evaluate objective functions using Equation (3);
end

end
Calculate f (θi(j, k, l));
Perform chemotactic procedure;
Check tumble-swim operations;
Each bacteria controlled by θi(j, k, l) in Nsb steps;

end
end

end
end
Check reproduction process by swapping;
Remove weak bacteria;

end
Perform the elimination-dispersal by elimination;
Each bacteria is based on θi(j, k, l) with Ped0 ≤ Ped ≤ 1;

end
end
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Table 7. Refinements in BFOA.

Refinements Expected Achievements

Scheduling using PBs Reduce energy consumption
(refer to Equations (1)–(3)) along with their constraints Minimizes the PAR

Increases UC
Use of RTP Monitors the real-time behavior of the system

steps (12, 13, ..., 20) Reduces the cost

4.2. Developing a Hybrid GWD Optimization Algorithm

In this algorithm, all of the stages of WDO are performed in a similar way as explained in
Section 4.1; however, the velocity updating steps for the global air pressure is replaced with GA’s
crossover and mutation operations. In some cases, pressure values are very large, such that the
updating velocities become too large, which degrade WDO’s performance. Thus, we replace these
with GA’s crossover and mutation values. The scheduling procedure is followed as the same described
in GA, BPSO, BFAO and WDO. It is evaluated with the help of the same objective functions (refer to
Equations (1)–(3)). Detailed steps of this algorithm are shown in Algorithm 5. Modifications of the
hybrid GWD and their respective expected outcomes are given in Table 8 [8,10].

Algorithm 5: GWD algorithm.
Initialization: P, Maxgen, RT, g, c, max. V, particles’ pressure, t = 0, PHs, OPHs, H, crossover
rate = 0.9, mutation rate = 0.1, PB = 0, 1;
Generate initial random population;
for t = 1 to T do

for h = 1 to H do
for h = 1 to P do

Assign random positions and velocities to air particles;
Evaluate fitness of each air parcel using Equation (3);
Identify the best solution among all air parcels;
while Stopping criterion is not satisfied do

if t == PHs then
swap(OPH, PH);
else if EnergyConsumption == high then

Check appliance PB;
else

Check velocity and speed values of particles;
Apply crossover and mutation operation;
Update velocities and positions;

end
end

end
Generate new population;
Check the limits (t) until t = 0;
Evaluate fitness of each air parcel;
Identify the best solution among all air parcels;

end
end

end
end
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Table 8. Modifications in GWD.

Modifications Anticipated Outcomes

Enhancements Expected Results
Using PBs for scheduling Reduce energy consumption
(refer to Equations (1)–(3)) Minimizes the PAR

Increases UC
Use of RTP Tracks the real-time behavior of the system

steps (10, 11, ..., 20) Minimizes the cost

The metaheuristic algorithms do not guarantee exact reachability of the global optimum solution.
The obtained solution is dependent on the set of random variables generated at the start of the
metaheuristic optimization process. In our scenario, PSO, BFOA and WDO suffer from the global
optima, and GA is a relatively better suited algorithm for the global optimal solution. In order to filter
out the effects of random initializations, simulation runs of these algorithms are increased in number.
However, this filtration is achieved at the cost of increased computational time. We have presented the
statistical analysis of all of the algorithms with respect to cost and user comfort using the ANOVA in
the Results Section after taking the average of the 10 runs.

5. Results and Discussion

In order to evaluate the proposed work, simulations are conducted in MATLAB using the RTP
scheme. The 24-h time period is divided into PHs and OPHs for tracking the real-time behavior of
the system. Four hours are taken as PHs (from 7 p.m.–10 p.m.) such that the PHs vary from season
to season [43]. From December–February, PHs are from 5 p.m.–9 p.m.; from March–May, PHs are
6 p.m.–10 p.m.; from June–August, PHs are 7 p.m.–10 p.m.; and from September-November, these vary
accordingly. Four hours are used in this case (from 7 p.m.–10 p.m.) of one season, and the remaining
all are included in OPHs.

There are two simulation scenarios that are discussed here: (i) single home and (ii) fifty homes.
Each home has 12 appliances, and appliances are categorized into two classes: (i) Class A with fixed
load appliances and (ii) Class B with shiftable and elastic load appliances, as shown in Table 9. Figure 4
shows the RTP rates during each hour of the full day. The parameters of GA, BPSO, WDO, BFAO
and GWD are given in Tables 10–14, respectively. To evaluate the performance of these algorithms,
the following performance metrics are used.

• Cost: Amount of electricity bills for the total number of units consumed per unit time in cents.
• Energy Consumption: It is calculated as the total energy utilized per unit time in kilowatts

per hour.
• PAR: It is defined as the total peak load divided by average load during the whole day.
• UC: It is calculated in terms of minimum cost and minimum appliance delay.
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Figure 4. RTP price signal.



Energies 2017, 10, 319 16 of 27

Table 9. Parameters and power ratings.

Class Name Appliance Name Power Rating LOT Deferrable Load

Class B Space Heater 1 9 1
Class B Heat Pump 0.11 4 1
Class B Portable Heater 1.00 5 1
Class B Water Heater 4.50 8 1
Class B Clothes Washer 0.51 9 1
Class B Clothes Dryer 5.00 5 1
Class B Dishwasher 1.20 11 1
Class B First-Refrigerator 0.50 24 1
Class A Fan 0.5 11 0
Class A Furnace Fan 0.38 8 0
Class A Central AC 2.80 12 0
Class A Room AC 0.90 5 0

Table 10. GA parameters and values.

Parameter Value

Population Size 200
Selection Tournament Selection

Elite Count 2
Crossover 0.9
Mutation 0.1

Stopping Criteria Max. Generation
Max. Generation 1000

Table 11. BPSO parameters and values.

Parameter Value

Swarm Size 20
Max. Velocity 4 ms
Min. Velocity 4 ms

Local Pull 2 N
Global Pull 2 N

Initial Momentum Weight 1.0 Ns
Final Momentum Weight 0.4 Ns

Stopping Criteria Max. iteration
Max. Iteration 600

Table 12. WDO parameters and values.

Parameter Value

Swarm Size 10
Max. V 4 m/s

RT-Coefficient 3
g 0.2
c 0.4

Dimensions [−1, +1]
Stopping Criteria Max. Iteration
Max. Iterations 500
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Table 13. BFAO parameters and values.

Parameter Value

Population Size 10
Maximum Number of Steps 30

Number of Chemotactic Steps 5
Number of Elimination Steps 5

Number of Reproduction Steps 25
Probability 0.5
Step Size 0.1

Stopping Criteria Max. Generations
Max. Generations 100

Table 14. GWD parameters and values.

Parameter Value

Particle Size 20
Number of Iterations 500

Max. V 0.4
Dimensions [−1, +1]

RT-Coefficient 3.0
g 0.2
c 0.4
α 0.4

Crossover Rate 0.9
Mutation Rate 0.1

5.1. Single Home

The energy consumption of our proposed scheme hybrid GWD with respect to GA and WDO
in unscheduled and scheduled cases is shown in Figure 5. This figure shows that the maximum
energy consumption values are 16.2 kWh, 11.8 kWh, 8.2 kWh and 4.1 kWh for the unscheduled case,
scheduled GA, WDO and the hybrid GWD approach, respectively. The energy consumption of all
algorithms is below their unscheduled cases. The energy consumption in GA, WDO and GWD is
56.89%, 67.18% and 65.87%; which is obtained by dividing the scheduled cost and unscheduled cost
with percentage. It is important to note that the hybrid GWD algorithm is better than the simple WDO
and GA in terms of energy consumption. GWD uses crossover and mutation operations from the
GA, which helps with the faster convergence for achieving optimized results, and WDO uses explicit
pressure values; however, when velocities are high, pressure values become extremely large, which
leads to performance degradation.
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Figure 5. Energy consumption.
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The maximum amount of the electricity bill in the unscheduled case is 318.88 cents, as shown in
Figure 6. It is reduced to 78 cents in the case of GA, while it is reduced from 318 cents to 245 cents in
WDO and up to 75 cents in GWD. The electricity cost in GA, WDO and GWD is 60%, 62% and 30%,
respectively. During PHs, sufficient electricity cost reduction is achieved for all designed algorithms
(GA, WDO and GWD). GWD performs better than the other algorithms in terms of the electricity cost
reduction due to the amalgamation of crossover and mutation. The WDO’s cost is high due to its high
pressure values.
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Figure 6. Total cost.

The PAR performance of all algorithms (GA, WDO and GWD) is shown in Figure 7. This figure
shows that PAR is significantly reduced in hybrid GWD as compared to the GA, WDO and unscheduled
case. Results prove that our proposed algorithm effectively tackles the peak reduction problem.
The PAR graph for GA, WDO and hybrid GWD displays that the power consumption of appliances is
optimally distributed without creating peaks during the OPHs and PHs of the day. The PAR in GA,
WDO and GWD is 60%, 75% and 40%. WDO has higher PAR than GA because it has higher pressure
values of the particles, and GA is more effective in PAR reduction due to its ability to generate new
populations of more feasible solutions using crossover and mutation. From these results, it is shown
that the hybrid GWD approach outperforms all other schemes, because it uses the best features of both.
Peak formation is a major drawback in the traditional electric power system, as it causes customers to
pay high electricity bills, and the utility also suffers from high demand, which leads to blackouts or
load shedding. The performance of these algorithms in this scenario is improved due to load shifting
using appliances’ PBs, which causes utilities to fulfil the demands of customers and gives customers a
chance to reduce their electricity bills.
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Figure 7. Scheduled and unscheduled PAR.
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In our proposed hybrid scheme, we have achieved the desired UC as shown in Figure 8. It shows
that UC is significantly reduced for GWD, GA and WDO as compared to the unscheduled case.
By applying priority scheduling on the objective functions (refer to Equations (1)–(3)), this work
enhanced the performance in terms of UC. UC of the unscheduled case is 98%, while in schedule WDO,
GA and GWD, it is 60%. The maximum delay considered here is 4 h; otherwise, the utility has to pay a
penalty for the users. There is a tradeoff in UC of all scheduled algorithms because only one scenario
is considered here. However, the performance of this work is much better by considering the priority
bits and minimum delay during scheduling.
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Figure 8. Scheduled and unscheduled UC.

All above simulations are performed for a single home; however, for testing the effects of the
proposed scheme in multiple homes, multiple homes are taken in the next section. All of the modified
algorithms (GA, BPSO, WDO and BFOA) are tested for 50 homes to investigate these in terms energy
consumption minimization and electricity cost reduction. From Figure 13, it is clear that the proposed
work achieves significant results. As these algorithms are designed to satisfy the constraints of the
objective function in 24 h, so that residential users get facilitated by reducing their electricity bills and
that utilities get the benefit by keeping demand under the power capacity of the grid.

5.2. Fifty Homes

The energy consumption of GA, BPSO, WDO and BFOA is 15.00 kWh, 7.90 kWh, 11 kWh and
14.5 kWh, respectively, which is less than the unscheduled case as 16.5 kWh, approximately; as shown
in Figures 9–12. The energy consumption in GA, BPSO, WDO and BFOA is 79%, 47%, 45% and
88%. GA is efficient among all of the others, though it considers a larger population size. It uses a
natural selection operator, which reduces the convergence time towards the efficient solution during
scheduling. BFOA is faster than BPSO and consumes less energy because BFOA is faster for a small
population size. On the other hand, BPSO is suitable for a larger population size, and it also escapes
from the local minima. WDO consumes more energy as compared to BPSO, BFOA and GA, because it
has explicit pressure values of particles, causing performance degradation.
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Figure 9. GA energy consumption.
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Figure 10. BPSO energy consumption.
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Figure 11. WDO energy consumption.
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Figure 12. BFOA Energy Consumption.

The electricity cost of the simulated algorithms is shown in Figures 13–16, which is obtained
during the scheduling process. In each case, the scheduled costs of all four algorithms, GA, BPSO,
WDO and BFOA, are 125.20, 175, 215 and 160 cents, respectively, which are lower than the unscheduled
cost of 350. Furthermore, by using the PBs during appliance scheduling, the overall cost is reduced
as compared to the unscheduled cases. After scheduling, the obtained electricity cost by using GA,
BPSO, WDO and BFOA is 35%, 50%, 61% and 45%, respectively; whereas, in the unscheduled case, it
is 100%. In this case, GA is the most effective algorithm even considering a larger population size than
the other algorithms. GA uses the crossover and mutation operation, which is efficient in convergence
and at finding the global optimal solution. BPSO uses linear and piecewise functions instead of natural
selection operators, and it is mostly used for a large population size to avoid local minima. BFOA is
suitable for a small population size, and it is more efficient than BPSO and GA in terms of convergence
and energy efficiency. WDO suffers from pressure values, so it gives a higher cost than the others.
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Figure 13. GA total cost.
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Figure 14. BPSO total cost.
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Figure 15. WDO Total Cost.
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Overall, the scheduled peak formation rate is better than the unscheduled cases, and the desired
results of the load shifting are achieved by the scheduling. The PAR obtained in GA, BPSO, WDO,
BFOA and the unscheduled case is 26%, 25%, 12%, 2% and 46%, respectively. All of the high profile
appliances are scheduled to low price rate hours. If the consumed energy in OPHs is high (creating
peaks), then appliances are scheduled according to their PBs for reducing load and avoiding peak
formation even during the low pricing rate hours. PAR in WDO, BPSO and BFOA is better than GA
because GA is tested for a large set of populations, whereas all of the others are tested for a small
population size, as shown in Figure 17.
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Figure 17. UC of GA, BPSO, WDO and BFOA.

UC achieved by GA and BFAO is significantly greater than BPSO, WDO and the unscheduled case
as shown in Figure 18. The UC achieved in GA is nearly 0.9; BPSO is 0.5; WDO is 0.55; BFAO is 0.85;
and it is 90%, 50%, 50% and 85%. Because during scheduling, all high power utilization appliances
are shifted to OPHs, which facilitates the customers to pay less on the bill, so UC is maximized in
BFOA and GA as compared to WDO and BPSO, which are the desired results obtained by the designed
objective functions, and it is also beneficial for both customers and utilities.
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Figure 18. PAR of GA, BPSO, WDO and BFOA.

In order to quantify the computational burden of the algorithms, we have chosen algorithm
execution time (in s) as a performance metric. Figure 19 shows the execution time of the five simulated
algorithms: GA, BPSO, WDO, BFOA and GWD. From the figure, it is evident that BPSO has the
maximum computational burden (execution time = 88 s), and BFOA has the minimum computational
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burden (execution time = 8 s); a difference of 80 s. Similarly, GA, WDO and GWD take 13 s, 43 s
and 32 s (to execute), respectively. The previous figures in the simulation Results Section show that
GWD is relatively better than the compared algorithms in terms of the selected performance metrics,
and Figure 19 shows the execution time of GWD as relatively moderate (better than WDO and worse
than GA). To sum up, the GWD pays the cost of moderate execution time to achieve a considerable
increase in UC and a decrease in both PAR and price.
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Figure 19. Execution time of GA, BPSO, WDO, BFOA and GWD.

5.3. Performance Trade-Offs in the Proposed Technique

After conducting the simulations, we have found some trade-offs and achievements.
This approach is evaluated with the help of the following parameters: cost minimization, energy
consumption minimization, UC maximization and PAR reduction. The achievements and trade-offs
are mentioned in Table 15.

Table 15. Tradeoffs in the proposed algorithms.

Technique Tariff Model Achievement Tradeoff

GA RTP

Minimizes the cost up to 56%
and reduces the PAR to 26%
in individual testing and
hybrid case cost is
minimized up to 30% and
PAR is reduced up to 49%

UC is compromised in
scheduled case up to 60% in
hybrid case while it is
improved in individual
testing to 90%

WDO RTP

Reduces cost up to 67.18%
and reduces the PAR to 26%
in individual testing and
hybrid case cost is
minimized up to 30% PAR is
70% reduced

UC is compromised in
scheduled case up to 60% in
hybrid case and in
individual testing to 50%

GWD RTP

Reduces cost up to 17.87%
and reduces the PAR to 26%
in individual testing and
hybrid case cost is
minimized up to 30% PAR is
17% reduced

UC is compromised in
scheduled case up to 60%

BPSO RTP Reduces cost up to 70% and
reduces the PAR to 25%

UC is compromised up
to 50%
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5.4. Statistical Validation of GWD and Counter Part Algorithms Using ANOVA

In order to prove the metaheuristic algorithms’ stochastic nature, we have done the statistical
analysis for checking their correctness and efficiency. Two algorithms are taken for comparison with
our proposed algorithm in terms of the variance. The ANOVA is based on three assumptions [44]:
(i) all samples of the populations are normally distributed; (ii) all samples of the populations have
equal variance; and (iii) all observations are mutually independent. In the table below, the analysis is
described in detail for each sample population generated by the each individual algorithms.

Table 16. ANOVA results for the proposed algorithm with the existing algorithms.

Technique Source of Variation Sum of Squares df MS F Prob > F

WDO
Between Groups 1.4383 11 0.13075 0.48 0.9134
Within Groups 29.5488 108 0.2736

Total 30.9871 119

GA
Between Groups 3.058 11 0.27803 1.18 0.2956
Within Groups 562.86 2388 0.2357

Total 565.918 2399

GWD
Between Groups 0.6647 11 0.06043 0.61 0.813
Within Groups 10.6203 108 0.09834

Total 11.285 119

Here, df indicates the degrees of freedom; MS represents the mean square test; and F represents
the F test (taken by dividing the sum of squares and MS); and these are calculated using the equations
from [44]. We have done the ANOVA of three algorithms including our proposed algorithm. In this
way, we have finally estimated that our proposed algorithm varies from them by a significant rate as
shown in Table 16 above.

6. Conclusions

In this work, a DSM controller is designed in which five heuristic algorithms (GA, BPSO, WDO,
BFOA and our proposed hybrid GWD) are implemented. The hybrid GWD scheme reduced the
electricity cost by approximately 10% in comparison to GA and 33% to WDO. On the other hand,
GA provided the global optimal solution in scheduling and faster convergence, even when the
population size is large. The GA outperformed BPSO, WDO and BFOA in terms of electricity cost
and energy consumption. In contrast to the BPSO, BFOA is suitable for a small population, because it
converges at a faster rate when the population size is small. Explicit particle pressure values make
WDO the slowest to converge among all of the compared algorithms. The stochastic behavior of
these algorithms is analyzed by statistical analysis. Assigning priority to appliances helped with
efficient scheduling. Statistical analysis is performed by the ANOVA test, which is used to measure
the variation in the algorithms’ performance metrics. In the future, we will focus on enhancing other
heuristic algorithms to achieve the desired objectives.
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