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Abstract—Home energy management systems are widely
used to cope up with the increasing demand for energy.
They help to reduce carbon pollutants generated by
excessive burning of fuel and natural resources required
for energy generation. They also save the budget needed for
installing new power plants. Price based automatic demand
response (DR) techniques incorporated in these systems
shift appliances from high price hours to low price hours to
reduce electricity bills and peak to average ratio (PAR). In
this paper, electricity load of home is categorized into three
types: base load, shift-able interruptible load and shift-
able non-interruptible load. In literature many metaheuris-
tic optimization techniques have been implemented for
scheduling of appliances. In this work for the optimization
of energy usage genetic algorithm (GA) and bat algorithm
(BA) are implemented with time of use (TOU) pricing
scheme to schedule appliances to reduce electricity bills,
the peak to average ratio and appliance delay time. A new
technique bat genetic algorithm (BGA) has been proposed.
It is hybrid of GA and BA. It outperforms GA and BA
in terms of cost reduction and peak to average ratio for
single home scenario as well as multiple home scenario.
Operation time internals (OTIs) 15 minutes, 30 minutes
and 1 hour have been considered to check their effect on
cost reduction, PAR and user comfort (UC).

Index Terms—Home energy management, demand side
management, genetic algorithm, bat algorithm, hybrid
scheme

I. INTRODUCTION

As the world is progressing humans are inventing
new devices to make daily chores easy and time ef-
ficient. Electricity consumption is increasing rapidly
as the use of electrical appliances is increasing in
daily tasks. In order to deal with increasing de-
mand of electricity more power plants are required.
Installation of power plant demands big budget.

Electricity generated from natural resources cause
emission of carbon dioxide, which is affecting our
climate in a hazardous way [9]. So, it is clear that
to deal with the above stated problems we need to
optimize the consumption of electricity and utilize
electricity within the maximum generating capacity
of working production units.

On the other hand, when multiple users start using
appliances during particular hours than peaks are
formed in those hours. To fulfill the requirement
during peak hours extra generation units are put in
the work, but carbon generated from those units
is harmful, plus it increases the unit price in that
hour. So, reducing demand peaks is in favor of both
utilities and consumers. Home energy management
system (HEMS) is used for optimization of energy
consumption and scheduling of devices in such
manner that energy consumption is reduced and
peaks are not formed at any time of day. HEMS
consist of demand side management (DSM) and
DR. DSM is basically ability to control energy
consumption profiles of users and tune it in such
manner that it is beneficial both for utility and
customer. In DSM different techniques are used
such as load shifting, load curtailment, valley filling
and peak clipping. HEMS implement different DR
to shift loads other than base loads to off peak hours
[10]. DR can be incentive based or price based.
In incentive based DR customers are given some
incentives if they are cooperative with utility and
use electricity according to utility instructions. Price
based DR include different pricing schemes such as
TOU, real time pricing (RTP) or day ahead pricing
(DAP) [6-9]. In case of price based DR electricity
price for on peak hours is increased, in this way
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people are forced to use heavy power consumption
appliances during off peak hours to avoid high bills.

HEMS aims at minimization of electricity cost,
appliance delay, power consumption and PAR. Var-
ious optimization techniques such as GA, particle
swarm optimization (PSO), evolutionary differential
algorithm (ED), harmony search algorithm (HSA),
ant colony optimization (ACO) and bacterial for-
aging algorithm (BFA) have been implemented in
this domain to achieve these aims [6-8]. In this
paper GA and BA are implemented with TOU
pricing scheme to optimize the energy consumption
and shift appliances from high price hours to low
price hours. A new hybrid scheme BGA has been
proposed. BGA achieves more reduction in cost
and PAR as compared to GA and BA. UC is also
considered in terms of waiting time. It is worth
mentioning that nomenclature is given in table I.

This paper is organized as follows: Sections II
and III present the related work and system model,
respectively. Section IV gives the problem formu-
lation and optimization algorithms GA, BA and
BGA are discussed in section V. Section VI ex-
plains the results obtained by applying optimization
algorithms and effects of considering different OTIs,
followed by conclusion in section VII.

II. RELATED WORK

In the ever-changing field of technology, the de-
mand of electricity for the residential and industrial
areas is increasing day by day. The increase in
demand leads to the problem of load management
on the side of utility providers. Utility increases
the price of electricity according to load demand.
Customers do not want to pay high prices, so here
HEMS comes into play to cater the scheduling of
load and reducing the cost. It manages the load
profiles of users to reduce cost and demand from
the utility. Now a days HEMS has become a broad
domain of research.

Techniques from different domains are imple-
mented for appliance scheduling. In [1,11], ma-
chines learning technique artificial neural networks
(ANN) have been implemented in the field of
HEMS. In [1], authors propose a mechanism to
develop optimal DR using ANN from the field of
artificial intelligence. As compared to the previous
results using this ANN cost reduces up to 4.6%.
However, author did not consider the peak to av-
erage ratio (PAR). In paper [11] ANN with GA

TABLE I: Nomenclature

Variable Description

t Time interval

pn On or off status of appliance n

PRn Power rating of appliance n

EPt Electricity cost at slot t

App Total number of appliances for scheduling

T Psch
total Total cost after schedule

T Punsch
total Total cost before schedule

Loadsch
total Total cost after schedule

Loadunsch
total Total cost before schedule

Fi Emission frequency of ith bat swarm

Fmin Minimum emission frequency value

Fmax Maximum emission frequency value

At
i Loudness value of ith bat swarm at time t

α Initial value of loudness

rt
i Pulse emission rate of ith bat swarm at time t

x0
i Initial value of pulse emission rate

xt
i location of ith bat at time t

(ANN-GA) is implemented and system is trained
to achieve 10%, 25% and 40% reduction in grid
energy.

Authors has worked to reduce the chance of
error while estimating the cost of electricity in DR
[2].They used two schemes improved PSO and two-
point estimation method in terms of error reduction.
As previous studies mentioned that PSO has a low
convergence rate that is why authors used improved
PSO which is a gradient based PSO. It can be
seen from the results that the chance of error in
constrained DR is reduced and proposed system
shows comparable results with reduced computa-
tional time. However, the authors have not consid-
ered any pricing technique to calculate the electric-
ity cost. In [3], authors used modified PSO imple-
mentation at residential, industrial and commercial
areas to resolve DSM problem. They used TOU
pricing technique and achieved 9.65%, 7.24% and
18.72% cost reduction in commercial, residential
and industrial areas of DSM respectively. Authors
missed to consider the PAR that may lead to raise
the chance of peak creation that will have effect on
utility and user side as well.

In [4], authors use fuzzy logic technique for
communication between different agents of smart
home. They considered two scenarios of communi-
cation: one is communication in between appliances
of single home and communication in between
multiple homes. For the scheduling of load, they
use a localize concept of energy sharing in between
multiple homes according to their state of battery. A
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priority based approach is followed to turn on any
appliance in smart home. Multiple agents in differ-
ent homes can communicate and share the energy.
They consider the bidirectional flow of energy.

Normally the running cost functions are not con-
sidered as power disruption to satisfy UC. Authors
used TOU pricing technique with two scheduling
algorithms for two different purposes. GA schedul-
ing algorithm is used to optimize the running cost
while heuristic approach is used for cost estimation.
Results of both techniques are comparable with
the difference of 8% to 10% [5].In [6], authors
compared the performance of HSA, enhanced differ-
ential evolution (EDE), harmony search differential
evolution (HSDE) scheduling algorithms. They also
considered reusable energy resources in the system
along with RTP pricing technique. Results are the
evident of the fact that the usage of reusable energy
resources has a great effect in terms of cost reduc-
tion. HSA performed better than other scheduling
algorithms in both cases with and without reusable
energy resources. However, the limitation arises that
waiting time increases which minimizes the users
comfort. There is always a trade off in between cost
and UC which is measured as delay.

Authors in paper [7], used dynamic programming,
GA,binary particle swarm optimization (BPSO) and
a combined GAPSO in terms of load scheduling.
Objectives of authors are minimization of cost and
PAR as well as maximization of UC. They used two
pricing techniques critical peak pricing (CPP) and
DAP for calculation of cost and perform comparison
in both cases. Simulation results show that the
GAPSO algorithm gives best results, increases UC
level and reduces PAR and cost upto 23.9% This
paper has a limitation that they did not consider the
consumption cost which is increasing. In [8], au-
thors proposed enhanced differential teaching learn-
ing technique to reduce cost, discomfort and PAR.
Authors compare results of proposed technique
with some existing techniques used for scheduling
namely GA, TLBO and EDE. RTP used to calculate
the cost. Authors proposed an enhanced technique
of TLBO which reduces cost upto 36.02%.

In [10, 12], TOU pricing scheme has been used.
Authors use binary backtracking search algorithm
(BBSA) and BPSO for scheduling. Energy con-
sumption reduction achieved by BPSO is 20% while
for BBSA it is 21.3% [9]. Multi user and load prior-
ity (MULP) algorithm has been used with different

pricing schemes TOU, RTP with direct load control
(DLC) and RTP with inclined block rate (IBR) and
achieved 22%, 14.5% and 19% reduction in bill[10].

Improved HSA and GA has been implemented
for scheduling of energy storage systems on the
basic of priority in residential area. Improved HSA
outperforms GA in terms of cost reduction [13]. In
[14], an optimization scheme has been proposed by
authors to schedule appliances. 13% cost reduction
and delay time in appliances operation is achieved
using proposed technique. In [16], authors made
comparative analysis of GA, ACO and BPSO by
implementing these schemes on energy management
controllers to observe which scheme works best for
achieving maximum electricity bill reduction, UC
and peak reduction.

Multi-time scale optimization (MTSO) for HEMS
is considered to reduce operational cost, time and
user discomfort as well. EV, heating, ventilation,
and air conditioning (HVAC) system and base appli-
ances has been considered and it is ensured that the
cost reduction in single-time scale and multiple time
scale remains same. Cooperative particle swarm
optimization (CPSO) is implemented with proposed
MTSO algorithm and dynamic DAP scheme is used
[19]. Concept of local HEMS and global HEMS
have been introduced to divide computational load.
A multi home problem has been discussed. Energy
storage devices will be scheduled at global level
while other appliances are scheduled at local level
according to customer priority [20].Automatic DR
for HEMS has been proposed using DAP. Ad-
vance integrated multidimensional modeling soft-
ware (AIMMS) has been considered to solve the
problem using AIMMS’s outer approximation al-
gorithm (AOA) [21]. HVAC and other loads have
been scheduled using learning based HEMS. ANN
and regression based techniques error has been
compared and regression has been selected over
ANN for scheduling purpose [22].

BA is proposed by Xin-She Yang in 2010 [17]. It
is inspired by the ecological behavior of bats. It is
used to solve optimization problems in many fields.
Binary version of BA knows as binary BA has been
proposed in [18]. Differential bat algorithm (DBA)
has been proposed by Coelho [23] by combining
DE and BA to reduce power consumption of HVAC
system, it is observed that in mean index error is
reduced by 43.3% by proposed hybrid technique. In
another paper, battery energy storage is connected
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TABLE II: SOTA table

Problem Addressed Techniques Pricing Results Limitations

Cost reduction [1] ANN DR 4.6 and decrement in
cost

PAR not considered

Load Management on DSM [3] Improved PSO TOU 9.65%, 7.24%, 18.72% PAR not Considered

Cost, PAR and waiting reduc-
tion with integration of RESs
[6]

HSA, HSDE, EDE with RESs RTP Cost reduced UC compromised

Load scheduling in terms of
cost reduction with maximiza-
tion of UC [7]

Dynamic Programming, GA,
BPSO, GAPSO

CPP, DAP 23.9% reduction in cost
in case of GAPSO

Consumption cost in-
creased

Minimization of cost, discom-
fort and PAR [8]

GA, Teaching learning
based optimization, EDE,
EDTLA(proposed technique)
Enhanced differential teaching
learning algorithm

RTP 36.02% reduction in
cost EDTLA, 14.70%
GA, TLBO 33.82%,
EDE 12.76%

Trade off in between
electricity bill and de-
lay

Energy consumption. reduction
[9]

BPSO, BBSA TOU 21.3% energy
consumption reduction

PAR not considered

Energy consumption and cost
reduction [10]

MULP TOU, RTP with
DLC, RTP with
IBR

TOU 22%, RTP + DLC
%14.5 and RTP +IBR
%19

increase in bill reduc-
tion in summers UC
not considered

Energy consumption optimiza-
tion [11]

ANN-GA TOU 10%, 25% and
40%,Reduction in
grid energy

PAR not considered

Price Reduction, Minimization
of peak load[12]

MIP TOU 3.6% cost reduction UC not under consider-
ation

Cost reduction [13] Improved HSA TOU 4% more cost reduction
than GA

UC ignored

Reduction in energy consump-
tion and cost [14]

Priority based scheduling DAP 2% cost reduction Tradeoff b/w UC and
PAR

Minimize cost and delay [15] MOEA TOU 13% cost reduction PAR not considered

Energy consumption reduction
[16]

GA, BPSO and ACO TOU and IBR
combined

48.79%, 40.43% and
28.26% resceptively

Tradeoff b/w UC and
cost reduction

Multi-time scale optimization
[19]

CPSO + MTSO DAP Percentage decrease is
same for both STS and
MTS

PAR not considered

Comparison of distributed and
centralized distribution opti-
mization [20]

MILP TOU Same for both LHEMS
and DHEMS

PAR not considered

Cost reduction keeping UC un-
der consideration [21]

AOA DAP 68% cost reduction Waiting time of appli-
ances not considered

Learning based DR [22] Regression DAP 56.77% cost reduction Industrial and commer-
cial areas not consid-
ered

Meta Heuristic algorithms for
cost reduction [23]

GA and BA TOU Cost reduction 70%
BA, 65%

Tradeoff b/w UC and
Cost reduction

Power consumption reduction
[24]

DBA DAP 43.3% error reduction Multi objective system
not considered

with micro grid to check the optimized size of
battery to reduce cost reduction. BA is implemented
for this purpose and results shows that 40% cost
reduction is achieved by using 250kWh battery
energy storage [24]. In this paper a hybrid technique
BGA has been proposed and results are simulated
to check its performance. TOU is considered as
price signal and performance of new technique is
compared with that of GA and BA.

III. SYSTEM MODEL

DSM makes the working of smart grid (SG)
effective and stable. DSM helps both user and
utility by managing electricity usage by scheduling
the appliances according to HEMS through energy
management controller (EMC). Advance metering
infrastructure (AMI) is configured in houses for
two-way communication between utility and homes.
Pricing scheme information is sent from utility to
home and energy consumption information is sent
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Appliances Utility

Electricity 
Generation

Smart Meter
A
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Fig. 1: Proposed system model

from home to utility through AMI. Decision of
turning appliances on and off is made by the system
keeping in regard the customer’s priorities. In this
research work, we are scheduling the appliances of a
home. The length of operation time (LOT) and range
of power ratings of appliances used for simulations
are given in Table III. Moreover, three OTIs 15
minutes, 30 minutes and 1 hour has been considered
in this work. Diagram of proposed system model is
shown in fig 1.

A. Pricing Scheme
In this work we are considering TOU pricing

scheme. In TOU pricing scheme, we divide day into
three portions that are off peak hours (12am-6am,
7pm-11am), shoulder hours (7am-10am, 5pm-6pm)
and on peak hours (11am-4pm). Electricity price for
a portions remains constant throughout the season.

B. Load Categorization
Appliances load in a home can be divided into

two categories manageable and non-manageable
[12]. Mostly the scheduling is done for manageable
load as it has high power consumption and opera-
tion time is predictable. Manageable load is further
categorized as follow:

1) 1) Shift-able load: The appliances that can
be delayed but cannot be interrupted during
operation belong to this category e.g., cloth
washing machines, cloth dryer etc.

2) 2) Shift-able load and Interruptible load: The
appliances that can be delayed as well as
interrupted during operation time belong to
this category e.g., dishwasher, iron etc.

3) 3) Base load: The appliances that work for
the whole day and cannot be scheduled e.g.,

TABLE III: Appliance categories and power ratings

Appliance Category Appliance Name Energy
Consumption
range (KW/h)

Shift-able and non-
Interruptible

Washing Machine 0.65-0.52

Cloth Dryer 0.19-2.97

Base Load Refrigerator 0.35-0.37
AC 0.25-2.75

Shift-able and Inter-
ruptible

Oven Morning 0.83-1.28

Dish Washer 0.6-1.2
Oven Evening 0.75-2.35
Vacuum Cleaner 2.37-5
Iron 4-5
Electric Vehicle 7.5-8.5

refrigerator, air conditioners, central heating
and cooling systems etc.

Appliances in non-manageable load category are
TV, laptops, lights, fans, phones, coffee maker, com-
puters etc. Their power consumption is very small
as compared to the major load discussed above.
Moreover, these appliances are interactive and have
little scheduling flexibilities. Range of power ratings
and working slots of appliances to be scheduled are
shown in table III.

IV. PROBLEM FORMULATION

The major objectives of this research work are re-
duction of consumers electricity bills by optimizing
electricity usage and PAR reduction. This problem
is mapped to multiple knapsack problem (MKP).
In MKP problem there are multiple knapsacks and
each object has a value and a weight associated with
it. Sum of weights for all selected objects should
not exceed knapsack capacity. Here, the problem is
formulated as an optimization problem with base
loads, shift-able non-interruptible loads and shift-
able interruptible loads. Optimization function can
be defined as:

minimize
T

∑
t=1

App

∑
n=1

(Pn×PRn×EPt) (1)

Such as:

1≤ t ≤ T (2)

1≤ n≤ App (3)

pn ∈ [0,1] (4)
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T Psch
total ≤ T Punsch

total (5)

Loadsch
total = Loadunsch

total (6)

Load ≤ T hreshold (7)

Equation 1 shows cost minimization objective
function. Equation 2 shows time slot variable t,
its maximum value T depends upon the OTI size,
such as for OTI of 1 hour, 30 minutes and 15
minutes T will be 24, 48 and 96 respectively. In
our work we are considering ten appliances that are
to be scheduled. Equation 4 shows that appliances
can have either on or off status. Equation 5 shows
total cost after schedule should be less than total
cost before schedule. Condition that total energy
consumption before and after scheduling should
remain same in shown in equation 6. Equation
7 shows load at particular slot after thresholding
should be less than the threshold. This threshold is
set to controls PAR.

V. OPTIMIZATION ALGORITHMS

In this work heuristic algorithms GA, BA and
BGA has been used for the optimization of our
MKP. We cannot apply traditional optimization
techniques due to the stochastic nature of our prob-
lem.

A. Genetic Algorithm

GA is inspired by the natural selection procedure
of living organisms. In GA random population of
chromosomes in generated and this population is
converted to binary form. Each gene of chromo-
some represents the status of an appliance. Then
two parent chromosomes are selected using roulette
wheel method and crossover is done. Crossover
is of multiple types, one point, multi point or
uniform crossover. Probability for crossover is set
to 0.9. High probability of crossover will lead to
fast convergence. To introduce randomness in so-
lution, space mutation procedure is performed with
probability of 0.1. Pseudo code of GA is shown in
algorithm 1.

Algorithm 1 GA

1: Initialize App,P,MaxIterP
2: Generate random population Xi(i = 1,2, ...,n)
3: for 1:24 do
4: Apply constraints
5: Calculate fitness
6: Set gBest as current hour schedule
7: while ( doIter< MaxIter)
8: Select parents
9: for i=1:POP do

10: if rand<0.9 then
11: Crossover
12: end if
13: if rand>0.1 then
14: Mutation
15: end if
16: end for
17: end while
18: end for

B. Bat Algorithm

It is a swarm intelligence meta-heuristic algo-
rithm. It is based on the echolocation capacity of bat
that helps it to find prey and estimate the distance
and location of prey. Efficiency and accuracy of
the algorithm depends upon the exploration and
exploitation rate. Exploration can be explained as
exploring new areas for prey while exploitation is
searching for prey in the present locality. Balance
between exploration and exploitation is important.
As due to more exploitation rate algorithm can get
stuck in local minimum and lose diversity while
high exploration may cause low convergence. Fre-
quency is adjusted to control the speed of BA. Loud-
ness and pulse emission rate controls the search
in nearby locality. Equations for calculation of BA
parameters are given below:

Fi = Fmin +(Fmax−Fmin) ·λ (8)

vt
i = vt−1

i +(x∗ − xt−1
i ) (9)

xt+1
(i) = xt

(i) + vt
i (10)

xt
(i,new) = xt

(i,old) + ε ·A(t−1)
i (11)

At
i = α ·A(t−1)

i (12)
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rt
i = r0

i · (1− e(−γt)) (13)

λ ∈ [0,1] (14)

r ∈ [0,1] (15)

ε ∈ [−1,1] (16)

Algorithm 2 BA

1: Initialize parameters MaxIter,POP,xt
i,v

t
i

2: Initialize parameters Ft
i ,r

t
i ,A

t
i

3: Generate random population Xi(i = 1,2, ...,n)
4: for 1:24 do
5: while ( doIter< MaxIter)
6: for i=1:POP do
7: Generate new solutions using equ. 8,

9 and 10
8: if rand> rt

i then
9: Generate xt

i,new using equ.11

10: Update rt
i ,A

t
i using equ. 12 and

13
11: end if
12: end for
13: end while
14: Calculate fitness
15: Set gbest as current hour schedule
16: end for

C. Bat Genetic Algorithm

It is a hybrid technique that has features of BA
and GA combines. GA is phenomenal in case of
global search. BA perform better than GA in terms
of local search. BA has two main steps exploration
and exploitation. Balance between exploration and
exploitation is really important because if explo-
ration reduces algorithm gets stuck in local min-
imum. This limitation is often faced by BA, to
overcome this limitation a new algorithm BGA is
proposed in this work. BGA performs mutation step
of GA after formation of new solution using BA to
increase the diversity of search space.

VI. SIMULATION RESULTS AND DISCUSSION

Proposed scheme has been used for scheduling of
appliances in single home and multiple homes.

Algorithm 3 BGA

1: Initialize parameters MaxIter,POP,xt
i,v

t
i

2: Initialize parameters Ft
i ,r

t
i ,A

t
i

3: Generate random populationXi(i = 1,2, ...,n)
4: for 1:24 do
5: while ( doIter< MaxIter)
6: for i=1:POP do
7: Generate new solution using equ. 8,

9 and 10 respectively
8: if rand> rt

i then
9: Generate xt

i,new using equ. 11

10: Update rt
i ,A

t
i using equ. 12 and

13 respectively
11: end if
12: end for
13: if rand<0.1 then
14: Mutation
15: end if
16: end while
17: Calculate fitness
18: Set gbest as current hour schedule
19: end for

A. Single Home

For single home power rating of appliances
is fixed. Home has ten appliances. Appliances
are further categorized as: base appliances, shift-
able interruptible appliances and shift-able non-
interruptible appliances. TOU pricing scheme is
used for scheduling of appliances. GA, BA and
BGA has been used for scheduling the load of
smart home. Results for three OTIs 15 minutes, 30
minutes and 1 hour are discussed in this section.
Performance measures considered for this work
are electricity cost, PAR and UC as waiting time.
Objective is to reduce cost, appliance delay and PAR
while maintaining same total load of a home before
and after scheduling of appliances.

Fig 2 (a), (b) and (c) shows energy consumption
for each time interval before and after scheduling
for OTIs 15 minutes, 30 minutes and 1 hour re-
spectively.Using any appliance during on peak hours
will increase the electricity bills rapidly, so through
scheduling a part of load has been shifted from on
peak hours to off peak hours.

Cost per unit time for different OTIs is shown in
fig 3. Cost for on peak hours is more as compared
to off peak hours, even small energy consumption
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Fig. 2: Energy consumption per unit time for all considered OTIs
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Fig. 3: Cost per unit time all considered OTIs
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Fig. 4: User comfort for OTIs
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during off peak hours will lead to insignificant
increase in cost. UC is measured as the delay in
appliance operation time after scheduling. There is
a trade-off between UC and cost reduction. If a
person wants immense decrease in cost UC will be
compromised. Fig 4 shows UC for OTIs 15 minutes,
30 minutes and 1 hour respectively. It is obvious
from plots that UC increases as OTI decreases. The
reason is scheduler has more options for scheduling
the appliance as compared to longer OTIs. UC will

be more disturbed by technique that gives more
cost and PAR reduction as appliance operation time
delay will be more.

In a unit time PAR is a ratio between the peak
load and average load. Reducing PAR is important
both for utilities and users. If PAR crosses a certain
limit it can damage utility. Increased PAR increases
customers electricity bill as well. PAR increases
as the OTI increases because the probability of
scheduling appliances at the same slot will increase
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Fig. 7: Simulation results for multiple homes
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Fig. 8: Feasible regions for all considered OTI

TABLE IV: Possible cases for OTIs

Cases
OTI 15 Minutes OTI 30 Minutes OTI 1 Hour

Load (kWh) EP Cost ($) Load (kWh) EP Cost ($) Load (kWh) EP Cost ($)
Min. load, Min. EP 0.78 2.1750 1.695 1.56 4.35 6.786 3.12 8.7 27.144

Min. load, Max. EP 0.78 4.5 3.51 1.56 9 14.04 3.12 18 56.16

Max. load, Min. EP 4.567 2.1750 9.85 7.405 4.35 32.2117 14.62 8.7 127.19

Max. load, Max. EP 4.567 4.5 20.55EP 7.405 9 66.645 14.62 18 263.16

for larger OTI. As shown in fig 5 PAR for OTIs
15 minutes, 30 minutes and 1 hour. PAR of GA
is more than that of BA in all scenarios. PAR of
BGA is less than that of GA and BA. Fig 6 shows
bar graphs of total cost per day before and after
scheduling for OTIs 15 minutes, 30 minutes and 1
hour. Objective of reduction in total cost has been
achieved by GA, BA and BGA. Average cost reduc-
tion by GA is 24.90%, 27.46% and 25.41% for OTIs
15 minutes, 30 minutes and 1 hour respectively.
Average cost reduction by BA is 25.95%, 28.59%
and 28.93% for OTIs 15 minutes, 30 minutes and 1
hour respectively. Average cost reduction by GBA is
26.31% 29.23% and 29.14% for OTIs 15 minutes,

30 minutes and 1 hour respectively. For all OTIs
BGA is giving more cost reduction than GA and
BA. Energy consumption for small OTIs is more
because sometimes the LOT of appliances is less
than the OTI. Even if the LOT of an appliance is
less than the unit length of OTI we apply it for one
complete slot; appliance turns off after completing
LOT and remaining time slot energy is wasted and
user is charged for it.

B. Multiple Homes
Same number of appliances has been considered

for all homes. Power rating of an appliance is differ-
ent for different homes. Power rating of appliances
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lie in the ranges given in table III. Results are
simulated at 10 homes, 30 homes and 50 homes.
OTI of 1 hour has been considered. Total load
before and after schedulling remains for multiple
homes. Results of total cost reduction are shown
in fig 7 (a). For different number of homes cost
reduction is 33.3%, 34.4% and 35% for GA, BA
and BGA respectively. It is evident from plot that
cost reduction of BGA is slightly more than GA and
BA. Fig 7 (b) shows that the PAR increases as the
cost reduction increases. UC is maximized by BGA
as compared to GA and BA as shown in fig 7 (c).

C. Feasible Region
Set of all possible values that satisfy optimization

problem constraints is known as feasible region. For
TOU pricing scheme signal range is (2.1750:4.5) for
15 minutes slots. Power consumption range for 15
minutes slot is (0.78:4.567). Table IV shows all the
possible cases with respect to TOU scheme. Feasi-
ble region cost must be less than the maximum cost
of unscheduled load $16. Constraints for feasible
region are given below:

C1: 9.85≥ PH ≤16
C2: PH ≥ 558.3289
C3: 1.695≥EH ≤3.51
C1 depicts the range of the hourly cost of sched-

uled load. C2 shows that daily scheduled load
cost must be less than unscheduled load cost. C3
gives the range of scheduled energy consumption.
Points P1, P2, P3 and P5 shows the feasible region
obtained under given constraints in fig 8 (a).

For TOU pricing scheme signal range is (4.35:9)
for 30 minutes slots. Power consumption range for
30 minutes slot is (1.56:7.405). Table IV shows all
the possible cases with respect to TOU scheme.
Feasible region cost must be less than the maximum
cost of unscheduled load $32.21. Constraints for
feasible region are given below:

C1: 66.64≥PH ≤32.21
C2: PH≥ 1222.6
C3: 6.786≥EH ≤14.04
C1 depicts the range of the hourly cost of sched-

uled load. C2 shows that daily scheduled load
cost must be less than unscheduled load cost. C3
gives the range of scheduled energy consumption.
Points P1, P2, P3 and P5 shows the feasible region
obtained under given constraints in fig 8 (b).

For TOU pricing scheme signal range is (8.7:18)
for one hour. Power consumption range for 15

minutes slot is (3.12:14.62). Table IV shows all the
possible cases with respect to TOU scheme. Feasi-
ble region cost must be less than the maximum cost
of unscheduled load $16. Constraints for feasible
region are given below:

C1: 138.3≥PH ≤230
C2: PH ≥ 2862.4
C3: 27.14≥EH≤56.16
C1 depicts the range of the hourly cost of sched-

uled load. C2 shows that daily scheduled load
cost must be less than unscheduled load cost. C3
gives the range of scheduled energy consumption.
Points P1, P2, P3 and P5 shows the feasible region
obtained under given constraints in fig 8 (c).

D. Trade-off
There is a trade-off between UC, PAR and cost

reduction. As an algorithm will give more cost
reduction, it shifts most of appliances other than
base appliances to off peak hours. Due to shifting
of appliances to off peak hours waiting time of
appliances increase that effect UC.

VII. CONCLUSION

In this paper simulations results has been ob-
served for scheduling a home with ten appliances
and multiple homes with ten appliances. OTIs of 15
minutes, 30 minutes and 1 hour have been imple-
mented and their affect has been noted. When OTI
is small cost reduction is more as some appliances
have LOT less than OTI. If we have OTI of one hour
then the appliance that has LOT less than one hour
will be given one complete hour, in this way energy
for remaining time of one-hour slot after completion
of LOT will be wasted. PAR will decrease as OTI
decreases because there are more slots to schedule
the appliances and probability of scheduling more
than one appliance at the same slot decreases. UC
decreases as OTI deceases as the number of slots are
more for scheduling. There is a trade-off between
UC and cost reduction. Optimization schemes GA,
BA and GBA are used for scheduling. Cost and PAR
reduction for proposed technique GBA is more than
GA and BA is most scenarios. As the cost is more
reduced waiting time of appliances increases.
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